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Networks are natural tools for understanding complex social and eco-
nomic phenomena. Examples are: technology diffusion; neighborhood ef-
fects; financial crises and contagion; social learning; globalization. The sur-
veys by Sanjeev Goyal (2003) and Matthew O. Jackson (2003) provide many
examples. We can also think of markets as being structured like networks.
The traditional Walrasian theory assumes that commodities are traded on a
centralized exchange. The closest counterparts in the real world are stock ex-
changes, like the NYSE or Nasdaq, or commodity exchanges, like the CBOT.
Decentralized trade, on the other hand, is naturally thought of as taking the
form of a network. For example, the concept of a network can be to model the
market for interbank lending and study the phenomenon of contagion. Ap-
plications of this idea can be found in Franklin Allen and Douglas M. Gale
(2000); Xavier Freixas, Bruno M. Parigi and Jean-Charles Rochet (2000);
Craig H. Furfine (2003); Michael Boss, Helmut Elsinger, Martin Summer
and Stefan Thurner (2004); Hans A. Degryse and Gregory Nguyen (2004);
and Christian Upper and Andreas Worms (2004). Recent theoretical research
has begun to recognize that financial markets contain interesting and impor-
tant frictions. For example, Darrell Duffie, Nicolae B. Garleanu and Lasse
H. Pedersen (2005) model over-the-counter markets using a dynamic match-
ing and bargaining framework. In their model, traders search randomly for
trading opportunities. When a buyer and seller are matched, they bargain
over the terms of trade. Search is time-consuming and hence costly, but in
the limit as the length of the time period becomes vanishingly small, trade
occurs instantaneously, the market becomes “frictionless” and the allocation
of assets becomes approximately efficient.
A network structure provides an alternative model of decentralized finan-

cial exchange. In place of a continuum of agents and random matching, we
assume a finite number of traders organized in a network that is represented
by a directed graph. Each trader represents a node of the graph and a directed
edge from trader i to trader j represents the possibility of trade between i and
j. If the network is complete, that is, every possible trading opportunity is
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present, the situation is very similar to the centralized auction market. What
makes the network model interesting is the assumption of incompleteness. A
network is incomplete if some pairs of traders cannot trade directly with each
other. Then trade between an initial seller i and a final buyer j involves a
(possibly large) series of intermediate trades. The greater the incompleteness
of the network, the more intermediation is required to achieve an efficient fi-
nal allocation. Since intermediation takes time and time is costly, the costs
of intermediation provide an important source of market friction. When the
costs of intermediation are small, trade is executed quickly and efficiently.
When the costs of intermediation are substantial, the cost and uncertainty
of trade may give rise to other problems. In extreme cases, it can lead to a
market breakdown.
The reasons for incompleteness are many. Asymmetric information may

mean that traders will only deal with others that they know and trust. Even
where information is symmetric, counter party risks may provide a role for
an intermediary to act as a guarantor. Transaction costs and increasing
returns may give one trader an incentive to limit the number of traders with
whom he conducts business, or to force small traders to deal through an
intermediary broker. All of these motives for incompleteness give rise to
network architectures that may be efficient in normal times, but may also
prove fragile when there is a sudden shock.
The theoretical work that is closest to ours is by Rachel E. Kranton

and Deborah F. Minehart (2001), who study the interaction of a group of
buyers and sellers who are asymmetrically connected with each other. Their
market does not allow for intermediation, however. Intermediation is the
central element of our model and does not appear to have been studied in
the network literature.
Our objective is to begin the study of exchange in incomplete networks.

We represent a network by a connected graph in which the nodes represent
agents (traders) and the edges represent the possibility of trade between the
agents linked by the edge. In the next section, we present a theoretical
model of a simple asset market and sketch a proof that, in the limit as the
period length goes to zero, the market becomes frictionless, and the market
outcome is efficient. Then we discuss the application of the theory, first,
to explain the occurrence of market breakdowns as a result of frictions and
incomplete networks and, secondly, to investigate the consequences of market
breakdowns on equilibrium prices and the allocation of assets. Finally, we
discuss the possibility of using the model as the basis of an experimental
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design that can be implemented in the laboratory.

I. A model of financial networks
In our proto-type model, agents bargain over terms of trade and exchange
an indivisible asset according to a standard protocol. The model consists
of a finite set of agents N and k < N identical and indivisible units of
an asset. (We abuse notation by letting N represent both the set and its
cardinality). Time is divided into an infinite sequence of dates, indexed by t.
A crucial feature of the network is that each node has a capacity constraint.
For simplicity, we impose the capacity constraint by assuming that each
agent i ∈ N can hold at most one unit at any date. (An alternative is to
assume that each agent has a limited budget for purchasing assets). The
initial distribution of assets is denoted by e = (e1, ..., eN) ∈ {0, 1}N , where
ei ∈ {0, 1} is the number of units of the asset initially held by agent i. The
financial network is represented by a non-empty graph (N,E), where N is
the set of nodes and E = ∪Ni=1{(i, j) : j ∈ Ni} ⊂ N ×N is the set of edges.
Thus, the set Ni = {j : (i, j) ∈ E} denotes the neighbors of agent i, i.e., the
set of agents with whom agent i can trade.
We assume that agents discount future utilities using a common discount

factor 0 < δ < 1, so agent i receives a flow utility of ui = (1 − δ)ūi ≥ 0
from holding one unit of the asset, where ūi ≥ 0 is the present value of agent
i’s stream of utility from holding the asset forever. An agent who does not
hold an asset during the period receives a flow utility of zero. Since each
agent can hold at most one unit of the asset, an attainable allocation at any
date is represented by a vector x ∈ {0, 1}N such that

P
i∈N xi = k, where

xi ∈ {0, 1} is the number of units held by agent i. We let X denote the
set of all attainable allocations. We assume that the non-zero flow utilities
are generic, so without essential loss of generality we can order the agents
such that u1 > u2 > ... > uN 0 > 0 and ui = 0 for i = N 0 + 1, ..., N . The
first N 0 agents are called investors and the last N − N 0 agents are called
intermediaries. Note that we allow for the possibility that N 0 = N but
always assume that N 0 > k. In that case, there is a unique Pareto-efficient
allocation x∗ = argmax {u · x : x ∈ X}. At the allocation x∗ the sum of flow
utilities – and hence the present value of the stream of flow utilities – is
maximized in each period. Any departure from this state must produce a
strictly lower present value of the stream of flow utilities, which would imply
a violation of individual rationality for some agent. Hence, x∗ is an absorbing
state: if the process {xt} ever reaches the state x∗, it will remain there.
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The trading protocol is defined by the following rules. For any attainable
allocation x ∈ X, let B(x) denote the set of buyers and let S(x) denote the
set of sellers when the initial allocation is x. At each date t, with initial
allocation xt−1, an agent i ∈ S(xt−1) is chosen at random to be the proposer.
Seller i makes a proposal to one of the buyers j ∈ B(xt−1) ∩ Ni, assuming
the set is non-empty, by offering a price p at which he is willing to sell his
unit of the asset to j. Buyer j accepts (A) or rejects (R) the proposal. If
he accepts, the asset is transferred from agent i to agent j and j pays i the
price p. Otherwise no trade occurs and the allocation remains the same at
the beginning of the next period.
These rules define an extensive-form game of perfect information denoted

by Γ(δ). We analyze this game using the Markov perfect equilibrium (MPE)
as the solution concept. To describe the equilibrium path we need some
additional notation. The Markov equilibrium strategy of agent i is denoted
by fi, where fi : X → B(x)×R+ if i ∈ S(x) and fi : X×S(x)×R+ → {A,R}
if i ∈ B(x). Let φi(x) denote the allocation that results from x when i ∈ S(x)
is chosen as the proposer and let φi(x) = x if i /∈ S(x). Then the transition
probability on the set of attainable allocations is defined by

P (x, x0) =
P

i∈S(x)

P
j∈B(x)

πi(x)χj×R+(fi(x))χA(fj(x, fi(x)))χx0(φi(x))

if x 6= x0 and P (x, x) = 1 −
P

x0 6=x P (x, x
0) otherwise. Let {fi} be a fixed

but arbitrary MPE of the game Γ(δ) and let v(x) be the equilibrium payoff.
Then, the Bellman equation is given by

vi(x) = ui+δπi(x)max

½
vi(x), max

j∈Ni∩B(x)
vj(φij(x))

¾
+δ

P
j∈S(x)\{i}

πj(x)vi(φj(x)),

if xi = 1 and vi(x) = 0 otherwise, where πi(x) denotes the probability that
agent i is chosen as the proposer when the allocation is x and φij(x) denotes
the allocation obtained from x by transferring one unit from i to j.
The first question we address is “What happens in the limit as the time

period becomes vanishingly small?” This corresponds to the case where there
are no frictions and trades can occur infinitely fast. Formally, this is equiv-
alent to letting the discount factor δ → 1 while holding constant the asset
values ū. What follows is a sketch of the asymptotic analysis of equilibrium.

Proposition 1. The Pareto-efficient allocation x∗ is an absorb-
ing state in any equilibrium.
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To show this, let {Φt} denote the random path of equilibrium alloca-
tions, with Φ0 ≡ e. Then it follows from feasibility that, for any attainable
allocation x,

v(x) · x ≤ E
∙ ∞P
t=0

δtu · Φt

¯̄̄̄
Φ0 = x

¸
≤

∞P
t=0

δtu · x∗ = ū · x∗

and the inequality is strict if Φt 6= x∗ for some t with positive probability.
Now, starting at the allocation x∗, any i ∈ S(x∗) can achieve an equilibrium
payoff

P∞
t=0 δ

tui = ūi by holding the asset forever. Thus, vi(x∗) ≥ ūi and,
together with the preceding inequality, this implies that vi(x∗) = ūi for all i ∈
S(x∗). It then follows from the first inequality thatP [Φt = x∗, ∀t| Φ0 = x∗] =
1 as required.

Proposition 2. In any equilibrium, any absorbing set is a sin-
gleton, i.e., there are no limit cycles.

To see this, call a set A ⊂ X an absorbing set if it is a minimal set with
the property that P[Φt+1 ∈ A|Φt ∈ A] = 1. Note that once A is entered, each
element of A is reached infinitely often with probability one. Suppose that
the set A is not a singleton and note that as the process Φ cycles through the
elements of A, there must be more than k agents who hold units of the asset.
Let S(A) = ∪x∈AS(x) and index the elements of S(A) by i1, i2, ..., im so that
uir > uir+1 for r = 1, ...,m − 1 and note that by hypothesis |S(A)| > k.
Suppose that x1 ∈ A is an allocation such that i1 holds a unit of the asset
so once x1 is reached, i1 will hold it forever. Then after x1 is reached, there
must be an allocation x2 in which i2 holds a unit of the asset and once this
allocation is reached both i1 and i2 will hold their units forever. Eventually,
we must reach an allocation xk where the agents i1, ..., ik all hold the asset
and will never give it up. Then xk is an absorbing state, contradicting the
definition of A.

Proposition 3. In any equilibrium, the process Φ = {Φt} must
reach an absorbing state with probability one.

The proof is again by contradiction. Let x1, ..., xm denote the absorbing
states and suppose that Φ does not reach an absorbing state with probability
one. Note that if Φ reaches an absorbing state with positive probability then
(because of the Markov assumption) it reaches an absorbing state with prob-
ability one. This implies that Φ reaches {x1, ..., xm} with probability zero.
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Then, our previous result implies that X\{x1, ..., xm} contains an absorbing
state, contradicting the definition of x1, ..., xm.
Our main result is to show that, in the limit as δ → 1, the economy

becomes frictionless and x∗ is the only absorbing state for any MPE of Γ(δ).
The answer turns out to depend on the key assumption that the efficient asset
holders are “accessible.” The efficient asset holders are said to be accessible if
the intermediaries form a non-empty, connected network and every efficient
asset holder is directly connected to at least one intermediary, i.e., for any
i = 1, ..., k, there is some j > N 0 such that i ∈ Nj.

Theorem: For δ sufficiently close 1, the only absorbing state is
x∗ if the efficient asset holders are accessible.

To see this, suppose there exists an absorbing state x 6= x∗ and let v̄
denote the lowest payoff of any asset holder in any absorbing state. Then
any agent to whom this agent could pass the asset must have a reservation
price less than or equal to v̄ and by induction we can show the same must
be true for any allocation and any agent to whom the asset could be passed
directly or indirectly. It is crucial here, however, that there be no absorbing
state in which any asset is ever worth less than v̄ in the limit. To rule
out this possibility, it is sufficient that the network satisfy the assumption of
accessibility. Since we assume that N 0 > k, the intermediaries can never hold
the asset in an absorbing state, and the existence of intermediaries without
assets ensures that there is a path from any asset holder to any other asset
holder. Then we can show the existence of an agent without an asset whose
reservation price is greater than v̄. This contradiction proves the desired
result.
This heuristic argument skirts all the difficulties inherent in the passage

to the limit as δ → 1. In fact, in several steps we can also show that when
the efficient asset holders are accessible, there exists a number 0 < δ0 < 1
such that the Pareto-efficient allocation x∗ is the only absorbing state of any
equilibrium of the game Γ(δ) with δ0 < δ < 1.

II. Market breakdowns
One of the constant themes in the literature on financial markets is that finan-
cial markets, unlike many other markets, are fragile. Small shocks have large
consequences in these markets. Examples of this phenomena are provided by
Utpal Bhattacharya and Matthew I. Spiegel (1991); Allen and Gale (2000);
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Freixas, Parigi and Rochet (2000); Yaron Leitner (2005); and Frederic Bois-
say (2006). In each case, the source of fragility is different. In our model, the
fragility of the markets arises from the interaction of several factors, limited
carrying capacity, trading uncertainty, and costly discounting.
Our Theorem characterizes the MPE of markets that are nearly friction-

less in the sense that trade occurs sufficiently quickly that we can ignore
discounting. This asymptotic analysis provides some understanding of the
role for intermediaries in helping markets to achieve efficiency. At least, it
provides a benchmark by which we can judge markets that do not satisfy
the assumptions needed for the theorem. The assumptions are very strong,
however, and that really provides a motive for study markets where frictions
are important.
There are several important frictions in the market: trading uncertainty,

represented here by the random arrival of opportunities to make an offer; the
opportunity cost of funds tied up in inventories of assets, represented here
by the discount factor δ; and the costs of managing an inventory of assets,
represented here by the unit capacity constraint. In normal times, limited
capacities and low costs may be consistent with steady flows that clear the
market, but in abnormal times, a small shock can destabilize the system.
A reduction in capacity or an increase in discounting or trading uncertainty
may cause individual traders to withdraw from active trading, resulting in
further falls in market capacity and further increases in trading uncertainty.
The result may be a market breakdown, in which the ability to trade in the
market at any acceptable prize disappears.
A concrete example of how frictions, such as trading costs or discounting,

can lead to market breakdowns will make the process clear. Suppose that
there are five agents i = 1, ..., 5 arranged in line: i can trade with i + 1 for
i = 1, ..., 4 and these are the only trades allowed. Initially, agents 1 and 3
are endowed with one unit of the asset and these are the only agents with
an endowment of the asset. Only agents 3 and 5 value the asset: specifically,
we assume that ū3 = 5 − ε, ū5 = 5, and ūi = 0 for i = 1, 2, 4. The unique
efficient allocation is x∗ = (0, 0, 1, 0, 1) and this will be the limit allocation
if the discount factor δ is sufficiently close to 1. Agent 1 will sell his unit of
the asset for approximately 5 − ε and agent 3 will sell his unit of the asset
for approximately 5. Now consider what happens as the length of a trading
period increases. This corresponds to reducing the value of δ, holding ū
constant. Trading the asset is becoming more costly. The most that agent 3
can hope to get for the asset is δ×5 and it may be less because of the random
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selection of the proposer. If he sells the asset, he can purchase another unit
of the asset but the price he will have to pay is determined by bargaining. In
the case where all proposals are made by sellers, agent 2 will demand 5− ε
for the asset in any subgame perfect equilibrium. So, unless the price that
agent 3 receives for his unit of the asset is greater than 5−ε, he must make a
loss from trade. Then, for some value of δ > 0, he will be indifferent between
trading the asset and holding it in perpetuity and a further decrease in δ will
cause a market breakdown, i.e., a discontinuous change in the equilibrium
asset prices and allocations. The limiting allocation will be x∗ = (1, 0, 1, 0, 0)
and agent 1 will not be able to sell his unit of the asset for any price greater
than zero.
Other shocks that may lead to a market breakdown include a change in

network architecture; a change in transaction costs; and a change in the value
of the asset.
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