Microeconomics III

Nash equilibrium I
(Mar 18, 2012)

School of Economics

The Interdisciplinary Center (IDC), Herzliya

Terminology and notations

Preferences \succsim is a binary relation on some set of alternatives A. From \succsim we derive two other relations on A :

- strict performance relation

$$
a \succ b \Longleftrightarrow a \succsim b \text { and not } b \succsim a
$$

- indifference relation

$$
a \sim b \Longleftrightarrow a \succsim b \text { and } b \succsim a
$$

Utility representation \succsim is said to be

- complete if $\forall a, b \in A, a \succsim b$ or $b \succsim a$.
- transitive if $\forall a, b, c \in A, a \succsim b$ and $b \succsim c$ then $a \succsim c$.
\succsim can be presented by a utility function only if it is complete and transitive (rational).

A function $u: A \rightarrow \mathbb{R}$ is a utility function representing \succsim if $\forall a, b \in A$

$$
a \succsim b \Longleftrightarrow u(a) \geq u(b)
$$

Profiles Let N be a the set of players.

- $\left(a_{i}\right)_{i \in N}$ or simply $\left(a_{i}\right)$ is an action profile - a collection actions, one for each player.
- $\left(a_{j}\right)_{j \in N /\{i\}}$ or simply a_{-i} is the list of elements of the action profile $\left(a_{j}\right)_{j \in N}$ for all players except for player i.
- $\left(a_{i}, a_{-i}\right)$ is the action a_{i} and the list of actions a_{-i}, which is the action profile $\left(a_{i}\right)_{i \in N}$.

Games and solutions

A game - a model of interactive (multi-person) decision-making. We distinguish between:

- Noncooperative and cooperative games - the units of analysis are individuals or (sub) groups.
- Strategic (normal) form games and extensive form games - players move simultaneously or precede one another.
- Gams with perfect and imperfect information - players are perfectly or imperfectly informed about characteristics, events and actions.

A solution - a systematic description of outcomes in a family of games.

- Nash equilibrium - strategic form games.
- Subgame perfect equilibrium - extensive form games with perfect information.
- Perfect Bayesian equilibrium - games with observable actions.
- Sequential equilibrium (and refinements) - extensive form games with imperfect information.

Formalities

A strategic game A finite set N of players, and for each player $i \in N$

- a non-empty set A_{i} of actions
- a preference relation \succsim_{i} on the set $A=A_{1} \times A_{2} \times \cdots \times A_{N}$ of possible outcomes.

We will denote a strategic game by

$$
\left\langle N,\left(A_{i}\right),\left(\succsim_{i}\right)\right\rangle
$$

or by

$$
\left\langle N,\left(A_{i}\right),\left(u_{i}\right)\right\rangle
$$

when \succsim_{i} can be represented by a utility function $u_{i}: A \rightarrow \mathbb{R}$.

A two-player finite strategic game can be described conveniently in a bimatrix.

For example, a 2×2 game

\[

\]

Best response

For any list of strategies $a_{-i} \in A_{-i}$

$$
B_{i}\left(a_{-i}\right)=\left\{a_{i} \in A_{i}:\left(a_{-i}, a_{i}\right) \succsim_{i}\left(a_{-i}, a_{i}^{\prime}\right) \forall a_{i}^{\prime} \in A_{i}\right\}
$$

is the set of players i 's best actions given a_{-i}.

Strategy a_{i} is i 's best response to a_{-i} if it is the optimal choice when i conjectures that others will play a_{-i}.

Nash equilibrium

Nash equilibrium $(N E)$ is a steady state of the play of a strategic game.

A $N E$ of a strategic game $\left\langle N,\left(A_{i}\right),\left(\succsim_{i}\right)\right\rangle$ is a profile $a^{*} \in A$ of actions such that

$$
\left(a_{-i}^{*}, a_{i}^{*}\right) \succsim_{i}\left(a_{-i}^{*}, a_{i}\right)
$$

$\forall a_{i} \in A_{i}$ and $\forall i \in N$, or equivalently

$$
a_{i}^{*} \in B_{i}\left(a_{-i}^{*}\right)
$$

$\forall i \in N$.

In words, no player has a profitable deviation given the actions of the other players.

Classical 2×2 games

Prisoner's Dilemma $L \quad R$			BoS			Coordination		
				L	R		L	R
T	3,3	0,4	T	2, 1	0,0	T	2, 2	0,0
B	4,0	1,1	B	0,0	1,2	B	0,0	1,1
Hawk-Dove			Matching Pennies					
	L	R		L	R			
T	3,3	0,4	T	1, -1	-1, 1			
B	4,0	1,1		-1, 1	1,1			

Existence of Nash equilibrium

Let the set-valued function $B: A \rightarrow A$ defined by

$$
B(a)=\times_{i \in N} B_{i}\left(a_{-i}\right)
$$

and rewrite the equilibrium condition

$$
a_{i}^{*} \in B_{i}\left(a_{-i}^{*}\right) \forall i \in N
$$

in vector form as follows

$$
a^{*} \in B\left(a^{*}\right)
$$

Kakutani's fixed point theorem gives conditions on B under which $\exists a^{*}$ such that $a^{*} \in B\left(a^{*}\right)$.

Kakutani's fixed point theorem

Let $X \subseteq \mathbb{R}^{n}$ be non-empty compact (closed and bounded) and convex set and $f: X \rightarrow X$ be a set-valued function for which

- the set $f(x)$ is non-empty and convex $\forall x \in X$.
- the graph of f is closed

$$
\begin{aligned}
& y \in f(x) \text { for any }\left\{x_{n}\right\} \text { and }\left\{y_{n}\right\} \text { such that } \\
& \qquad y_{n} \in f\left(x_{n}\right) \forall n \text { and } x_{n} \longrightarrow x \text { and } y_{n} \longrightarrow y .
\end{aligned}
$$

Than, $\exists x^{*} \in X$ such that $x^{*} \in f\left(x^{*}\right)$.

Necessity of conditions in Kakutani's theorem

- X is compact

$$
X=\mathbb{R}^{1} \text { and } f(x)=x+1
$$

- X is convex

$$
X=\left\{x \in \mathbb{R}^{2}:\|x\|=1\right\} \text { and } f \text { is } 90^{\circ} \text { clock-wise rotation. }
$$

- $f(x)$ is convex for any $x \in X$

$$
X=[0,1] \text { and }
$$

$$
f(x)=\left\{\begin{array}{ccc}
\{1\} & \text { if } & x<\frac{1}{2} \\
\{0,1\} & \text { if } & x=\frac{1}{2} \\
\{0\} & \text { if } & x>\frac{1}{2}
\end{array}\right.
$$

- f has a closed graph

$$
\begin{aligned}
& X=[0,1] \text { and } \\
& \qquad f(x)= \begin{cases}1 & \text { if } x<1 \\
0 & \text { if } x=1\end{cases}
\end{aligned}
$$

A strategic game $\left\langle N,\left(A_{i}\right),\left(\succsim_{i}\right)\right\rangle$ has a $N E$ if for all $i \in N$

- A_{i} is non-empty, compact and convex.
- \succsim_{i} is continuous and quasi-concave on A_{i}.
B has a fixed point by Kakutani:
- $B_{i}\left(a_{-i}\right) \neq \emptyset\left(A_{i}\right.$ is compact and \succsim_{i} is continuous).
- $B_{i}\left(a_{-i}\right)$ is convex $\left(\succsim_{i}\right.$ is quasi-concave on $\left.A_{i}\right)$.
- B has a closed graph ($\succsim i$ is continuous).

Dominance

An action $a_{i}^{\prime} \in A_{i}$ of player i is strictly dominated if there exists another action $a_{i}^{\prime \prime}$ such that

$$
u_{i}\left(a_{i}^{\prime}, a_{-i}\right)<u_{i}\left(a_{i}^{\prime \prime}, a_{-i}\right)
$$

for all $a_{-i} \in A_{-i}$.

An action $a_{i}^{\prime} \in A_{i}$ of player i is weakly dominated if there exists another action $a_{i}^{\prime \prime}$ such that

$$
u_{i}\left(a_{i}^{\prime}, a_{-i}\right) \leq u_{i}\left(a_{i}^{\prime \prime}, a_{-i}\right)
$$

for all $a_{-i} \in A_{-i}$ and the inequality is strict for some $a_{-i} \in A_{-i}$.

