Microeconomics III

Nash equilibrium II
(Apr 15, 2012)

School of Economics

The Interdisciplinary Center (IDC), Herzliya

Randomization

Recall that a strategic game is a triple $\left\langle N,\left(A_{i}\right),\left(\succsim_{i}\right)\right\rangle$ where

- N is a finite set of players, and for each player $i \in N$
- a non-empty set A_{i} of actions
- a preference relation \succsim_{i} on the set $A=\times_{j \in N} A_{j}$ of possible outcomes.
or a triple $\left\langle N,\left(A_{i}\right),\left(u_{i}\right)\right\rangle$ when \succsim_{i} can be represented by a utility function $u_{i}: A \rightarrow \mathbb{R}$.

Suppose that,

- each player i can randomize among all her strategies so choices are not deterministic, and
- player i 's preferences over lotteries on A can be represented by $v N M$ expected utility function.

Then, we need to add theses specifications to the primitives of the model of strategic game $\left\langle N,\left(A_{i}\right),\left(\succsim_{i}\right)\right\rangle$.

A mixed strategy of player i is $\alpha_{i} \in \Delta\left(A_{i}\right)$ where $\Delta\left(A_{i}\right)$ is the set of all probability distributions over A_{i}.

- A profile $\left(\alpha_{i}\right)_{i \in N}$ of mixed strategies induces a probability distribution over the set A.
- Assuming independence, the probability of an action profile (outcome) a is then

$$
\prod_{i \in N} \alpha_{i}\left(a_{i}\right) .
$$

A $v N M$ utility function

$$
U_{i}: \times_{j \in N} \Delta\left(A_{j}\right) \rightarrow \mathbb{R}
$$

represents player i 's preferences over the set of lotteries over A.

The mixed extension of a the strategic game $\left\langle N,\left(A_{i}\right),\left(u_{i}\right)\right\rangle$ is the strategic game

$$
\left\langle N,\left(\Delta\left(A_{i}\right)\right),\left(U_{i}\right)\right\rangle .
$$

Preferences toward risk

The standard model of decisions under risk (known probabilities) is based on von Neumann and Morgenstern Expected Utility Theory.

Consider a set of lotteries, or gambles, (outcomes and probabilities). A fundamental axiom about preferences toward risk is independence:

$$
\text { For any lotteries } x, y, z \text { and } 0<\alpha<1
$$

$$
x \succ y \text { implies } \alpha x+(1-\alpha) z \succ \alpha y+(1-\alpha) z
$$

Expected Utility Theory has some very convenient properties for analyzing choice under uncertainty.

To clarify, we will consider the utility that a consumer gets from her or his income.

More precisely, from the consumption bundle that the consumer's income can buy.

Behavioral economics

Allais (1953) I

- Choose between the two gambles:

$$
A:=\underset{\substack{.01}}{\substack{.33 \\ .06}} \$ \$ 24,000 \quad B:=\xrightarrow{1} \$ 24,000
$$

Allais (1953) II

- Choose between the two gambles:

Two results on mixed strategy Nash equilibrium

Let $G=\left\langle N,\left(A_{i}\right),\left(u_{i}\right)\right\rangle$ be a strategic game and $G^{\prime}=\left\langle N,\left(\Delta\left(A_{i}\right)\right),\left(U_{i}\right)\right\rangle$ be its mixed extension.
[1] If $a \in N E(G)$ then $a \in N E\left(G^{\prime}\right)$.
[2] $\alpha \in N E\left(G^{\prime}\right)$ if and only if

$$
U_{i}\left(\alpha_{-i}, a_{i}\right) \geq U_{i}\left(\alpha_{-i}, a_{i}^{\prime}\right)
$$

for all a_{i}^{\prime} and all $\alpha_{i}\left(a_{i}\right)>0$.
[1] Proof: If $a \in N E(G)$ then

$$
u_{i}\left(a_{-i}, a_{i}\right) \geq u_{i}\left(a_{-i}, a_{i}^{\prime}\right) \forall i \in N \text { and } \forall a_{i}^{\prime} \in A_{i} .
$$

Then, by the linearity of U_{i} in α_{i}

$$
U_{i}\left(a_{-i}, a_{i}\right) \geq U_{i}\left(a_{-i}, \alpha_{i}\right) \forall i \in N \text { and } \forall \alpha_{i} \in \Delta\left(A_{i}\right)
$$

and thus $a \in N E\left(G^{\prime}\right)$.
[2] Proof: Let $\alpha \in N E\left(G^{\prime}\right)$

Suppose that $\exists a_{i} \in A_{i}$ such that $\alpha_{i}\left(a_{i}\right)>0$ and

$$
U_{i}\left(\alpha_{-i}, a_{i}^{\prime}\right) \geq U_{i}\left(\alpha_{-i}, a_{i}\right) \text { for some } a_{i}^{\prime} \neq a_{i} .
$$

Then, player i can increase her payoff by transferring probability from a_{i} to a_{i}^{\prime} so α is not a $N E$.

This implies that $U_{i}\left(\alpha_{-i}, a_{i}\right)=U_{i}\left(\alpha_{-i}, a_{i}^{\prime}\right)$ for all a_{i}, a_{i}^{\prime} in the support of α.

Evolutionary stability

A single population of players. Players interact with each other pair-wise and randomly matched.

Players are assigned modes of behavior (mutation). Utility measures each player's ability to survive.
ε of players consists of mutants taking action a while others take action a^{*}.

Evolutionary stable strategy (ESS)

Consider a payoff symmetric game $G=\left\langle\{1,2\},(A, A),\left(u_{i}\right)\right\rangle$ where $u_{1}(a)=$ $u_{2}\left(a^{\prime}\right)$ when a^{\prime} is obtained from a by exchanging a_{1} and a_{2}.
$a^{*} \in A$ is $E S S$ iff for any $a \in A, a \neq a^{*}$ and $\varepsilon>0$ sufficiently small

$$
(1-\varepsilon) u\left(a^{*}, a^{*}\right)+\varepsilon u\left(a^{*}, a\right)>(1-\varepsilon) u\left(a, a^{*}\right)+\varepsilon u(a, a)
$$

which is satisfied iff for any $a \neq a^{*}$ either

$$
u\left(a^{*}, a^{*}\right)>u\left(a, a^{*}\right)
$$

or

$$
u\left(a^{*}, a^{*}\right)=u\left(a, a^{*}\right) \text { and } u\left(a^{*}, a\right)>u(a, a)
$$

Three results on $E S S$

[1] If a^{*} is an $E S S$ then $\left(a^{*}, a^{*}\right)$ is a $N E$.

Suppose not. Then, there exists a strategy $a \in A$ such that

$$
u\left(a, a^{*}\right)>u\left(a^{*}, a^{*}\right)
$$

But, for ε small enough

$$
(1-\varepsilon) u\left(a^{*}, a^{*}\right)+\varepsilon u\left(a^{*}, a\right)<(1-\varepsilon) u\left(a, a^{*}\right)+\varepsilon u(a, a)
$$

and thus a^{*} is not an $E S S$.
[2] If $\left(a^{*}, a^{*}\right)$ is a strict $N E\left(u\left(a^{*}, a^{*}\right)>u\left(a, a^{*}\right)\right.$ for all $\left.a \in A\right)$ then a^{*} is an $E S S$.

Suppose a^{*} is not an $E S S$. Then either

$$
u\left(a^{*}, a^{*}\right) \leq u\left(a, a^{*}\right)
$$

or

$$
u\left(a^{*}, a^{*}\right)=u\left(a, a^{*}\right) \text { and } u\left(a^{*}, a\right) \leq u(a, a)
$$

so $\left(a^{*}, a^{*}\right)$ can be a $N E$ but not a strict $N E$.
[3] A 2×2 game $G=\left\langle\{1,2\},(A, A),\left(u_{i}\right)\right\rangle$ where $u_{i}(a) \neq u_{i}\left(a^{\prime}\right)$ for any a, a^{\prime} has a mixed strategy which is $E S S$

	a	a^{\prime}
a	w, w	x, y
a^{\prime}	y, x	z, z

If $w>y$ or $z>x$ then (a, a) or $\left(a^{\prime}, a^{\prime}\right)$ are strict $N E$, and thus a or a^{\prime} are $E S S$.

If $w<y$ and $z<x$ then there is a unique symmetric mixed strategy $N E\left(\alpha^{*}, \alpha^{*}\right)$ where

$$
\alpha^{*}(a)=(z-x) /(w-y+z-x)
$$

and $u\left(\alpha^{*}, \alpha\right)>u(\alpha, \alpha)$ for any $\alpha \neq \alpha^{*}$.

Strictly competitive games

A strategic game $\left\langle\{1,2\},\left(A_{i}\right),\left(\succsim_{i}\right)\right\rangle$ is strictly competitive if for any a $\in A$ and $b \in A$ we have $a \succsim_{1} b$ if and only if $b \succsim_{2} a$.

\[

\]

Maxminimization

A max min mixed strategy of player i is a mixed strategy that solves the problem

$$
\max _{\alpha_{i} \in \Delta A_{i}} \min _{\alpha_{-i} \in \Delta A_{-i}} U_{i}\left(\alpha_{i}, \alpha_{-i}\right)
$$

A player's payoff in $\alpha^{*} \in N E(G)$ is at least her max min payoff:

$$
U_{i}\left(\alpha^{*}\right) \geq U_{i}\left(\alpha_{i}, \alpha_{-i}^{*}\right) \geq \min _{\alpha_{-i} \in \Delta A_{-i}} U_{i}\left(\alpha_{i}, \alpha_{-i}\right)
$$

and thus

$$
U_{i}\left(\alpha^{*}\right) \geq \max _{\alpha_{i} \in \Delta A_{i}} \min _{\alpha_{-i} \in \Delta A_{-i}} U_{i}\left(\alpha_{i}, \alpha_{-i}\right)
$$

since the above holds for all $\alpha_{i} \in \triangle\left(A_{i}\right)$.

Two min-max results

[1] $\max _{\alpha_{i} \in \Delta A_{i}} \min _{\alpha_{-i} \in \Delta A_{-i}} U_{i}\left(\alpha_{i}, \alpha_{-i}\right) \leq \min _{\alpha_{-i} \in \Delta A_{-i}} \max _{i} \in \Delta A_{i}$ $U_{i}\left(\alpha_{i}, \alpha_{-i}\right)$
For every α^{\prime}

$$
\min _{\alpha_{-i}} U_{i}\left(\alpha_{i}^{\prime}, \alpha_{-i}\right) \leq U_{i}\left(\alpha_{i}^{\prime}, \alpha_{-i}^{\prime}\right)
$$

and thus

$$
\min _{\alpha_{-i}} U_{i}\left(\alpha_{i}^{\prime}, \alpha_{-i}\right) \leq \max _{\alpha_{i}} U_{i}\left(\alpha_{i}, \alpha_{-i}^{\prime}\right)
$$

However, since the above holds for every α_{i}^{\prime} and α_{-i}^{\prime} it must hold for the "best" and "worst" such choices

$$
\max _{\alpha_{i}} \min _{\alpha_{-i}} U_{i}\left(\alpha_{i}, \alpha_{-i}\right) \leq \min _{\alpha_{-i}} \max _{\alpha_{i}} U_{i}\left(\alpha_{i}, \alpha_{-i}\right)
$$

[2] In a zero-sum game

$$
\max _{\alpha_{1} \in \Delta A_{1}} \min _{\alpha_{2} \in \Delta A_{2}} U_{1}\left(\alpha_{1}, \alpha_{2}\right)=\min _{\alpha_{2} \in \Delta A_{2}} \max _{\alpha_{1} \in \Delta A_{1}} U_{1}\left(\alpha_{1}, \alpha_{2}\right)=U_{1}\left(\alpha^{*}\right)
$$

\Leftarrow Since $\alpha^{*} \in N E(G)$

$$
U_{1}\left(\alpha^{*}\right)=\max _{\alpha_{1} \in \Delta A_{1}} U_{1}\left(\alpha_{1}, \alpha_{2}^{*}\right) \geq \min _{\alpha_{2} \in \Delta A_{2}} \max _{\alpha_{1} \in \Delta A_{1}} U_{1}\left(\alpha_{1}, \alpha_{2}\right)
$$

and since $U_{1}=-U_{2}$ at the same time

$$
U_{1}\left(\alpha^{*}\right)=\min _{\alpha_{2} \in \Delta A_{2}} U_{1}\left(\alpha_{1}^{*}, \alpha_{2}\right) \leq \max _{\alpha_{1} \in \Delta A_{1}} \min _{2} \in \Delta A_{2} U_{1}\left(\alpha_{1}, \alpha_{2}\right)
$$

Hence,

$$
\max _{\alpha_{1} \in \Delta A_{1}} \min _{\alpha_{2} \in \Delta A_{2}} U_{1}\left(\alpha_{1}, \alpha_{2}\right) \geq \min _{\alpha_{2} \in \Delta A_{2}} \max _{\alpha_{1} \in \Delta A_{1}} U_{1}\left(\alpha_{1}, \alpha_{2}\right)
$$

which together with [1] gives the desired conclusion.
\Rightarrow Let $\alpha_{1}^{\text {max }}$ be player 1's max min strategy and $\alpha_{2}^{\min }$ be player 2's min max strategy. Then,

$$
\begin{aligned}
\max _{\alpha_{1} \in \Delta A_{1}}^{\min _{2} \in \Delta A_{2}} U_{1}\left(\alpha_{1}, \alpha_{2}\right) & =\min _{\alpha_{2} \in \Delta A_{2}} U_{1}\left(\alpha_{1}^{\max }, \alpha_{2}\right) \\
& \leq U_{1}\left(\alpha_{1}^{\max }, \alpha_{2}\right) \forall \alpha_{2} \in \Delta A_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \min _{\alpha_{2} \in \Delta A_{2}} \max _{\alpha_{1} \in \Delta A_{1}} U_{1}\left(\alpha_{1}, \alpha_{2}\right)=\max _{\alpha_{1} \in \Delta A_{1}} U_{1}\left(\alpha_{1}, \alpha_{2}^{\min }\right) \\
& \geq U_{1}\left(\alpha_{1}, \alpha_{2}^{\min }\right) \forall \alpha_{1} \in \Delta A_{1}
\end{aligned}
$$

But

$$
\begin{aligned}
\max _{\alpha_{1} \in \Delta A_{1}} \min _{\alpha_{2} \in \Delta A_{2}} U_{1}\left(\alpha_{1}, \alpha_{2}\right) & =\min _{\alpha_{2} \in \Delta A_{2}} \max _{\alpha_{1} \in \Delta A_{1}} U_{1}\left(\alpha_{1}, \alpha_{2}\right) \\
& =U_{1}\left(\alpha_{1}^{\max }, \alpha_{2}^{\min }\right)
\end{aligned}
$$

implies that

$$
U_{1}\left(\alpha_{1}, \alpha_{2}^{\min }\right) \leq U_{1}\left(\alpha_{1}^{\max }, \alpha_{2}^{\min }\right) \leq U_{1}\left(\alpha_{1}^{\max }, \alpha_{2}\right)
$$

$\forall \alpha_{2} \in \Delta A_{2}$ and $\forall \alpha_{1} \in \Delta A_{1}$.
Hence, $\left(\alpha_{1}^{\max }, \alpha_{2}^{\min }\right)$ is an equilibrium.

Interchangeability

If α and α^{\prime} are $N E$ in a zero-sum game, then so are $\left(\alpha_{1}, \alpha_{2}^{\prime}\right)$ and $\left(\alpha_{1}^{\prime}, \alpha_{2}\right)$.

- Since α and α^{\prime} are equilibria

$$
U_{1}\left(\alpha_{1}, \alpha_{2}\right) \geq U_{1}\left(\alpha_{1}^{\prime}, \alpha_{2}\right) \text { and } U_{2}\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right) \geq U_{2}\left(\alpha_{1}^{\prime}, \alpha_{2}\right)
$$

and because $U_{1}=-U_{2}$

$$
U_{1}\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right) \leq U_{1}\left(\alpha_{1}^{\prime}, \alpha_{2}\right)
$$

Therefore,

$$
\begin{equation*}
U_{1}\left(\alpha_{1}, \alpha_{2}\right) \geq U_{1}\left(\alpha_{1}^{\prime}, \alpha_{2}\right) \geq U_{1}\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right) \tag{1}
\end{equation*}
$$

and similar analysis gives that

$$
\begin{equation*}
U_{1}\left(\alpha_{1}, \alpha_{2}\right) \leq U_{1}\left(\alpha_{1}, \alpha_{2}^{\prime}\right) \leq U_{1}\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right) \tag{2}
\end{equation*}
$$

- (1) and (2) yield

$$
U_{1}\left(\alpha_{1}, \alpha_{2}\right)=U_{1}\left(\alpha_{1}^{\prime}, \alpha_{2}\right)=U_{1}\left(\alpha_{1}, \alpha_{2}^{\prime}\right)=U_{1}\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right)
$$

- Since α is an equilibrium

$$
U_{2}\left(\alpha_{1}, \alpha_{2}^{\prime \prime}\right) \leq U_{2}\left(\alpha_{1}, \alpha_{2}\right)=U_{2}\left(\alpha_{1}, \alpha_{2}^{\prime}\right)
$$

for any $\alpha_{2}^{\prime \prime} \in \Delta A_{2}$, and since α^{\prime} is an equilibrium

$$
U_{1}\left(\alpha_{1}^{\prime \prime}, \alpha_{2}^{\prime}\right) \leq U_{1}\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right)=U_{1}\left(\alpha_{1}, \alpha_{2}^{\prime}\right)
$$

for any $\alpha_{1}^{\prime \prime} \in \Delta A_{1}$. Therefore, $\left(\alpha_{1}, \alpha_{2}^{\prime}\right)$ is an equilibrium and similarly also $\left(\alpha_{1}, \alpha_{2}^{\prime}\right)$.

