Microeconomics III

Bargaining I
The strategic approach
(May 13, 2012)

School of Economics
The Interdisciplinary Center (IDC), Herzliya

The strategic approach

The players bargain over a pie of size 1 .

An agreement is a pair $\left(x_{1}, x_{2}\right)$ where x_{i} is player i 's share of the pie. The set of possible agreements is

$$
X=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}_{+}^{2}: x_{1}+x_{2}=1\right\}
$$

Player i prefers $x \in X$ to $y \in X$ if and only if $x_{i}>y_{i}$.

The bargaining protocol

The players can take actions only at times in the (infinite) set $T=$ $\{0,1,2, \ldots\}$. In each $t \in T$ player i, proposes an agreement $x \in X$ and $j \neq i$ either accepts (Y) or rejects (N).

If x is accepted (Y) then the bargaining ends and x is implemented. If x is rejected (N) then the play passes to period $t+1$ in which j proposes an agreement.

At all times players have perfect information. Every path in which all offers are rejected is denoted as disagreement (D). The only asymmetry is that player 1 is the first to make an offer.

Preferences

Time preferences (toward agreements at different points in time) are the driving force of the model.

A bargaining game of alternating offers is

- an extensive game of perfect information with the structure given above, and
- player i 's preference ordering $\precsim i$ over $(X \times T) \cup\{D\}$ is complete and transitive.

Preferences over $X \times T$ are represented by $\delta_{i}^{t} u_{i}\left(x_{i}\right)$ for any $0<\delta_{i}<1$ where u_{i} is increasing and concave.

Assumptions on preferences

A1 Disagreement is the worst outcome
For any $(x, t) \in X \times T$,

$$
(x, t) \succsim_{i} D
$$

for each i.

A2 Pie is desirable

- For any $t \in T, x \in X$ and $y \in X$

$$
(x, t) \succ_{i}(y, t) \text { if and only if } x_{i}>y_{i} .
$$

A3 Time is valuable

For any $t \in T, s \in T$ and $x \in X$

$$
(x, t) \succsim_{i}(x, s) \text { if } t<s
$$

and with strict preferences if $x_{i}>0$.

A4 Preference ordering is continuous
Let $\left\{\left(x_{n}, t\right)\right\}_{n=1}^{\infty}$ and $\left\{\left(y_{n}, s\right)\right\}_{n=1}^{\infty}$ be members of $X \times T$ for which

$$
\lim _{n \rightarrow \infty} x_{n}=x \text { and } \lim _{n \rightarrow \infty} y_{n}=y
$$

Then, $(x, t) \succsim_{i}(y, s)$ whenever $\left(x_{n}, t\right) \succsim_{i}\left(y_{n}, s\right)$ for all n.

A2-A4 imply that for any outcome (x, t) either there is a unique $y \in X$ such that

$$
(y, 0) \sim_{i}(x, t)
$$

or

$$
(y, 0) \succ_{i}(x, t)
$$

for every $y \in X$.

Note $\succsim i$ satisfies A2-A4 iff it can be represented by a continuous function

$$
U_{i}:[0,1] \times T \rightarrow \mathbb{R}
$$

that is increasing (deceasing) in the first (second) argument.

A5 Stationarity

For any $t \in T, x \in X$ and $y \in X$

$$
(x, t) \succ_{i}(y, t+1) \text { if and only if }(x, 0) \succ_{i}(y, 1)
$$

If \succsim_{i} satisfies $\mathbf{A 2 - A 5}$ then for every $\delta \in(0,1)$ there exists a continuous increasing function $u_{i}:[0,1] \rightarrow \mathbb{R}$ (not necessarily concave) such that

$$
U_{i}\left(x_{i}, t\right)=\delta_{i}^{t} u_{i}\left(x_{i}\right)
$$

Present value

Define $v_{i}:[0,1] \times T \rightarrow[0,1]$ for $i=1,2$ as follows

$$
v_{i}\left(x_{i}, t\right)=\left\{\begin{array}{cl}
y_{i} & \text { if }(y, 0) \sim_{i}(x, t) \\
0 & \text { if }(y, 0) \succ_{i}(x, t) \text { for all } y \in X .
\end{array}\right.
$$

We call $v_{i}\left(x_{i}, t\right)$ player i 's present value of (x, t) and note that

$$
(y, t) \succ_{i}(x, s) \text { whenever } v_{i}\left(y_{i}, t\right)>v_{i}\left(x_{i}, s\right)
$$

If \succsim_{i} satisfies A2-A4, then for any $t \in T v_{i}(\cdot, t)$ is continuous, non decreasing and increasing whenever $v_{i}\left(x_{i}, t\right)>0$.

Further, $v_{i}\left(x_{i}, t\right) \leq x_{i}$ for every $(x, t) \in X \times T$ and with strict whenever $x_{i}>0$ and $t \geq 1$.

With A5, we also have that

$$
v_{i}\left(v_{i}\left(x_{i}, 1\right), 1\right)=v_{i}\left(x_{i}, 2\right)
$$

for any $x \in X$.

Delay

A6 Increasing loss to delay

$$
x_{i}-v_{i}\left(x_{i}, 1\right) \text { is an increasing function of } x_{i} .
$$

If u_{i} is differentiable then under $\mathbf{A 6}$ in any representation $\delta_{i}^{t} u_{i}\left(x_{i}\right)$ of \succsim_{i}

$$
\delta_{i} u_{i}^{\prime}\left(x_{i}\right)<u_{i}^{\prime}\left(v_{i}\left(x_{i}, 1\right)\right)
$$

whenever $v_{i}\left(x_{i}, 1\right)>0$.

This assumption is weaker than concavity of u_{i} which implies

$$
u_{i}^{\prime}\left(x_{i}\right)<u_{i}^{\prime}\left(v_{i}\left(x_{i}, 1\right)\right)
$$

The single crossing property of present values

If $\succsim i$ for each i satisfies A2-A6, then there exist a unique pair $\left(x^{*}, y^{*}\right) \in$ $X \times X$ such that

$$
y_{1}^{*}=v_{1}\left(x_{1}^{*}, 1\right) \text { and } x_{2}^{*}=v_{2}\left(y_{2}^{*}, 1\right)
$$

- For every $x \in X$, let $\psi(x)$ be the agreement for which

$$
\psi_{1}(x)=v_{1}\left(x_{1}, 1\right)
$$

and define $H: X \rightarrow \mathbb{R}$ by

$$
H(x)=x_{2}-v_{2}\left(\psi_{2}(x), 1\right)
$$

- The pair of agreements x and $y=\psi(x)$ satisfies also $x_{2}=v_{2}\left(\psi_{2}(x), 1\right)$ iff $H(x)=0$.
- Note that $H(0,1) \geq 0$ and $H(1,0) \leq 0, H$ is a continuous function, and

$$
\begin{aligned}
H(x)= & {\left[v_{1}\left(x_{1}, 1\right)-x_{1}\right]+} \\
& +\left[1-v_{1}\left(x_{1}, 1\right)-v_{2}\left(1-v_{1}\left(x_{1}, 1\right), 1\right)\right]
\end{aligned}
$$

- Since $v_{1}\left(x_{1}, 1\right)$ is non decreasing in x_{1}, and both terms are decreasing in x_{1}, H has a unique zero by $\mathbf{A 6}$.

Examples

[1] For every $(x, t) \in X \times T$

$$
U_{i}\left(x_{i}, t\right)=\delta_{i}^{t} x_{i}
$$

where $\delta_{i} \in(0,1)$, and $U_{i}(D)=0$.
[2] For every $(x, t) \in X \times T$

$$
U_{i}\left(x_{i}, t\right)=x_{i}-c_{i} t
$$

where $c_{i}>0$, and $U_{i}(D)=-\infty$ (constant cost of delay).

Although A6 is violated, when $c_{1} \neq c_{2}$ there is a unique pair $(x, y) \in$ $X \times X$ such that $y_{1}=v_{1}\left(x_{1}, 1\right)$ and $x_{2}=v_{2}\left(y_{2}, 1\right)$.

Strategies

Let X^{t} be the set of all sequences $\left\{x^{0}, \ldots, x^{t-1}\right\}$ of members of X.

A strategy of player 1 (2) is a sequence of functions

$$
\sigma=\left\{\sigma^{t}\right\}_{t=0}^{\infty}
$$

such that $\sigma^{t}: X^{t} \rightarrow X$ if t is even (odd), and $\sigma^{t}: X^{t+1} \rightarrow\{Y, N\}$ if t is odd (even).

The way of representing a player's strategy in closely related to the notion of automation.

Nash equilibrium

For any $\bar{x} \in X$, the outcome $(\bar{x}, 0)$ is a $N E$ when players' preference satisfy A1-A6.

To see this, consider the stationary strategy profile

Player 1	proposes	\bar{x}
	accepts	$x_{1} \geq \bar{x}_{1}$
Player 2	proposes	\bar{x}
	accepts	$x_{2} \geq \bar{x}_{2}$

This is an example for a pair of one-state automate.

The set of outcomes generated in the Nash equilibrium includes also delays (agreements in period 1 or later).

Subgame perfect equilibrium

Any bargaining game of alternating offers in which players' preferences satisfy A1-A6 has a unique $S P E$ which is the solution of the following equations

$$
y_{1}^{*}=v_{1}\left(x_{1}^{*}, 1\right) \text { and } x_{2}^{*}=v_{2}\left(y_{2}^{*}, 1\right) .
$$

Note that if $y_{1}^{*}>0$ and $x_{2}^{*}>0$ then

$$
\left(y_{1}^{*}, 0\right) \sim_{1}\left(x_{1}^{*}, 1\right) \text { and }\left(x_{2}^{*}, 0\right) \sim_{2}\left(y_{2}^{*}, 1\right)
$$

The equilibrium strategy profile is given by

Player 1	proposes	x^{*}
	accepts	$y_{1} \geq y_{1}^{*}$
Player 2	proposes	y^{*}
	accepts	$x_{2} \geq x_{2}^{*}$

The unique outcome is that player 1 proposes x^{*} in period 0 and player 2 accepts.

Step $1\left(x^{*}, y^{*}\right)$ is a $S P E$

Player 1:

- proposing x^{*} at t^{*} leads to an outcome $\left(x^{*}, t^{*}\right)$. Any other strategy generates either

$$
(x, t) \text { where } x_{1} \leq x_{1}^{*} \text { and } t \geq t^{*}
$$

or

$$
\left(y^{*}, t\right) \text { where } t \geq t^{*}+1
$$

or D.

- Since $x_{1}^{*}>y_{1}^{*}$ it follows from $\mathbf{A 1} \mathbf{- A} 3$ that $\left(x^{*}, t^{*}\right)$ is a best response.

Player 2:

- accepting x^{*} at t^{*} leads to an outcome $\left(x^{*}, t^{*}\right)$. Any other strategy generates either

$$
(y, t) \text { where } y_{2} \leq y_{2}^{*} \text { and } t \geq t^{*}+1
$$

or

$$
\left(x^{*}, t\right) \text { where } t \geq t^{*}
$$

or D.

- By A1-A3 and A5

$$
\left(x^{*}, t^{*}\right) \succsim 2\left(y^{*}, t^{*}+1\right)
$$

and thus accepting x^{*} at t^{*}, which leads to the outcome $\left(x^{*}, t^{*}\right)$, is a best response.

Note that similar arguments apply to a subgame starting with an offer of player 2.

Step $2\left(x^{*}, y^{*}\right)$ is the unique $S P E$

Let G_{i} be a subgame starting with an offer of player i and define

$$
M_{i}=\sup \left\{v_{i}\left(x_{i}, t\right):(x, t) \in S P E\left(G_{i}\right)\right\}
$$

and

$$
m_{i}=\inf \left\{v_{i}\left(x_{i}, t\right):(x, t) \in S P E\left(G_{i}\right)\right\}
$$

It is suffices to show that

$$
M_{1}=m_{1}=x_{1}^{*} \text { and } M_{2}=m_{2}=y_{2}^{*}
$$

First, note that in any $S P E$ the first offer is accepted because

$$
v_{1}\left(y_{1}^{*}, 1\right) \leq y_{1}^{*}<x_{1}^{*}
$$

Thus, after a rejection, the present value for player 1 is less than x_{1}^{*}.

Then, it remains to show that

$$
\begin{equation*}
m_{2} \geq 1-v_{1}\left(M_{1}, 1\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{1} \leq 1-v_{2}\left(m_{2}, 1\right) \tag{2}
\end{equation*}
$$

1 implies that the pair $\left(M_{1}, 1-m_{2}\right)$ lies below the line

$$
y_{1}=v_{1}\left(x_{1}, 1\right)
$$

and 2 implies that the pair $\left(M_{1}, 1-m_{2}\right)$ lies to the left the line

$$
x_{2}=v_{2}\left(y_{2}, 1\right) .
$$

Thus,

$$
M_{1}=x_{1}^{*} \text { and } m_{2}=y_{2}^{*}
$$

and with the role of the players reversed, the same argument show that

$$
M_{2}=y_{2}^{*} \text { and } m_{1}=x_{1}^{*}
$$

With constant discount rates the equilibrium condition implies that

$$
y_{1}^{*}=\delta_{1} x_{1}^{*} \text { and } x_{2}^{*}=\delta_{2} y_{2}^{*}
$$

so that

$$
x^{*}=\left(\frac{1-\delta_{2}}{1-\delta_{1} \delta_{2}}, \frac{\delta_{2}\left(1-\delta_{1}\right)}{1-\delta_{1} \delta_{2}}\right) \text { and } y^{*}=\left(\frac{\delta_{1}\left(1-\delta_{2}\right)}{1-\delta_{1} \delta_{2}}, \frac{1-\delta_{1}}{1-\delta_{1} \delta_{2}}\right)
$$

Thus, if $\delta_{1}=\delta_{2}=\delta\left(v_{1}=v_{2}\right)$ then

$$
x^{*}=\left(\frac{1}{1+\delta}, \frac{\delta}{1+\delta}\right) \text { and } y^{*}=\left(\frac{\delta}{1+\delta}, \frac{1}{1+\delta}\right)
$$

so player 1 obtains more than half of the pie.

But, shrinking the length of a period by considering a sequence of games indexed by Δ in which $u_{i}=\delta_{i}^{\Delta t} x_{i}$ we have

$$
\lim _{\Delta \rightarrow 0} x^{*}(\Delta)=\lim _{\Delta \rightarrow 0} y^{*}(\Delta)=\left(\frac{\log \delta_{2}}{\log \delta_{1}+\log \delta_{2}}, \frac{\log \delta_{1}}{\log \delta_{1}+\log \delta_{2}}\right) .
$$

