Microeconomics III

Bargaining II
The axiomatic approach (May 13, 2012)

School of Economics
The Interdisciplinary Center (IDC), Herzliya

Nash (1953) bargaining

A bargaining situation is a tuple $\left\langle N, A, D,\left(\succsim_{i}\right)\right\rangle$ where

- N is a set of players or bargainers $(N=\{1,2\})$,
- A is a set of agreements/outcomes,
- D is a disagreement outcome, and
- \succsim_{i} is a preference ordering over the set of lotteries over $A \cup\{D\}$.

The objects N, A, D and \succsim_{i} for $i=\{1,2\}$ define a bargaining situation.
\succsim_{1} and \succsim_{2} satisfy the assumption of $v N M$ so for each i there is a utility function $u_{i}: A \cup\{D\} \rightarrow \mathbb{R}$.
$\langle S, d\rangle$ is the primitive of Nash's bargaining problem where

- $S=\left(u_{1}(a), u_{2}(a)\right)$ for $a \in A$ the set of all utility pairs, and
$-d=\left(u_{1}(D), u_{2}(D)\right)$.

A bargaining problem is a pair $\langle S, d\rangle$ where $S \subset \mathbb{R}^{2}$ is compact and convex, $d \in S$ and there exists $s \in S$ such that $s_{i}>d_{i}$ for $i=1,2$. The set of all bargaining problems $\langle S, d\rangle$ is denoted by B.

A bargaining solution is a function $f: B \rightarrow \mathbb{R}^{2}$ such that f assigns to each bargaining problem $\langle S, d\rangle \in B$ a unique element in S.

Nash's axioms

One states as axioms several properties that it would seem natural for the solution to have and then one discovers that the axioms actually determine the solution uniquely - Nash 1953 -

Does not capture the details of a specific bargaining problem (e.g. alternating or simultaneous offers).

Rather, the approach consists of the following four axioms: invariance to equivalent utility representations, symmetry, independence of irrelevant alternatives, and (weak) Pareto efficiency.

Invariance to equivalent utility representations (INV)

$\left\langle S^{\prime}, d^{\prime}\right\rangle$ is obtained from $\langle S, d\rangle$ by the transformations

$$
s_{i} \mapsto \alpha_{i} s_{i}+\beta_{i}
$$

for $i=1,2$ if

$$
d_{i}^{\prime}=\alpha_{i} d_{i}+\beta_{i}
$$

and

$$
S^{\prime}=\left\{\left(\alpha_{1} s_{1}+\beta_{1}, \alpha_{2} s_{2}+\beta_{2}\right) \in \mathbb{R}^{2}:\left(s_{1}, s_{2}\right) \in S\right\}
$$

Note that if $\alpha_{i}>0$ for $i=1,2$ then $\left\langle S^{\prime}, d^{\prime}\right\rangle$ is itself a bargaining problem.

If $\left\langle S^{\prime}, d^{\prime}\right\rangle$ is obtained from $\langle S, d\rangle$ by the transformations

$$
s_{i} \mapsto \alpha_{i} s_{i}+\beta_{i}
$$

for $i=1,2$ where $\alpha_{i}>0$ for each i, then

$$
f_{i}\left(S^{\prime}, d^{\prime}\right)=\alpha_{i} f_{i}(S, d)+\beta_{i}
$$

for $i=1,2$. Hence, $\left\langle S^{\prime}, d^{\prime}\right\rangle$ and $\langle S, d\rangle$ represent the same situation.
$I N V$ requires that the utility outcome of the bargaining problem co-vary with representation of preferences.

The physical outcome predicted by the bargaining solution is the same for $\left\langle S^{\prime}, d^{\prime}\right\rangle$ and $\langle S, d\rangle$.

A corollary of $I N V$ is that we can restrict attention to $\langle S, d\rangle$ such that

$$
\begin{aligned}
& S \subset \mathbb{R}_{+}^{2} \\
& S \cap \mathbb{R}_{++}^{2} \neq \emptyset, \text { and } \\
& d=(0,0) \in S \text { (reservation utilities). }
\end{aligned}
$$

Symmetry (SYM)

A bargaining problem $\langle S, d\rangle$ is symmetric if $d_{1}=d_{2}$ and $\left(s_{1}, s_{2}\right) \in S$ if and only if $\left(s_{2}, s_{1}\right) \in S$. If the bargaining problem $\langle S, d\rangle$ is symmetric then

$$
f_{1}(S, d)=f_{2}(S, d)
$$

Nash does not describe differences between the players. All asymmetries (in the bargaining abilities) must be captured by $\langle S, d\rangle$.

Hence, if players are the same the bargaining solution must assign the same utility to each player.

Independence of irrelevant alternatives (IIA)

If $\langle S, d\rangle$ and $\langle T, d\rangle$ are bargaining problems with $S \subset T$ and $f(T, d) \in S$ then

$$
f(S, d)=f(T, d)
$$

If T is available and players agree on $s \in S \subset T$ then they agree on the same s if only S is available.
$I I A$ excludes situations in which the fact that a certain agreement is available influences the outcome.

Weak Pareto efficiency ($W P O$)

If $\langle S, d\rangle$ is a bargaining problem where $s \in S$ and $t \in S$, and $t_{i}>s_{i}$ for $i=1,2$ then $f(S, d) \neq s$.

In words, players never agree on an outcome s when there is an outcome t in which both are better off.

Hence, players never disagree since by assumption there is an outcome s such that $s_{i}>d_{i}$ for each i.
$S Y M$ and $W P O$
restrict the solution on single bargaining problems.
$\underline{I N V}$ and $I I A$
requires the solution to exhibit some consistency across bargaining problems.

Nash 1953: there is precisely one bargaining solution, denoted by $f^{N}(S, d)$, satisfying $S Y M, W P O, I N V$ and $I I A$.

Nash's solution

The unique bargaining solution $f^{N}: B \rightarrow \mathbb{R}^{2}$ satisfying $S Y M, W P O$, $I N V$ and $I I A$ is given by

$$
f^{N}(S, d)=\underset{\left(d_{1}, d_{2}\right) \leq\left(s_{1}, s_{2}\right) \in S}{\arg \max }\left(s_{1}-d_{1}\right)\left(s_{2}-d_{2}\right)
$$

and since we normalize $\left(d_{1}, d_{2}\right)=(0,0)$

$$
f^{N}(S, 0)=\underset{\left(s_{1}, s_{2}\right) \in S}{\arg \max } s_{1} s_{2}
$$

The solution is the utility pair that maximizes the product of the players' utilities.

Proof

Pick a compact and convex set $S \subset \mathbb{R}_{+}^{2}$ where $S \cap \mathbb{R}_{++}^{2} \neq \emptyset$.

Step 1: f^{N} is well defined.

- Existence: the set S is compact and the function $f=s_{1} s_{2}$ is continuous.
- Uniqueness: f is strictly quasi-conacave on S and the set S is convex.

Step 2: f^{N} is the only solution that satisfies $S Y M, W P O, I N V$ and IIA.

Suppose there is another solution f that satisfies $S Y M, W P O, I N V$ and $I I A$.

Let

$$
S^{\prime}=\left\{\left(\frac{s_{1}}{f_{1}^{N}(S)}, \frac{s_{2}}{f_{2}^{N}(S)}\right):\left(s_{1}, s_{2}\right) \in S\right\}
$$

and note that $s_{1}^{\prime} s_{2}^{\prime} \leq 1$ for any $s^{\prime} \in S^{\prime}$, and thus $f^{N}\left(S^{\prime}, 0\right)=(1,1)$.

Since S^{\prime} is bounded we can construct a set T that is symmetric about the 45° line and contains S^{\prime}

$$
T=\{(a, b): a+b \leq 2\}
$$

By $W P O$ and $S Y M$ we have $f(T, 0)=(1,1)$, and by $I I A$ we have $f\left(S^{\prime}, 0\right)=f(T, 0)=(1,1)$.

By $I N V$ we have that $f\left(S^{\prime}, 0\right)=f^{N}\left(S^{\prime}, 0\right)$ if and only if $f(S, 0)=$ $f^{N}(S, 0)$ which completes the proof.

Is any axiom superfluous?

$\underline{I N V}$

The bargaining solution given by the maximizer of

$$
g\left(s_{1}, s_{2}\right)=\sqrt{s_{1}}+\sqrt{s_{2}}
$$

over $\langle S, 0\rangle$ where $S:=c o\{(0,0),(1,0),(0,2)\}$.

This solution satisfies $W P O, S Y M$ and $I I A$ (maximizer of an increasing function). The maximizer of g for this problem is $(1 / 3,4 / 3)$ while $f^{N}=$ $(1 / 2,1)$.
$\underline{S Y M}$

The family of solutions $\left\{f^{\alpha}\right\}_{\alpha \in(0,1)}$ over $\langle S, 0\rangle$ where

$$
f^{\alpha}(S, d)=\underset{\left(d_{1}, d_{2}\right) \leq\left(s_{1}, s_{2}\right) \in S}{\arg \max }\left(s_{1}-d_{1}\right)^{\alpha}\left(s_{2}-d_{2}\right)^{1-\alpha}
$$

is called the asymmetric Nash solution.

Any f^{α} satisfies $I N V, I I A$ and $W P O$ by the same arguments used for f^{N}.

For $\langle S, 0\rangle$ where $S:=\operatorname{co}\{(0,0),(1,0),(0,1)\}$ we have $f^{\alpha}(S, 0)=$ $(\alpha, 1-\alpha)$ which is different from f^{N} for any $\alpha \neq 1 / 2$.
$\underline{W P O}$

Consider the solution f^{d} given by $f^{d}(S, d)=d$ which is different from $f^{N} . f^{d}$ satisfies $I N V, S Y M$ and IIA.
$W P O$ in the Nash solution can be replaced with strict individual rationality (SIR) $f(S, d) \gg d$.

