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Game plan

(1) Review of extensive games
(2) Oligopoly
(3) The tragedy of the commons
(4) Games with imperfect information
(5) More, if time permits...



Review of extensive games w/ perfect information



Extensive games with perfect information

• The model of a strategic suppresses the sequential structure of decision
making.

— All players simultaneously choose their plan of action once and for all.

• The model of an extensive game, by contrast, describes the sequential
structure of decision-making explicitly.

— In an extensive game of perfect information all players are fully informed
about all previous actions.
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Subgame perfect equilibrium

• The notion of Nash equilibrium ignores the sequential structure of the
game.

• Consequently, the steady state to which a Nash Equilibrium corresponds
may not be robust.

• A subgame perfect equilibrium is an action profile that induces a Nash
equilibrium in every subgame (so every subgame perfect equilibrium is also
a Nash equilibrium).



A review of the main ideas

We study two (out of four) groups of game theoretic models:

[1] Strategic games — all players simultaneously choose their plan of action
once and for all.

[2] Extensive games (with perfect information) — players choose sequentially
(and fully informed about all previous actions).



A solution (equilibrium) is a systematic description of the outcomes that
may emerge in a family of games. We study two solution concepts:

[1] Nash equilibrium — a steady state of the play of a strategic game (no
player has a profitable deviation given the actions of the other players).

[1] Subgame equilibrium — a steady state of the play of an extensive game
(a Nash equilibrium in every subgame of the extensive game).

=⇒ Every subgame perfect equilibrium is also a Nash equilibrium.



 



1

2

drunk

Don’t 
drive drive

2,10,0

1,2

sober



 
 
 
 
 
 
 

Oligopoly 



Cournot’s oligopoly model (1838)

— A single good is produced by two firms (the industry is a “duopoly”).

— The cost for firm  = 1 2 for producing  units of the good is given
by  (“unit cost” is constant equal to   0).

— If the firms’ total output is  = 1 + 2 then the market price is

 = −

if  ≥  and zero otherwise (linear inverse demand function). We
also assume that   .



To find the Nash equilibria of the Cournot’s game, we can use the proce-
dures based on the firms’ best response functions.

But first we need the firms payoffs (profits):

1 = 1 − 11
= (−)1 − 11
= (− 1 − 2)1 − 11
= (− 1 − 2 − 1)1

and similarly,

2 = (− 1 − 2 − 2)2



To find firm 1’s best response to any given output 2 of firm 2, we need
to study firm 1’s profit as a function of its output 1 for given values of
2.

Using calculus, we set the derivative of firm 1’s profit with respect to 1
equal to zero and solve for 1:

1 =
1

2
(− 2 − 1)

We conclude that the best response of firm 1 to the output 2 of firm 2

depends on the values of 2 and 1.



Because firm 2’s cost function is 2 6= 1, its best response function is
given by

2 =
1

2
(− 1 − 2)

A Nash equilibrium of the Cournot’s game is a pair (∗1 
∗
2) of outputs

such that ∗1 is a best response to 
∗
2 and 

∗
2 is a best response to 

∗
1.

From the figure below, we see that there is exactly one such pair of outputs

∗1 =
+2−21

3 and ∗2 =
+1−22

3

which is the solution to the two equations above.



The best response functions in the Cournot's duopoly game 
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Stackelberg’s duopoly model (1934)

How do the conclusions of the Cournot’s duopoly game change when the
firms move sequentially? Is a firm better off moving before or after the
other firm?

Suppose that 1 = 2 =  and that firm 1 moves at the start of the game.
We may use backward induction to find the subgame perfect equilibrium.

— First, for any output 1 of firm 1, we find the output 2 of firm 2

that maximizes its profit. Next, we find the output 1 of firm 1 that
maximizes its profit, given the strategy of firm 2.



Firm 2

Since firm 2 moves after firm 1, a strategy of firm 2 is a function that
associate an output 2 for firm 2 for each possible output 1 of firm 1.

We found that under the assumptions of the Cournot’s duopoly game Firm
2 has a unique best response to each output 1 of firm 1, given by

2 =
1

2
(− 1 − )

(Recall that 1 = 2 = ).



Firm 1

Firm 1’s strategy is the output 1 the maximizes

1 = (− 1 − 2 − )1 subject to 2 =
1
2(− 1 − )

Thus, firm 1 maximizes

1 = (− 1 − (
1

2
(− 1 − ))− )1 =

1

2
1(− 1 − )

This function is quadratic in 1 that is zero when 1 = 0 and when
1 = − . Thus its maximizer is

∗1 =
1

2
(− )



We conclude that Stackelberg’s duopoly game has a unique subgame per-
fect equilibrium, in which firm 1’s strategy is the output

∗1 =
1

2
(− )

and firm 2’s output is

∗2 =
1

2
(− ∗1 − )

=
1

2
(− 1

2
(− )− )

=
1

4
(− )

By contrast, in the unique Nash equilibrium of the Cournot’s duopoly game

under the same assumptions (1 = 2 = ), each firm produces
1

3
(− ).



The subgame perfect equilibrium of Stackelberg's duopoly game 
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The tragedy of the commons



William Forster Lloyd (1833)

— Cattle herders sharing a common parcel of land (the commons) on
which they are each entitled to let their cows graze. If a herder put
more than his allotted number of cattle on the common, overgrazing
could result.

— Each additional animal has a positive effect for its herder, but the cost
of the extra animal is shared by all other herders, causing a so-called
“free-rider” problem. Today’s commons include fish stocks, rivers,
oceans, and the atmosphere.



 

 



 

 

 

   



Garrett Hardin (1968)

— This social dilemma was populated by Hardin in his article “The Tragedy
of the Commons,” published in the journal Science. The essay derived
its title from Lloyd (1833) on the over-grazing of common land.

— Hardin concluded that “...the commons, if justifiable at all, is justifi-
able only under conditions of low-population density. As the human
population has increased, the commons has had to be abandoned in
one aspect after another.”



— “The only way we can preserve and nurture other and more precious
freedoms is by relinquishing the freedom to breed, and that very soon.
“Freedom is the recognition of necessity” — and it is the role of ed-
ucation to reveal to all the necessity of abandoning the freedom to
breed. Only so, can we put an end to this aspect of the tragedy of the
commons.”

“Freedom to breed will bring ruin to all.”



Let’s put some game theoretic analysis (rigorous sense) behind this story:

— There are  players, each choosing how much to produce in a produc-
tion activity that ‘consumes’ some of the clean air that surrounds our
planet.

— There is  amount of clean air, and any consumption of clean air
comes out of this common resource. Each player  = 1   chooses
his consumption of clean air for production  ≥ 0 and the amount of
clean air left is therefore

 −
X

=1




— The benefit of consuming an amount  ≥ 0 of clean air gives player
 a benefit equal to ln(). Each player also enjoys consuming the
reminder of the clean air, giving each a benefit

ln
³
 −

X

=1

´


— Hence, the value for each player  from the action profile (outcome)
 = (1  ) is give by

( −) = ln() + ln
µ
 −

X

=1


¶




— To get player ’s best-response function, we write down the first-order
condition of his payoff function:

( −)


=
1


− 1

 −P
=1 

= 0

and thus

(−) =
 −P

 6= 
2





The two-player Tragedy of the Commons

— To find the Nash equilibrium, there are  equations with  unknown
that need to be solved. We first solve the equilibrium for two players.
Letting () be the best response of player , we have two best-
response functions:

1(2) =
 − 2
2

and 2(1) =
 − 1
2



— If we solve the two best-response functions simultaneously, we find the
unique (pure-strategy) Nash equilibrium


1 = 

2 =


3




Can this two-player society do better? More specifically, is consuming


3
clean air for each player too much (or too little)?

— The ‘right way’ to answer this question is using the Pareto princi-
ple (Vilfredo Pareto, 1848-1923) — can we find another action profile
 = (1 2) that will make both players better off than in the Nash
equilibrium?

— To this end, the function we seek to maximize is the social welfare
function  given by

(1 2) = 1 + 2 =
X2

=1
ln() + 2 ln

µ
 −

X2

=1


¶




— The first-order conditions for this problem are

(1 2)

1
=
1

1
− 2

 − 1 − 2
= 0

and
(1 2)

2
=
1

2
− 2

 − 1 − 2
= 0

— Solving these two equations simultaneously result the unique Pareto
optimal outcome

1 = 2 =


4




The -player Tragedy of the Commons

— In the -player Tragedy of the Commons, the best response of each
player  = 1  , (−), is given by

(−) =
 −P

 6= 
2



— We consider a symmetric Nash equilibrium where each player  chooses
the same level of consumption of clean air ∗ (it is subtle to show that
there cannot be asymmetric Nash equilibria).



— Because the best response must hold for each player  and they all
choose the same level  then in the symmetric Nash equilibrium
all best-response functions reduce to

 =
 −P

 6= 

2
=

 − (− 1)

2
or

 =


+ 1


Hence, the sum of clean air consumed by the firms is


+ 1
, which

increases with  as Hardin conjectured.



What is the socially optimal outcome with  players? And how does society
size affect this outcome?

— With  players, the social welfare function  given by

(1  ) =
X

=1


=
X

=1
ln() +  ln

³
 −

X

=1

´


And the  first-order conditions for the problem of maximizing this
function are

(1  )


=
1


− 

 −P
=1 

= 0

for  = 1  .



— Just as for the analysis of the Nash equilibrium with  players, the solu-
tion here is also symmetric. Therefore, the Pareto optimal consumption
of each player  can be found using the following equation:

1


− 

 − 
= 0

or

 =


2

and thus the Pareto optimal consumption of air is equal


2
, for any

society size . for  = 1  .



Finally, we show there is no asymmetric equilibrium.

— To this end, assume there are two players,  and , choosing two dif-
ferent  6=  in equilibrium.

— Because we assume a Nash equilibrium the best-response functions of
 and  must hold simultaneously, that is

 =
 − ̄ − 

2
and  =

 − ̄ − 
2

where ̄ be the sum of equilibrium choices of all other players except 
and .



— However, if we solve the best-response functions of players  and 

simultaneously, we find that

 =  =
 − ̄

3

contracting the assumption we started with that  6= .



 
 
 
 
 
 
 
 

Games with imperfect (and asymmetric) information 



Markets with asymmetric information

• The traditional theory of markets assumes that market participants have
complete information about the underlying economic variables:

— Buyers and sellers are both perfectly informed about the quality of the
goods being sold in the market.

— If it is not costly to verify quality, then the prices of the goods will
simply adjust to reflect the quality difference.

=⇒ This is clearly a drastic simplification!!!



• There are certainly many markets in the real world in which it may be very
costly (or even impossible) to gain accurate information:

— labor markets, financial markets, markets for consumer products, and
more.

• If information about quality is costly to obtain, then it is no longer possible
that buyers and sellers have the same information.

• The costs of information provide an important source of market friction
and can lead to a market breakdown.



Nobel Prize 2001  
“for their analyses of markets with asymmetric information” 

 

   
 

  



The Market for Lemons

Example I

— Consider a market with 100 people who want to sell their used car and
100 people who want to buy a used car.

— Everyone knows that 50 of the cars are “plums” and 50 are “lemons.”

— Suppose further that

seller buyer
lemon $1000 $1200
plum $2000 $2400



— If it is easy to verify the quality of the cars there will be no problem in
this market.

— Lemons will sell at some price $1000 − 1200 and plums will sell at
$2000− 2400.

— But happens to the market if buyers cannot observe the quality of the
car?



— If buyers are risk neutral, then a typical buyer will be willing to pay his
expected value of the car

1

2
1200 +

1

2
2400 = $1800

— But for this price only owners of lemons would offer their car for sale,
and buyers would therefore (correctly) expect to get a lemon.

— Market failure — no transactions will take place, although there are
possible gains from trade!



Example II

— Suppose we can index the quality of a used car by some number ,
which is distributed uniformly over [0 1].

— There is a large number of demanders for used cars who are willing to
pay 32 for a car of quality .

— There is a large number of sellers who are willing to sell a car of quality
 for a price of .



— If quality is perfectly observable, each used car of quality  would be
soled for some price between  and 32.

— What will be the equilibrium price(s) in this market when quality of
any given car cannot be observed?

— The unique equilibrium price is zero, and at this price the demand is
zero and supply is zero.

=⇒ The asymmetry of information has destroyed the market for used cars. But
the story does not end here!!!



Signaling

• In the used-car market, owners of the good used cars have an incentive to
try to convey the fact that they have a good car to the potential purchasers.

• Put differently, they would like choose actions that signal that they are
offering a plum rather than a lemon.

• In some case, the presence of a “signal” allows the market to function
more effectively than it would otherwise.



Example — educational signaling

— Suppose that a fraction 0 < b < 1 of workers are competent and a
fraction 1− b are incompetent.

— The competent workers have marginal product of a2 and the incom-
petent have marginal product of a1 < a2.

— For simplicity we assume a competitive labor market and a linear pro-
duction function

L1a1 + L2a2

where L1 and L2 is the number of incompetent and competent workers,
respectively.



— If worker quality is observable, then firm would just offer wages

w1 = a1 and w2 = a2

to competent workers, respectively.

— That is, each worker will paid his marginal product and we would have
an efficient equilibrium.

— But what if the firm cannot observe the marginal products so it cannot
distinguish the two types of workers?



— If worker quality is unobservable, then the “best” the firm can do is to
offer the average wage

w = (1− b)a1 + ba2.

— If both types of workers agree to work at this wage, then there is no
problem with adverse selection (more below).

— The incompetent (resp. competent) workers are getting paid more
(resp. less) than their marginal product.



— The competent workers would like a way to signal that they are more
productive than the others.

— Suppose now that there is some signal that the workers can acquire
that will distinguish the two types

— One nice example is education — it is cheaper for the competent workers
to acquire education than the incompetent workers.



— To be explicit, suppose that the cost (dollar costs, opportunity costs,
costs of the effort, etc.) to acquiring e years of education is

c1e and c2e

for incompetent and competent workers, respectively, where c1 > c2.

— Suppose that workers conjecture that firms will pay a wage s(e) where
s is some increasing function of e.

— Although education has no effect on productivity (MBA?), firms may
still find it profitable to base wage on education — attract a higher-
quality work force.



Market equilibrium

In the educational signaling example, there appear to be several possibilities
for equilibrium:

[1] The (representative) firm offers a single contract that attracts both
types of workers.

[2] The (representative) firm offers a single contract that attracts only one
type of workers.

[3] The (representative) firm offers two contracts, one for each type of
workers.



• A separating equilibrium involves each type of worker making a choice that
separate himself from the other type.

• In a pooling equilibrium, in contrast, each type of workers makes the same
choice, and all getting paid the wage based on their average ability.

Note that a separating equilibrium is wasteful in a social sense — no social
gains from education since it does not change productivity.



Example (cont.)

— Let e1 and e2 be the education level actually chosen by the workers.
Then, a separating (signaling) equilibrium has to satisfy:

[1] zero-profit conditions

s(e1) = a1
s(e2) = a2

[2] self-selection conditions

s(e1)− c1e1 ≥ s(e2)− c1e2
s(e2)− c2e2 ≥ s(e1)− c2e1



— In general, there may by many functions s(e) that satisfy conditions
[1] and [2]. One wage profile consistent with separating equilibrium is

s(e) =

(
a2 if e > e∗

a1 if e ≤ e∗

and
a2 − a1

c2
> e∗ >

a2 − a1
c1

=⇒ Signaling can make things better or worse — each case has to examined on
its own merits!



The Sheepskin (diploma) effect

The increase in wages associated with obtaining a higher credential:

— Graduating high school increases earnings by 5 to 6 times as much as
does completing a year in high school that does not result in graduation.

— The same discontinuous jump occurs for people who graduate from
collage.

— High school graduates produce essentially the same amount of output
as non-graduates.




