UC Berkeley
Haas School of Business
Berkeley MBA for Executives Program

Game Theory
(XMBA 296)

Block 5
Social learning
Aug 7-8, 2014
“Men nearly always follow the tracks made by others and proceed in their affairs by imitation.” Machiavelli (Renaissance philosopher)
Examples

Business strategy

– TV networks make introductions in the same categories as their rivals.

Finance

– The withdrawal behavior of small number of depositors starts a bank run.
Politics

– The solid New Hampshirites (probably) can not be too far wrong.

Crime

– In NYC, individuals are more likely to commit crimes when those around them do.
Why should individuals behave in this way?

Several “theories” explain the existence of uniform social behavior:

– benefits from conformity

– sanctions imposed on deviants

– network / payoff externalities

– social learning

Broad definition: any situation in which individuals learn by observing the behavior of others.
The canonical model of social learning

- Rational (Bayesian) behavior
- Incomplete and asymmetric information
- Pure information externality
- Once-in-a-lifetime decisions
- Exogenous sequencing
- Perfect information / complete history
Coin flip

Urn A
- a
- a
- b

Urn B
- a
- b
- b

1/2 1/2
Bayes’ rule

Let \(n \) be the number of \(a \) signals and \(m \) be the number of \(b \) signals. Then Bayes’ rule can be used to calculate the posterior probability of urn \(A \):

\[
\Pr(A \mid n, m) = \frac{\Pr(A) \Pr(n, m \mid A)}{\Pr(A) \Pr(n, m \mid A) + \Pr(B) \Pr(n, m \mid B)} = \frac{\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^n\left(\frac{1}{3}\right)^m}{\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^n\left(\frac{1}{3}\right)^m + \left(\frac{1}{2}\right)\left(\frac{1}{3}\right)^m\left(\frac{2}{3}\right)^n} = \frac{2^n}{2^n + 2^m}.
\]
An example

• There are two decision-relevant events, say A and B, equally likely to occur *ex ante* and two corresponding signals a and b.

• Signals are informative in the sense that there is a probability higher than $1/2$ that a signal matches the label of the realized event.

• The decision to be made is a prediction of which of the events takes place, basing the forecast on a private signal and the history of past decisions.
• Whenever two consecutive decisions coincide, say both predict \(A \), the subsequent player should also choose \(A \) even if his signal is different \(b \).

• Despite the asymmetry of private information, eventually every player imitates her predecessor.

• Since actions aggregate information poorly, despite the available information, such herds / cascades often adopt a suboptimal action.
What have we learned from Social Learning?

• Finding 1
 – Individuals ’ignore’ their own information and follow a herd.

• Finding 2
 – Herds often adopt a wrong action.

• Finding 3
 – Mass behavior may be idiosyncratic and fragile.
Informational cascades and herd behavior

Two phenomena that have elicited particular interest are informational cascades and herd behavior.

– Cascade: agents 'ignore' their private information when choosing an action.

– Herd: agents choose the same action, not necessarily ignoring their private information.
• While the terms informational cascade and herd behavior are used interchangeably there is a significant difference between them.

• In an informational cascade, an agent considers it optimal to follow the behavior of her predecessors without regard to her private signal.

• When acting in a herd, agents choose the same action, not necessarily ignoring their private information.

• Thus, an informational cascade implies a herd but a herd is not necessarily the result of an informational cascade.
A model of social learning

Signals

– Each player \(n \in \{1, \ldots, N\} \) receives a signal \(\theta_n \) that is private information.

– For simplicity, \(\{\theta_n\} \) are independent and uniformly distributed on \([-1, 1]\).

Actions

– Sequentially, each player \(n \) has to make a binary irreversible decision \(x_n \in \{0, 1\} \).
Payoffs

- $x = 1$ is profitable if and only if $\sum_{n \leq N} \theta_n \geq 0$, and $x = 0$ is profitable otherwise.

Information

- Perfect information

$$\mathcal{I}_n = \{\theta_n, (x_1, x_2, \ldots, x_{n-1})\}$$

- Imperfect information

$$\mathcal{I}_n = \{\theta_n, x_{n-1}\}$$
A three-agent example
A three-agent example

\[\hat{\theta}_1 \quad \hat{\theta}_2 \quad \hat{\theta}_3 \]

\[x = 0 \]

\[x = 1 \]

\[x = 1/2 \]

\[x = -1/2 \]
A three-agent example under perfect information
A three-agent example under imperfect information
A sequence of cutoffs under imperfect and perfect information
A sequence of cutoffs under imperfect and perfect information
The decision problem

- The optimal decision rule is given by

\[x_n = 1 \text{ if and only if } \mathbb{E} \left[\sum_{i=1}^{N} \theta_i \mid \mathcal{I}_n \right] \geq 0. \]

Since \(\mathcal{I}_n \) does not provide any information about the content of successors’ signals, we obtain

\[x_n = 1 \text{ if and only if } \mathbb{E} \left[\sum_{i=1}^{n} \theta_i \mid \mathcal{I}_n \right] \geq 0 \]

Hence,

\[x_n = 1 \text{ if and only if } \theta_n \geq -\mathbb{E} \left[\sum_{i=1}^{n-1} \theta_i \mid \mathcal{I}_n \right]. \]
The cutoff process

- For any \(n \), the optimal strategy is the \textit{cutoff strategy}

\[
x_n = \begin{cases}
1 & \text{if } \theta_n \geq \hat{\theta}_n \\
0 & \text{if } \theta_n < \hat{\theta}_n
\end{cases}
\]

where

\[
\hat{\theta}_n = -\mathbb{E} \left[\sum_{i=1}^{n-1} \theta_i \mid \mathcal{I}_n \right]
\]

is the optimal history-contingent cutoff.

- \(\hat{\theta}_n \) is sufficient to characterize the individual behavior, and \(\{\hat{\theta}_n\} \) characterizes the social behavior of the economy.
Overview of results

Perfect information

- A cascade need not arise, but herd behavior must arise.

Imperfect information

- Herd behavior is impossible. There are periods of uniform behavior, punctuated by increasingly rare switches.
• The similarity:
 – Agents can, for a long time, make the same (incorrect) choice.

• The difference:
 – Under perfect information, a herd is an absorbing state. Under imperfect information, continued, occasional and sharp shifts in behavior.
• The dynamics of social learning depend crucially on the extensive form of the game.

• The key economic phenomenon that imperfect information captures is a succession of fads starting suddenly, expiring rather easily, each replaced by another fad.

• The kind of episodic instability that is characteristic of socioeconomic behavior in the real world makes more sense in the imperfect-information model.
As such, the imperfect-information model gives insight into phenomena such as manias, fashions, crashes and booms, and better answers such questions as:

– Why do markets move from boom to crash without settling down?

– Why is a technology adopted by a wide range of users more rapidly than expected and then, suddenly, replaced by an alternative?

– What makes a restaurant fashionable over night and equally unexpectedly unfashionable, while another becomes the ‘in place’, and so on?
The case of perfect information

The optimal history-contingent cutoff rule is

\[
\hat{\theta}_n = -\mathbb{E} \left[\sum_{i=1}^{n-1} \theta_i \mid x_1, \ldots, x_{n-1} \right],
\]

and \(\hat{\theta}_n \) is different from \(\hat{\theta}_{n-1} \) only by the information reveals by the action of agent \((n - 1)\)

\[
\hat{\theta}_n = \hat{\theta}_{n-1} - \mathbb{E} \left[\theta_{n-1} \mid \hat{\theta}_{n-1}, x_{n-1} \right],
\]

The cutoff dynamics thus follow the cutoff process

\[
\hat{\theta}_n = \begin{cases}
\frac{-1+\hat{\theta}_{n-1}}{2} & \text{if } x_{n-1} = 1 \\
\frac{1+\hat{\theta}_{n-1}}{2} & \text{if } x_{n-1} = 0
\end{cases}
\]

where \(\hat{\theta}_1 = 0 \).
Informational cascades

- $-1 < \hat{\theta}_n < 1$ for any n so any player takes his private signal into account in a non-trivial way.

Herd behavior

- $\{\hat{\theta}_n\}$ has the martingale property by the Martingale Convergence Theorem a limit-cascade implies a herd.
The case of imperfect information

The optimal history-contingent cutoff rule is

$$\hat{\theta}_n = -\mathbb{E}\left[\sum_{i=1}^{n-1} \theta_i \mid x_{n-1}\right],$$

which can take two values conditional on $x_{n-1} = 1$ or $x_{n-1} = 0$

$$\overline{\theta}_n = -\mathbb{E}\left[\sum_{i=1}^{n-1} \theta_i \mid x_{n-1} = 1\right],$$

$$\underline{\theta}_n = -\mathbb{E}\left[\sum_{i=1}^{n-1} \theta_i \mid x_{n-1} = 1\right].$$

where $\overline{\theta}_n = -\underline{\theta}_n$.
The law of motion for $\bar{\theta}_n$ is given by

$$\bar{\theta}_n = P(x_{n-2} = 1|x_{n-1} = 1) \left\{ \bar{\theta}_{n-1} - \mathbb{E} [\theta_{n-1} | x_{n-2} = 1] \right\}$$
$$+ P(x_{n-2} = 0|x_{n-1} = 1) \left\{ \theta_{n-1} - \mathbb{E} [\theta_{n-1} | x_{n-2} = 0] \right\},$$

which simplifies to

$$\bar{\theta}_n = \frac{1 - \bar{\theta}_{n-1}}{2} \left[\bar{\theta}_{n-1} - \frac{1 + \bar{\theta}_{n-1}}{2} \right]$$
$$+ \frac{1 - \theta_{n-1}}{2} \left[\theta_{n-1} - \frac{1 + \theta_{n-1}}{2} \right].$$
Given that $\bar{\theta}_n = -\bar{\theta}_n$, the cutoff dynamics under imperfect information follow the cutoff process

$$\hat{\theta}_n = \begin{cases}
\frac{-1 + \hat{\theta}_{n-1}^2}{2} & \text{if } x_{n-1} = 1 \\
\frac{1 + \hat{\theta}_{n-1}^2}{2} & \text{if } x_{n-1} = 0
\end{cases}$$

where $\hat{\theta}_1 = 0$.
Informational cascades

- $-1 < \hat{\theta}_n < 1$ for any n so any player takes his private signal into account in a non-trivial way.

Herd behavior

- $\{\hat{\theta}_n\}$ is not convergent (proof is hard!) and the divergence of cutoffs implies divergence of actions.

- Behavior exhibits periods of uniform behavior, punctuated by increasingly rare switches.
Sequential social-learning model:
Well heck, if all you smart cookies agree, who am I to dissent?
Imperfect information:
Which way is the wind blowing?!