1 Introduction

This handout reviews some of the key points regarding chapters 19-22 in Goldberger.

2 CNR Framework (σ² Known)

The idea now is that we add a distributional assumption to the CR framework. This allows us to conduct statistical inference (confidence intervals and hypothesis testing). The assumptions are now:

1. \(y \sim MVN(X\beta, \sigma^2 I) \)
2. \(X \) nonstochastic and full rank.

Note that this is almost the same as the classical regression framework except for the normality assumption since

\[
E(y) = X\beta
\]
\[
V(y) = \sigma^2 I
\]

2.1 Sampling Distributions

Let’s consider the implied distributions for the OLS estimator \(\hat{b} \) and corresponding sum of square residuals \(e'e \).
1. Claim:

\[b \sim \text{MVN} \left(\beta, \sigma^2 (X'X)^{-1} \right) \]

Proof:

\[b = (X'X)^{-1} X'y \]

\(b \) is a linear combination of the \(y \)'s which are \(N \left(X\beta, \sigma^2 I \right) \). This implies the \(b \)'s are normal with expectation

\[
E (b) = E \left\{ (X'X)^{-1} X'y \right\} \\
= (X'X)^{-1} X'E \{y\} \\
= (X'X)^{-1} X'X\beta \\
= \beta
\]

and variance covariance matrix

\[
V (b) = V \left((X'X)^{-1} X'y \right) \\
= (X'X)^{-1} X'V \{y\} X (X'X)^{-1} \\
= (X'X)^{-1} X'\sigma^2 I X (X'X)^{-1} \\
= \sigma^2 (X'X)^{-1} X'X (X'X)^{-1} \\
= \sigma^2 (X'X)^{-1}
\]

The key assumption here is that: \(\sigma^2 \) is known. If it isn’t we get a Student’s \(t \)–distribution.

Note that any nonstochastic linear combination of the parameter vector, \(Hb \), will be normal with expectation \(H\beta \) and variance \(\sigma^2 H (X'X)^{-1} H' \) (assuming \(H \in \mathbb{R}^{p \times k} \) and \(\rho (H) = p \)).

2. Claim:

\[e'e/\sigma^2 \sim \chi^2_T \]

Proof: We’ll use the general result that if \(y \in \mathbb{R}^n \) is distributed MVN \((\mu, \Sigma) \) then

\[
(y - \mu)' \Sigma^{-1} (y - \mu) \sim \chi^2_n
\]

Since the residual vector has expectation 0,

\[
e'e = (y - X\beta)' (y - X\beta) \\
= (y - X\beta)' [\sigma^2 I]^{-1} (y - X\beta) \times \sigma^2
\]

So, \(e'e/\sigma^2 \sim \chi^2_T \).
2.2 Confidence Intervals

In the CNR framework with σ^2 known, we form a confidence interval as

$$t \pm c\sigma_t$$

where $t = h'b$ is our estimated statistic, c is the appropriate critical value from the normal distribution (e.g. 1.96 for a 95% confidence interval, 1.00 for a 68% confidence interval, etc.) and $\sigma_t = \sqrt{h'V(b)h}$ is the standard error of t.

This set-up subsumes the more basic idea of a confidence interval for one parameter b_j. In that case, h is a vector of all 0’s except for a 1 in the j^{th} position.

2.3 Joint Confidence Regions

We’ve got an unknown parameter vector $\theta = H\beta$ and we estimate a sample value $t = Hb$ (we continue to assume knowledge of σ^2 which is an important assumption). From the results above

$$(t - \theta)' \left[\sigma^2 H (X'X)^{-1} H' \right]^{-1} (t - \theta) \sim \chi^2_p$$

where p is the rank of the matrix H. (i.e. it’s the number of linear restrictions). To form a confidence region for θ we would set

$$(t - \theta)' \left[\sigma^2 H (X'X)^{-1} H' \right]^{-1} (t - \theta) \leq c_p$$

where c_p is the critical value from the χ^2_p distribution. That is c_p is the number such that the area to the left of c_p under the χ^2_p pdf is equal to the relevant percentage. As a concrete example, consider a 95% confidence interval where the rank of H is 2. c_p would be $c_2 = 5.99$.

Note that $(t - \theta)' \left[\sigma^2 H (X'X)^{-1} H' \right]^{-1} (t - \theta)$ can be written more generally as $(t - \theta)' [V(t)]^{-1} (t - \theta)$.

Exercise 19.1: The CNR model applies with $k = 4, X'X = I, \sigma^2 = 2, \text{and } \beta = 0$. Let $t = b'b$. Find the number $c : \Pr (t > c) = 0.10$.

$$b'b = \sigma^2 \left\{ b' \left[\sigma^2 I \right]^{-1} b \right\}$$

The term in brackets is distributed χ^2_4 so we need to find the c:

$$\Pr \{ t > 2c \} = 0.10$$

Using the χ^2 table and the fact that $\Pr \{ t \leq 2c \} = 0.90$, we get $2c = 7.78$ or $c = 3.89$.
2.4 Hypothesis Testing

2.4.1 Univariate

Consider testing whether a particular parameter, β_j, is equal to β_j^0. The null and alternative hypotheses are

\[H_0 : \beta_j = \beta_j^0 \]
\[H_1 : \beta_j \neq \beta_j^0 \]

Our test is a simple two-tail z-test,

\[z = \frac{b_j - \beta_j^0}{\sigma_j} \sim N(0, 1) \]

Assuming our significance level is 5%, if $|z| > 1.96$, then we reject the null hypothesis $H_0 : \beta_j = \beta_j^0$. If $|z| \leq 1.96$, then we fail to reject the null.

We can just as easily test a linear combination of parameters with

\[\frac{(t - \theta^0)}{\sigma_t} \sim N(0, 1) \]

where $t = hb$ and $\sigma_t = \sqrt{V(t)} = \sqrt{h'V(b)h}$.

Example: Consider the following model

\[y = x_1\beta_1 + x_2\beta_2 + \varepsilon \]

under the assumptions of the CNR model. We want to test:

\[H_0 : \beta_1 + \beta_2 = 1 \]
\[H_1 : \beta_1 + \beta_2 \neq 1 \]

Then

\[h = (1, 1)' \]
\[b = (b_1, b_2) \]
\[\theta^0 = 1 \]

2.4.2 Multivariate

What about testing a set of parameters? We need a joint null hypothesis about β. Let $\theta = H\beta$ where H is a non-random $p \times k$ matrix with rank p (i.e. p linear restrictions on the parameters). The hypotheses are

\[H_0 : \theta = \theta^0 \]
\[H_1 : \theta \neq \theta^0 \]
where θ^0 is a vector of hypothesized values (numbers).

Consider testing at the 5% significance level. We will accept the null (or more accurately fail to reject the null) if θ^0 lies within the 95% confidence region for θ:

$$w = (\theta - t)' [V (t)]^{-1} (\theta - t) \leq c_p$$

and reject otherwise. Here, $t = Hb$ while c_p is the 5% critical value from the χ^2_p table. We can equivalently think about rejecting the null if $w > c_p$ and accepting the null if $w \leq c_p$.

Example: Consider the following model

$$y = x_1\beta_1 + x_2\beta_2 + x_3\beta_3 + \varepsilon$$

under the assumptions of the CNR model. We want to test:

$$H_0 : \beta_1 = 2; \beta_2 - 2\beta_3 = 0$$

$$H_1 : \beta_1 \neq 2; \beta_2 - 2\beta_3 \neq 0$$

Then

$$H = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \end{pmatrix}$$

$$b = (b_1, b_2, b_3)$$

$$\theta^0 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

3 CNR Framework (σ^2 Unknown)

The set-up is as before except now σ^2 is not assumed known. It therefore must be estimated and the usual estimator is

$$\hat{\sigma}^2 = \frac{e'e}{T - k}$$

1. Claim:

$$\hat{\sigma}^2 = \chi^2_{T-k}$$

Proof: See Goldberger pp. 223-224

2. Claim:

b is independent of e

Proof: See Goldberger p. 224

Therefore, any function of b is independent of any function of e (This is a basic fact of math-stat you should be familiar with).
3. The test statistic

\[v = (t - \theta)' \left[\hat{V}(t) \right]^{-1} (t - \theta) / p \]

is distributed \(F(p, T-k) \) where

\[
\begin{align*}
t &= Hb \\
\hat{V}(t) &= \delta^2 H (X'X)^{-1} H'
\end{align*}
\]

If we recall from Section 3 Handout, an \(F(p, T-k) \) random variable takes the form

\[f = \frac{x}{y/d} \]

where \(x \sim \chi^2_n \) independently of \(y \sim \chi^2_d \). Rewriting \(v \), this distributional result becomes immediately clear.

\[v = \frac{(t - \theta)' \left[H (X'X)^{-1} H' \right]^{-1} (t - \theta) / \sigma^2 p}{[e'e/(T-k)]/\sigma^2} \]

The numerator is a \(\chi^2 \) random variable divided by its degrees of freedom \(p \). It is also random only through its dependence on \(b \). The denominator is a \(\chi^2_{T-k} \) random variable and is random only through \(e \). As noted above, \(e \) and \(b \) are independent as are any functions of these two random variables. The result follows.

4. The test statistic

\[u = \frac{(b_j - \beta_j)}{\sigma_{b_j}} \]

is distributed \(t_{T-k} \). Again, from section 3 handout, we know a \(t \) random variable is the ratio of a standard normal to a \(\chi^2 \) divided by its degrees of freedom where the random variables are independent of one another. Rewriting \(u \) below, we see this is clearly the case.

\[u = \frac{(b_j - \beta_j) / \sigma_{b_j}}{\sqrt{[e'e/(T-k)]/\sigma_{b_j}^2}} \]

3.1 Confidence Intervals and Regions

To find confidence intervals, the methodology is exactly the same except now we use the \(t_{T-k} \) distribution to find the critical values.

\[t \pm c \sigma_t \]

For \((T - k) > 50 \) the difference between the \(t \) and normal distribution is negligible. It’s even pretty close for \((T - k) > 25 \).

Confidence regions are found similarly using the \(F_{p,T-k} \) distribution for the critical values.

\[(t - \theta)' \left[\hat{\sigma}^2 H (X'X)^{-1} H' \right]^{-1} (t - \theta) \leq c_p \]
3.2 Hypothesis Testing

3.2.1 Univariate

This is the standard t-test situation. Consider testing one parameter,

$H_0 : \beta_j = \beta_j^0$

$H_1 : \beta_j \neq \beta_j^0$

Our test statistic is as before except σ_{b_j} is replaced by its estimate $\hat{\sigma}_{b_j}$.

$$t = \frac{b_j - \beta_j^0}{\hat{\sigma}_{b_j}}$$

which now has the t_{T-k} distribution.

3.2.2 Multivariate

As with confidence intervals, the procedure and test statistic are the same except we use our estimator for σ^2 and the $F_{p,T-k}$ distribution for defining the rejection region.

3.2.3 Zero Null Subvector Hypothesis

This subsection discusses the situation where we want to test whether a subvector of the β's are equal to 0. The idea is to relate this testing situation to the short regressions discussed earlier. For illustrative purposes, assume it is the last k_2 elements of the following regression

$$y = X_1\beta_1 + X_2\beta_2 + \varepsilon$$

where $X_1 \in R^{T \times k_1}, X_2 \in R^{T \times k_2}, \beta_1 \in R^{k_1}$ and $\beta_2 \in R^{k_2}$. The null and alternative hypotheses are

$H_0 : \beta_2 = 0$

$H_1 : \beta_2 \neq 0$

Using our standard hypothesis testing framework from above, we can write

$$t = Hb = b_2$$

$$\theta = H\beta = \beta_2$$

where $H = [0_{k_2 \times k_1}; I_{k_2 \times k_2}]$. The estimated variance of t is simply, $\hat{V}(t) = \hat{\sigma}^2 H (X'X)^{-1} H'$. If we partition the $(X'X)^{-1}$ matrix according to the subvectors we see

$$H (X'X)^{-1} H' = (0, I) \begin{pmatrix} Q^{11} & Q^{12} \\ Q^{21} & Q^{22} \end{pmatrix} \begin{pmatrix} 0 \\ I \end{pmatrix} = Q^{22}$$
Recall our test statistic,
\[w = (t - \theta)' \left[\hat{V} (t) \right]^{-1} (t - \theta) / p \]
which can now be written
\[v = b_2' \left[\hat{\sigma}^2 Q^{22} \right]^{-1} b_2 / k_2 \]
Using the results from the FWL theorem (or simply the inverse of a partitioned matrix), we can write
\[[Q^{22}]^{-1} = X'_2 M_1 X_2 \]
so our statistic becomes
\[v = b_2' X'_2 M_1 X_2 b_2 / \hat{\sigma}^2 k_2 \]

Residual Sum of Squares: An alternative way of writing this test statistic is to recognize that
\[e^*e^* = e'e + b_2' X'_2 M_1 X_2 b_2 \]
(see Section 3 handout). Therefore
\[v = \frac{(e^*e^* - e'e)}{\hat{\sigma}^2 k_2} \]
\[= \frac{(T - k) (e^*e^* - e'e)}{k_2} \]
\[= \frac{e'e}{e'e} \]

Result 1 To calculate the test statistic:

1. Run a short (restricted) regression of \(y \) on \(X_1 \) and compute the sum of square residuals, \(e^*e^* \).
2. Run the long (unrestricted) regression of \(y \) on \(X_1 \) and \(X_2 \) and compute the sum of square residuals, \(e'e \).
3. Using 1) and 2) compute \(v \).

The intuition is as follows. A large value of \(v \) leads to a rejection of the null (i.e. \(\beta_2 \neq 0 \)) which occurs when the relative difference between the restricted and unrestricted sum of squares is large. This is saying the fit is significantly better when the \(X_2 \) matrix is included in the regression.

Coefficient of Determination: When an intercept is included in both the restricted and unrestricted regressions, the \(R^2 \) is well-defined. Recall
\[R^2 = 1 - \frac{e'e}{y'M_iy} \]
where \(M_i \) projects into the orthocomplement of the summer vector space (it de-means things). This suggests another way of writing our test statistic,
\[v = \frac{(T - k) \left(R^2 - R^{2*} \right)}{k_2} \frac{1 - R^2}{(1 - R^2)} \]
where \(R^{2*} \) is the \(R^2 \) from the restricted regression.
Result 2 To calculate this test statistic:

1. Run a short (restricted) regression of y on X_1 and compute the R^2 ($\equiv R^2*$)

2. Run the long (unrestricted) regression of y on X_1 and X_2 and compute the R^2.

3. Using 1) and 2) compute v.

As a special case, consider testing whether all the slope coefficients were 0. That is, all coefficients except for the intercept. Our test statistic can be written as

\[
\frac{(T - k)}{k - 1} \frac{R^2}{1 - R^2}
\]

since the restricted regression sum of square residuals is $e^*e^* = \sum(y_t - \bar{y})^2 = y'M_iy$ implying R^2* is in effect 0 since

\[
R^2* = 1 - \frac{e^*e^*}{y'M_iy} = 1 - \frac{y'M_iy}{y'M_iy} = 0
\]

3.3 General Linear Hypotheses

Consider the following problem

\[
y = \beta_0 + x_1\beta_1 + x_2\beta_2 + x_3\beta_3 + \varepsilon
\]

where $x_i, i = 1, 2, 3$ are $T \times 1$ column vectors. Now consider testing the following hypotheses

\[
\begin{align*}
H_0 & : \beta_3 = -\beta_1; \beta_1 = \beta_2 \\
H_1 & : \beta_3 \neq -\beta_1; \beta_1 \neq \beta_2
\end{align*}
\]

We can run this test in the usual manner by constructing the test statistic

\[
(\theta - t)' \left[\hat{V}(t) \right]^{-1} (\theta - t)^{-} \sim F_{p, T-k}
\]

where

\[
\begin{align*}
t &= Hb = \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix} \\
\theta &= \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\
\hat{V}(t) &= \sigma^2 H (X'X)^{-1} H' \\
p &= 2 \\
k &= 3
\end{align*}
\]
The idea this section attempts to illustrate is that any general linear hypothesis can be converted into a zero-null subvector hypothesis. That is, we can solve out the restrictions, run a short regression and use methods zero subvector null hypotheses. For the above example we see the first restriction $\beta_3 = -\beta_1$ implies
\[y = \beta_0 + \beta_1 (x_1 - x_3) + x_2\beta_2 + \varepsilon \]
The second restriction, $\beta_1 = \beta_2$, implies
\[y = \beta_1 (x_1 - x_3 + x_2) + \varepsilon \]
So our short regression is simply
\[y = \gamma z + \varepsilon \]
where $z = x_1 - x_3 + x_2$.

Another example is to consider
\[y = \beta_0 + x_1\beta_1 + x_2\beta_2 + x_3\beta_3 + \varepsilon \]
and the hypothesis $\beta_1 + \beta_2 + \beta_3 = 1$. But this implies $\beta_1 = 1 - \beta_2 - \beta_3$ so
\[
\begin{align*}
y &= \beta_0 + x_1 (1 - \beta_2 - \beta_3) + x_2\beta_2 + x_3\beta_3 + \varepsilon \\
y &= \beta_0 + x_1 + \beta_2 (x_2 - x_1) + \beta_3 (x_3 - x_1) + \varepsilon \\
y - x_1 &= \beta_0 + \beta_2 (x_2 - x_1) + \beta_3 (x_3 - x_1) + \varepsilon
\end{align*}
\]
Our short regression is thus
\[y^* = \gamma_0 + \gamma_2 z_1 + \gamma_3 z_2 + \varepsilon \]
where $y^* = y - x_1$, $z_1 = x_2 - x_1$ and $z_2 = x_3 - x_1$.