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CHAPTER 2.  ANALYSIS AND LINEAR ALGEBRA IN A NUTSHELL

2.1.  SOME ELEMENTS OF MATHEMATICAL ANALYSIS

2.1.1. Real numbers are denoted by lower case Greek or Roman numbers; the space of real
numbers is the real line, denoted by �.  The absolute value of a real number a is denoted by �a�.
Complex numbers are rarely required in econometrics before the study of time series and dynamic
systems.  For future reference, a complex number is written a + ιb, where a and b are real numbers
and ι is the square root of -1, with a termed the real part and ιb termed the imaginary part.  The
complex number can also be written as r(cos θ + ι sin θ), where r =(a2+b2)1/2 is the modulus of the
number and θ = cos-1(a/r).  The properties of complex numbers we will need in basic econometrics
are the rules for sums, (a+ιb) + (c+ιd) = (a+c)+ι(b+d), and products, (a+ιb)�(c+ιd) =
(ab-cd)+ι(ad+bc). 
 

2.1.2. For sets of objects A and B, the union A�B is the set of objects in either; the intersection
A�B is the set of objects in both; and A\B is the set of objects in A that are not in B.  The empty set
is denoted φ.  Set inclusion is denoted A � B; we say A is contained in B.  The complement of a set
A (which may be relative to a set B that contains it) is denoted Ac.  A family of sets is disjoint if the
intersection of each pair is empty.  The symbol a � A means that a is a member of A; and a � A
means that a is not a member of A.  The symbol � means "there exists", the symbol 	 means "for
all", and the symbol 
 means "such that".  A proposition that A implies B is denoted �A �� B�, and
a proposition that A and B are equivalent is denoted �A �� B�.  The proposition that A implies B,
but B does not imply A, is denoted �A |�� B�.  The phrase �if and only if� is often abbreviated to
�iff�. 

2.1.3. A function f:A � B is a mapping from each object a in the domain A into an object b = f(a)
in the range B. The terms function, mapping, and transformation will be used interchangeably.  The
symbol f(C), termed the image of C, is used for the set of all objects f(a) for a � C.  For D � B, the
symbol f-1(D) denotes the inverse image of D:  the set of all a � A such that f(a) � D.  The function
f is onto  if B = f(A); it is one-to-one if it is onto and if a,c � A and a � c implies f(a) � f(c).  When
f is one-to-one, the mapping f-1 is a function from B onto A.  If C � A, define the indicator function
for C, denoted 1

����
:A � �, by 1

����
(a) = 1 for a � C, and 1

����
(a) = 0 otherwise.  The notation 1(a�C) is

also used for the indicator function 1
����
.  A function is termed real-valued if its range is �.

2.1.4. The supremum of A, denoted sup A, is the least upper bound on A.  A typical application
has a function f:C � � and A = f(C); then  supc�C f© is used to denote sup A.  If the supremum is
achieved by an object d � C, so f(d) =  supc�C f(c), then we write f(d) = maxc�C f(c).  When there is
a unique maximizing argument, write d = argmaxc�C f(c).  When there is a non-unique maximizing
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argument; we will assume that argmaxc�C f(c) is a selection of any one of the maximizing arguments.
Analogous definitions hold for the infimum and minimum, denoted inf, min, and for argmin.

2.1.5. If ai is a sequence of real numbers indexed by i = 1,2,..., then the sequence is said to have
a limit (equal to ao) if for each � > 0, there exists n such that �ai - ao� < � for all i 
 n; the notation
for a limit is limi�� ai = ao or ai � ao.   The Cauchy criterion says that a sequence ai has a limit if and
only if, for each � > 0, there exists n such that �ai - aj� < � for i,j 
 n.  The notation limsupi�� ai means
the limit of the supremum of the sets {ai,ai+1,...}; because it is nonincreasing, it always exists (but
may equal +� or -�).  An analogous definition holds for liminf. 
 

2.1.6. A real-valued function ρ(a,b) defined for pairs of objects in a set A is a distance function
if it is non-negative, gives a positive distance between all distinct points of A, has ρ(a,b) = ρ(b,a),
and satisfies the triangle inequality  ρ(a,b) � ρ(a,c) + ρ(c,b).  A set A with a distance function ρ is
termed a metric space.  A real-valued function �a� defined for objects in a set A is a norm if �a-b�
has the properties of a distance function.  A typical example is the real line �, with the absolute value
of the difference of two numbers taken as the distance between them; then � is a metric space and
a normed space.  A (�-)neighborhood of a point a in a metric space A is a set of the form {b�A�
ρ(a,b) < �}.  A set C � A is open if for each point in C, some neighborhood of this point is also
contained in C.  A set C � A is closed if its complement is open.  The closure of a set C is the
intersection of all closed sets that contain C.  The interior of C is the union of all open sets contained
in C; it can be empty.  A covering of a set C is a family of open sets whose union contains C.  The
set C is said to be compact if every covering contains a finite sub-family which is also a covering.
A family of sets is said to have the finite-intersection property if every finite sub-family has a
non-empty intersection.  Another characterization of a compact set is that every family of closed
subsets with the finite intersection property has a non-empty intersection.  A metric space A is
separable if there exists a countable subset B such that every neighborhood contains a member of
B.  All of the metric spaces encountered in econometrics will be separable.  A sequence ai in a
separable metric space A is convergent (to a point ao) if the sequence is eventually contained in each
neighborhood of a; we write ai � ao or limi�� ai = ao to denote a convergent sequence.   A set C � A
is compact if and only if every sequence in C has a convergent subsequence (which converges to a
cluster point of the original sequence).

2.1.7. Consider separable metric spaces A and B, and a function f:A � B.  The function f is
continuous on A if the inverse image of every open set is open.   Another characterization of
continuity is that for any sequence satisfying ai � ao, one has f(ai) � f(ao); the function is said to be
continuous on C ���� A if this property holds for each ao � C.  Stated another way, f is continuous on
C if for each � > 0  and a � C, there exists δ > 0 such that for each b in a δ-neighborhood of a, f(b)
is in a �-neighborhood of f(a).    For real valued functions on separable metric spaces, the concepts
of supremium and limsup defined earlier for sequences have a natural extension:  supa�A f(a) denotes
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the least upper bound on the set {f(a)�a�A}, and limsupa�b f(a) denotes the limit as � � 0 of the
suprema of f(a) on �-neighborhoods of b.  Analogous definitions hold for inf and liminf.  A real-
valued function f is continuous at b if limsupa�b f(a) = liminfa�b f(a).  Continuity of real-valued
functions f and g is preserved by the operations of absolute value �f(a)�, multiplication f(a)�g(a),
addition f(a)+g(a), and maximization max{f(a),g(a)} and minimization min{f(a),g(a)}.  The
function f is uniformly continuous on C if for each � > 0, there exists δ > 0 such that for all a � C and
b � A with b in a δ-neighborhood of a, one has f(b) in a �-neighborhood of f(a).  The distinction
between continuity and uniform continuity is that for the latter a single δ > 0 works for all a � C.
A function that is continuous on a compact set is uniformly continuous.  The function f is Lipschitz
on C if there exist L > 0 and δ > 0 such that |f(b) - f(a)| � L�ρ(a,b) for all a � C and b � A with b in
a δ-neighborhood of a.

2.1.8. Consider a real-valued function f on �.  The derivative of f at ao, denoted f�(ao), �f(ao), or
df(ao)/da, has the property if it exists that �f(b) - f(ao) - f�(ao)(b-ao)� � �(b-ao)�(b-ao), where limc�0 �©
= 0.  The function is continuously differentiable at ao if f� is a continuous function at ao.  If a function
is k-times continuously differentiable in a neighborhood of a point ao, then for b in this neighborhood
it has a Taylor's expansion

    f(b) = f(i)(ao)�  + � ,�
k

i�0

(b�ao)
i

i!
f (k)(λb�(1�λ)ao) � f (k)(ao)

(b�ao)
k

k!

where f(i) denotes the i-th derivative, and λ is a scalar between zero and one.
If limi�� ai = ao and f is a continuous function at ao, then limi�� f(ai) = f(ao).  One useful result for

limits is L�Hopital�s rule, which states that if f(1/n) and g(1/n) are functions that are continuously
differentiable at zero with f(0) = g(0) = 0, so that f(n)/g(n) approaches the indeterminate expression
0/0, one has lim n��f(n)/g(n) = f�(0)/g�(0), provided the last ratio exists.

2.1.9. If ai for i = 0,1,2,... is a sequence of real numbers, the partial sums sn = ai define�
n
i�0

a series.  We say the sequence is summable, or that the series is convergent, if lim n��sn exists and
is finite.  An example is the geometric series ai = ri, which has sn = (1-rn+1)/(1-r) if r � 1.  When |r|
< 1, this series is convergent, with the limit 1/(1-r).  When r < -1 or r 
 1, the series diverges.  In the
borderline case r = -1, the series alternates between 0 and 1, so the limit does not exist.  Applying

the Cauchy criterion, a summable sequence has lim n��
an = 0 and lim n��

ai = 0.  A sequence�
�

i�n

satisfies a more general form of summability, called Cesaro summability, if lim n��
 n-1 �

n
i�0 ai

exists.  Summability implies Cesaro summability, but not vice versa.  A useful result known as
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Kronecker�s lemma states that if ai and bi are positive series, bi is monotonically increasing to +�,

and ai/bi is bounded for all n, then lim n��
 bn

-1  ai = 0.�
n
i�0 �

n
i�0

2.1.10. The exponential function ea, also written exp(a), and natural logarithm log(a) appear
frequently in econometrics.  The exponential function is defined for both real and complex arguments,

and has the properties that ea+b = eaeb, e0 = 1, and the Taylor's expansion ea = that is valid for�
�

i�0

a i

i!

all a.  The trigonometric functions cos(a) and sin(a) are also defined for both real and complex

arguments, and have Taylor's expansions cos(a) = , and sin(a) = .�
�

i�0

(�1)ia 2i

(2i)! �
�

i�0

(�1)ia 2i�1

(2i�1)!

These expansions combine to show that ea+ιb = ea(cos(b) + ι�sin(b)).  The logarithm is defined for
positive arguments, and has the properties that log(1) = 0, log(a�b) = log(a) + log(b), and log(ea) = a.

It has a Taylor's expansion log(1+a) = , valid for �a� < 1.  A useful bound on logarithms�
�

i�1 a i

is that for �a� < 1/3 and �b� < 1/3, �Log(1+a+b) - a� < 4�b� + 3�a�2.  Another useful result, obtained
by applying L�Hopital�s rule to the expression log(1+an/n)/(1/n), is that limn��

 (1+an/n)n = exp(a0)
when lim n��

 an = a0 exists.
A few specific series appear occasionally in probability theory.  The series ai = iα for i = 1,2,... is

summable for α < -1, and divergent otherwise, with sn = n(n+1)/2 for α = 1, sn = n(n+1)(2n+1)/6 for
α = 2, and sn = n2(n+1)2/4 for α = 3.  Differentiating the formula sn = (1-rn+1)/(1-r) for a convergent

geometric series leads to the expressions = r/(1-r)2 and = r(1+r)/(1-r)3.�
�

i�1 i�r i �
�

i�1 i 2�r i

2.1.11. If ai and bi are real numbers and ci are non-negative numbers for i = 1,2,..., then Holder�s
Inequality states that for p > 0, q > 0, and 1/p + 1/q = 1, one has

  � � .  �� i ci�ai�bi� � i ci�|ai�bi| � i ci�|ai|
p 1/p � i ci�|bi|

q 1/q

When p = q = 1/2, this is called the Cauchy-Schwartz inequality.  Obviously, the inequality is useful
only if the sums on the right converge.  The inequality also holds in the limiting case where sums are
replaced by integrals, and a(i), b(i), and c(i) are functions of a continuous index i.

2.2.  VECTORS AND LINEAR SPACES

2.2.1.  A finite-dimensional linear space is a set such that (a) linear combinations of points in the
set are defined and are again in the set, and (b) there is a finite number of points in the set (a basis)
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such that every point in the set is a linear combination of this finite number of points.  The dimension
of the space is the minimum number of points needed to form a basis.  A point x in a linear space of
dimension n has a ordinate representation x = (x1,x2,...,xn), given a basis for the space {b1,...,bn},
where x1,...,xn are real numbers such that x = x1b1 + ...  + xnbn.  The point x is called a vector, and
x1,...,xn are called its components.  The notation (x)i will sometimes also be used for component i of
a vector x.  In econometrics, we work mostly with finite-dimensional real space.  When this space
is of dimension n, it is denoted �n.  Points in this space are vectors of real numbers (x1,...,xn); this
corresponds to the previous terminology with the basis for �n being the unit vectors (1,0,..,0),
(0,1,0,..,0),..., (0,..,0,1).  Usually, we assume this representation without being explicit about the basis
for the space.   However, it is worth noting that the coordinate representation of a vector depends on
the particular basis chosen for a space.  Sometimes this fact can be used to choose bases in which
vectors and transformations have particularly simple coordinate representations.

The Euclidean norm of a vector x is �x�2 = (x1
2+...+xn

2)1/2.  This norm can be used to define the
distance between vectors, or neighborhoods of a vector.  Other possible norms include �x�1 =

�x1�+...+�xn�, �x�� = max {�x1�,...,�xn�}, or for 1 � p < +�, �x�p = .  Each norm�x1�
p
�...��xn�

p 1/p

defines a topology on the linear space, based on neighborhoods of a vector that are less than each
positive distance away.  The space �n with the norm �x�2 and associated topology is called Euclidean
n-space.

The vector product of x and y in �n is defined as x����y = x1y1+...+xnyn.  Other notations for vector
products are <x,y> or (when x and y are interpreted as row vectors) xy� or (when x and y are
interpreted as column vectors) x�y.

2.2.2.  A linear subspace of a linear space such as �n is a subset that has the property that all
linear combinations of its members remain in the subset.  Examples of linear subspaces in �3 are the
plane {(a,b,c)�b = 0} and the line {(a,b,c)�a = b = 2�c}.  The linear subspace spanned by a set of
vectors {x1,...,xJ} is the set of all linear combinations of these vectors, L = {x1α1+...+xJαJ�(α1,...,αJ)
� �J}.  The vectors {x1,...,xJ} are linearly independent if and only if one cannot be written as a linear
combination of the remainder.  The linear subspace that is spanned by a set of J linearly independent
vectors is said to be of dimension J.  Conversely, each linear space of dimension J can be represented
as the set of linear combinations of J linearly independent vectors, which are in fact a basis for the
subspace.  A linear subspace of dimension one is a line (through the origin), and a linear subspace of
dimension (n-1) is a hyperplane (through the origin).  If L is a subspace, then L� = {x��n� x����y = 0
for all y�L} is termed the complementary subspace.  Subspaces L and M with the property that x����y
= 0 for all y � L and x � M are termed orthogonal, and denoted L�M.  The angle θ between
subspaces L and M is defined by cos θ = Min {x����y� y � L, �y�2 = 1, x � M, �x�2 = 1}.  Then, the angle
between orthogonal subspaces is π/2, and the angle between subspaces that have a nonzero point in
common is zero.  A subspace that is translated by adding a nonzero vector c to all points in the
subspace is termed an affine subspace.
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2.2.3.  The concept of a finite-dimensional space can be generalized.  An example, for 1 � p < +�,

is the family Lp(�n) of real-valued functions f on �n such that the integral �f�p = is��n
�f(x)�pdx

1/p

well-defined and finite.  This is a linear space with norm �f�p since linear combinations of functions
that satisfy this property also satisfy (using convexity of the norm function) this property.  One can
think of the function f as a vector in Lp(�n), and f(x) for a particular value of x as a component of this
vector.  Many, but not all, of the properties of finite-dimensional space extend to infinite dimensions.
In basic econometrics, we will not need the infinite-dimensional generalization.  It appears in more
advanced econometrics, in stochastic processes in time series, and in nonlinear and nonparametric
problems.

2.3.  LINEAR TRANSFORMATIONS AND MATRICES

2.3.1.  A mapping A from one linear space (its domain) into another (its range) is a linear
transformation if it satisfies A(x+z) = A(x) + A(z) for any x and z in the domain.  When the domain
and range are finite-dimensional linear spaces, a linear transformation can be represented as a matrix.
Specifically, a linear transformation A from �n into �m can be represented by a m×n array A with

elements aij for 1 � i � m and 1 � j � n, with y = A(x) having components yi = aijxj for 1 � i ��
n

j�1

m.  In matrix notation, this is written y = Ax.  A matrix A is real if all its elements are real numbers,
complex if some of its elements are complex numbers.  Throughout, matrices are assumed to be real
unless explicitly assumed otherwise.  The set ���� = {x��n�Ax = 0} is termed the null space of the
transformation A.  The subspace ����� containing all linear combinations of the column vectors of A
is termed the column space of A; it is the complementary subspace to ����.

If A denotes a m×n matrix, then A� denotes its n×m transpose (rows become columns and vice
versa).  The identity matrix of dimension n is n×n with one's down the diagonal, zero's elsewhere, and
is denoted In, or I if the dimension is clear from the context.  A matrix of zeros is denoted 0, and a
n×1 vector of ones is denoted 1n.  A permutation matrix is obtained by permuting the columns of an
identity matrix.  If A is a m×n matrix and B is a n×p matrix, then the matrix product C = AB is of

dimension m×p with elements cik � aijbjk for 1 � i � m and 1 � k � p.   For the matrix product�
n

j�1

to be defined, the number of columns in A must equal the number of rows in B (i.e., the matrices must
be commensurate).  A matrix A is square if it has the same number of rows and columns.  A square
matrix A is symmetric if A = A�, diagonal if all off-diagonal elements are zero, upper (lower)
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triangular if all its elements below (above) the diagonal are zero, and idempotent if it is symmetric
and A2 = A.  A matrix A is column orthonormal if A�A = I; simply orthonormal if it is both square
and column orthonormal.

A set of linearly independent vectors in �n can be recursively orthonormalized; i.e., transformed
so they are orthogonal and scaled to have unit length:  Suppose vectors x1,...,xJ-1 have previously been

orthonormalized, and z is the next vector in the set.  Then, z - is orthogonal to x1,...,xJ-1,�
J�1

j�1
(xj�z)xj

and is non-zero since it is linearly independent.  Scale it to unit length; this defines xJ.  Each column
of a n×m matrix A is a vector in �n.  The rank of A, denoted r = ρ(A), is the largest number of
columns that are linearly independent.  Then A is of rank m if and only if x = 0 is the only solution
to Ax = 0. If A is of rank r, then orthonormalization applied to the linearly independent columns of
A can be interpreted as defining a r×m lower triangluar matrix U such that AU� is column
orthonormal.   A n×m matrix A is of full rank if ρ(A) = min(n,m).   A n×n matrix A of full rank is
termed nonsingular.  A nonsingular n×n matrix A  has an inverse matrix A-1 such that both AA-1 and
A-1A equal the identity matrix In.  An orthonormal matrix A satisfies A�A = In, implying that A� = A-1,
and hence A�A = AA� = In.  The trace tr(A) of a square matrix A is the sum of its diagonal elements.

2.3.2.  The tables in this section summarize useful matrix and vector operations.  In addition to
the operations in these tables, there are statistical operations that can be performed on a matrix when
its columns are vectors of observations on various variables.  Discussion of these operations is
postponed until later.  Most of the operations in Tables 2.1-2.3 are available as part of the matrix
programming languages in econometrics computer packages such as SST, TSP, GAUSS, or
MATLAB.  The notation in these tables is close to the notation for the corresponding matrix
commands in SST and GAUSS.  

TABLE 2.1.  BASIC OPERATIONS
   Name  Notation       Definition

1. Matrix Product
 
C = AB For m×n A and n×p B:  cik = aijbjk�

n

j�1

2. Scalar Multiplication  C = bA For a scalar b:  cij = baij
3. Matrix Sum  C = A+B For A and B m×n:  cij = aij + bij 
4. Transpose  C = A� For m×n A:  cij = aji
5. Matrix Inverse  C = A-1 For A n×n nonsingular:  AA-1 = Im

6. Trace
 
c = tr(A) For n×n A:  c = aii�

n

i�1
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TABLE 2.2.  OPERATIONS ON ELEMENTS
  Name  Notation      Definition

1. Element Product  C = A.*B For A, B m×n:  cij = aij bij
2. Element Division  C = A.÷B For A, B m×n:  cij = aij/bij
3. Logical Condition  C = A.�B For A, B m×n:  cij = 1(aij�bij) (Note 1)
4. Row Minimum  c = vmin(A) For m×n A:  ci = min1�k�m aik (Note 2)
5. Row Min Replace C = rmin(A) For m×n A:  cij = min1�k�m aik (Note 3)
6. Column Min Replace  C = cmin(A) For m×n A:  cij = min1�k�n aik (Note 4) 

7. Cumulative Sum
 
C = cumsum(A) For m×n A:  cij = akj�

i

k�1

NOTES:  
  1.  1(P) is one of P is true, zero otherwise.  The condition is also defined for the logical operations "<", ">", "�", "=", and "�".
  2.  c is a m×1 vector.  The operation is also defined for "max".
  3. C is a m×n matrix, with all columns the same.  The operation is also defined for "max"
  4.  C is a m×n matrix, with all rows the same.  The operation is also defined for "max".

TABLE 2.3.  SHAPING OPERATIONS

Name Notation Definition
1. Kronecker Product  C = A�B Note 1
2. Direct Sum  C = A�B Note 2
3. diag  C = diag(x) C a diagonal matrix with vector x 

 down the diagonal
4. vec  or  vecr  c = vecr(A) vector c contains rows of A, stacked
5. vecc  c = vecc(A) vector c contains columns of A, stacked
6. vech  c = vech(A) vector c contains upper triangle 

 of A, row by row, stacked
7. vecd  c = vecd(A) vector c contains diagonal of A
8. horizontal contatination  C = {A,B} Partitioned matrix C = [ A B ]
9. vertical contatination  C = {A;B} Partitioned matrix C � = [ A� B�]
10. reshape  C = rsh(A,k) Note 3

NOTES:
  1.  Also termed the direct product, the Kronecker product creates an array made up of blocks, with each block the product of
an element of A and the matrix B; see Section 2.11.

  2.  The direct sum is defined for a m×n matrix A and a p×q matrix B by the (m+p)×(n+q) partitioned array A�B = .
A 0
0 B

  3.  If A is m×n, then k must be a divisor of m�n.  The operation takes the elements of A row by row, and rewrites the successive
elements as rows of a matrix C that has k rows and m�n/k columns.
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2.3.3.  The determinant of a n×n matrix A is denoted �A� or det(A), and has a geometric
interpretation as the volume of the parallelepiped formed by the column vectors of A.  The matrix A
is nonsingular if and only if det(A) � 0.  A minor of a matrix A (of order r) is the determinant of a
submatrix formed by striking out n-r rows and columns.  A principal minor is formed by striking out
symmetric rows and columns of A.  A leading principal minor (of order r) is formed by striking out
the last n-r rows and columns.  The minor of an element aij of A is the determinant of the submatrix
Aij formed by striking out row i and column j of A.  Determinants satisfy the recursion relation 

  det(A) = (-1)i+jaijdet(Aij) = (-1)i+jaijdet(Aij),�
n

i�1
�

n

j�1

with the first equality holding for any j and the second holding for any i.  This formula can be used
as a recursive definition of determinants, starting from the result that the determinant of a scalar is
the scalar.  A useful related formula is

   (-1)i+jaikdet(Aij)/det(A) = δkj,�
n

i�1

where δkj is one if k = j and zero otherwise.

2.3.4.  We list without proof a number of useful elementary properties of matrices:

(1) (A�)� = A.
(2) If A-1 exists, then (A-1)-1 = A.
(3) If A-1 exists, then (A�)-1 = (A-1)�.
(4) (AB)� = B�A�.
(5) If A,B are square, nonsingular, and commensurate, then (AB)-1 = B-1A-1.
(6) If A is m×n, then Min {m,n} 
 ρ(A) = ρ(A�) = ρ(A�A) = ρ(AA�).
(7) If A is m×n and B is m×r, then ρ(AB) � min(ρ(A),ρ(B)).
(8) If A is m×n with ρ(A) = m, and B is m×r, then ρ(AB) = ρ(B).
(9) ρ(A+B) � ρ(A) + ρ(B).
(10) If A is n×n, then det(A) � 0 if and only if ρ(A) = n.
(11) If B and C are nonsingular and commensurate with A, then ρ(BAC) = ρ(A).
(12) If A, B are n×n, then ρ(AB) 
 ρ(A) + ρ(B) - n.
(13) det(AB) = det(A)�det(B).
(14) If c is a scalar and A is n×n, then det(cA) = cndet(A)
(15) The determinant of a matrix is unchanged if a scalar times one column (row) is added to
another column (row).  
(16) If A is n×n and diagonal or triangular, then det(A) is the product of the diagonal elements.
(17) det(A-1) = 1/det(A).
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(18) If A is n×n and B = A-1, then bij = (-1)i+jdet(Aij)/det(A).
(19) The determinant of an orthonormal matrix is +1 or -1.
(20) If A is m×n and B is n×m, then tr(AB) = tr(BA).
(21) tr(In) = n.
(22) tr(A+B) = tr(A) + tr(B).
(23) A permutation matrix P is orthonormal; hence, P� = P-1.
(24) The inverse of a (upper) triangular matrix is (upper) triangular, and the inverse of a
diagonal matrix D is diagonal, with (D-1)ii = 1/Dii. 
(25) The product of orthonormal matrices is orthonormal, and the product of permutation
matrices is a permutation matrix.

2.4.  EIGENVALUES AND EIGENVECTORS

An eigenvalue of a n×n matrix A is a scalar λ such that Ax = λx for some vector x � 0.  The vector
x is called a (right) eigenvector.  The condition (A-λI)x = 0 associated with an eigenvalue implies
A-λI simgular, and hence det(A-λI) = 0.  This determanental equation defines a polynomial in λ of
order n, and the n roots of this polynomial are the eigenvalues.  For each eigenvalue λ, the condition
that A-λI is less than rank n implies the existence of one or more linearly independent eigenvectors;
the number equals the multiplicity of the root λ.  The following basic properties of eigenvalues and
eigenvectors of a n×n matrix A are stated without proof: 

(1) If A is real and symmetric, then its eigenvalues and eigenvectors are real. However, if A is
nonsymmetric, then its eigenvalues and eigenvectors in general are complex.  
(2) The number of nonzero eigenvalues of A equals its rank ρ(A).
(3) If λ is an eigenvalue of A, then λk is an eigenvalue of Ak, and 1/λ is an eigenvalue of A-1 (if the
inverse exists).
(4) If A is real and symmetric, then the eigenvalues corresponding to distinct roots are orthogonal.
[Axi = λixi implies xi�Axj = λixi�xj = λjxi�xj, which can be true for i � j only if xi�xj = 0.]
(5) If A is real and symmetric, and Λ is a diagonal matrix with the roots of the polynomial
det(A-λI) along the diagonal, then there exists an orthonormal matrix C such that C�C = I and AC
= CΛ, and hence C�AC = Λ and CΛC� = A.  The transformation C is said to diagonalize A.
[Take C to be an array whose columns are eigenvectors of A, scaled to unit length.  In the case
of a multiple root, orthonormalize the eigenvectors corresponding to this root.].
(6) If A is real and nonsymmetric, there exists a nonsingular complex matrix Q and a upper
triangular complex matrix T with the eigenvalues of A on its diagonal such that Q-1AQ = T.
(7) A real and symmetric implies tr(A) equals the sum of the eigenvalues of A.   [Since A =
CΛC�, tr(A) = tr(CΛC�) = tr(C�CΛ) = tr(Λ) by 2.3.20.]
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(8) If Ai are real and symmetric for i = 1,...,p, then there exists C orthonormal such that C�AiC,
are all diagonal if and only if AiAj = AjAi for i,j = 1,...,p.

Results (5) and (6) combined with the result 2.3.13 that the determinant of a matrix product is the
product of the determinants of the matrices, implies that the determinant of a matrix is the product
of its eigenvalues.  The transformations in (5) and (6) are called similarity transformations, and can
be interpreted as representations of the transformation A when the basis of the domain is transformed
by C (or Q) and the basis of the range is transformed by C-1 (or Q-1).  These transformations are used
extensively in econometric theory.  

2.5.  PARTITIONED MATRICES

It is sometimes useful to partition a matrix into submatrices,

   A =  ,
A11 A12

A21 A22

where A is m×n, A11 is m1×n1, A12 is m1×n2, A21 is m2×n1, A22 is m2×n2, and m1+m2 = m and n1+n2 =
n.  Matrix products can be written for partitioned matrices, applying the usual algorithm to the
partition blocks, provided the blocks are commensurate.  For example, if B is n×p and is partitioned

B =  where B1 is n1×p and B2 is n2×p, one has AB = . 
B1

B2

A11B1�A12B2

A21B1�A22B2

Partitioned matrices have the following elementary properties:

(1) A square and A11 square and nonsingular implies det(A) = det(A11)�det(A22-A21A11
-1A12).

(2) A and A11 square and nonsingular implies

       A-1 = 
A ����1

11 �A ����1
11 A12C

����1A21A
����1

11 �A ����1
11 A12C

����1

�C ����1A21A
����1

11 C ����1

with C = A22-A21A11
-1A12.  When A22 is nonsingular, the northwest matrix in this partition can also

be written as (A11-A12A22
-1A21)-1.
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2.6.  QUADRATIC FORMS

The scalar function Q(x,A) = x�Ax, where A is a n×n matrix and x is a n×1 vector, is termed a
quadratic form; we call x the wings and A the center of the quadratic form.  The value of a quadratic
form is unchanged if A is replaced by its symmetrized version (A+A�)/2.  Therefore, A will be
assumed symmetric for the discussion of quadratic forms.

A quadratic form Q(x,A) may fall into one of the classes in the table below:
       

Class Defining Condition
Positive Definite x�0 � Q(x,A) > 0
Positive Semidefinite x�0 � Q(x,A) 
 0
Negative Definite x�0 � Q(x,A) < 0
Negative Semidefinite x�0 � Q(x,A) � 0

 
A quadratic form that is not in one of these four classes is termed indefinite.  The basic properties of
quadratic forms are listed below:

(1) If B is m×n and is of rank ρ(B) = r, then B�B and BB� are both positive semidefinite; and if
r = m � n, then B�B is positive definite.
(2) If A is symmetric and positive semidefinite (positive definite), then the eigenvalues of A are
nonnegative (positive).  Similarly, if A is symmetric and negative semidefinite (negative definite),
then the eigenvalues of A are nonpositive (negative).
(3) Every symmetric positive semidefinite matrix A has a symmetric positive semidefinite square
root A1/2 [By 2.4.4, C�AC = D for some C orthonormal and D a diagonal matrix with the
nonnegative eigenvalues down the diagonal.  Then, A = CDC� and A1/2 = CD1/2C� with D1/2 a
diagonal matrix of the positive square roots of the diagonal of D.]
(4) If A is positive definite, then A-1 is positive definite.
(5) If A and B are real, symmetric n×n matrices and B is positive definite, then there exists a n×n
matrix Q that simultaneously diagonalizes A and B:  Q�AQ = Λ diagonal and Q�BQ = I.  [From
2.4(5), there exists a n×n orthonormal matrix U such that U����BU = D is diagonal.  Let G be an
orthonormal matrix that diagonalizes D-1/2U�AUD-1/2, and define Q = UD-1/2G.] 
(6) B positive definite and A - B positive semidefinite imply B-1 - A-1 positive semidefinite.  [For
a vector z, let x = Q-1z, where Q is the diagonalizing matrix from (5).  Then z�(B - A)z = x�Q�(B -
A)Qx  = x�(Λ - I)x 
 0, so no diagonal element of Λ is less than one.  Alternately, let x = Q����z.
Then z�(B-1 - A-1)z = x�Q-1(B-1 - A-1)(Q����)-1x = x�(I - Λ-1)x must be non-negative.]
(7) The following conditions are equivalent:

   (i)  A is positive definite
   (ii) The principal minors of A are positive
   (iii) The leading principal minors of A are positive.
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2.7.  THE LDU AND CHOLESKY FACTORIZATIONS OF A MATRIX

A n×n matrix A has a LDU factorization if it can be written A = LDU����, where D is a diagonal
matrix and L and U are lower triangular matrices.  This factorization is useful for computation of
inverses, as triangular matrices are easily inverted by recursion.

Theorem 2.1.  Each n×n matrix A can be written as A = PLDU����Q�, where P and Q are
permutation matrices, L and U are lower triangular matrices, each with ones on the diagonal, and
D is a diagonal matrix.  If the leading principal minors of A are all non-zero, then P and Q can
be taken to be identity matrices. 

Proof: First assume that the leading principal minors of A are all nonzero.  We give a recursive
construction of the required L and U.  Suppose the result has been established for matrices up to order
n-1.  Then, write the required decomposition A = LDU���� for a n×n matrix in partitioned form

     = � � ,
A11 A12

A21 A22

L11 0

L21 1

D11 0

0 D22

U11� U21�

0 1

����

where A11, L11, D11, and U11� are (n-1)×(n-1), L21 is 1×(n-1), U21 is 1×(n-1), and A22 and D22 are 1×1.
Assume that L11, D11, and U11 have been defined so that A11 =  L11D11U11�, and that L11

-1 and U11
-1 also

exist and have been computed.  Let S = L-1 and T = U-1, and partition S and T commensurately with
L and U.  Then, A11

-1 = U11�
-1D11

-1L11
-1

  and the remaining elements must satisfy the equations

   A21 = L21D11U11�  �  L21 = A21U11
�-1D11

-1 � A21T11�D11
-1

   A12 = L11D11U21�  �  U21� = D11
-1L11

-1A12 � D11
-1S11A12

   A22 = L21D11U21� + D22  �  D22 = A22 - A21U11
�-1D11

-1L11
-1A12 = A22 - A21A11

-1A12
   S21 = -L21S11 S22 = 1
   T21� = -T11�U21� T22 = 1

where det(A) = det(A11)�det(A22 - A21A11
-1A12) � 0 implies D22 � 0.  Since the decomposition is trivial

for n = 1, this recursion establishes the result, and furthermore gives the triangular matrices S and T
from the same recursion that can be multiplied to give A-1 = T�D-1S.

Now assume that A is of rank r < n, and that the first r columns of A are linearly independent,
with non-zero leading principal minors up to order r.  Partition 

   = � � , 
A11 A12

A21 A22

L11 0

L21 I

D11 0

0 0

U11� U21�

0 I
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where A11 is r×r and the remaining blocks are commensurate.  Then, U21� = D11
-1S11A12 and L21 =

A21T11����D11
-1, and one must satisfy A22 = L21D11U12� = A21A11

-1A12.  But the rank condition implies the

last n-r columns of A can be written as a linear combination  = of the first r
A12

A22

A11

A21

C

columns, where C is some r×(n-r) matrix.  But A12 = A11C implies C = A11
-1A12 and hence A22 = A21C

= A21A11
-1A12 as required.

Finally, consider any real matrix A of rank r.  By column permutations, the first r columns can
be made linearly independent.  Then, by row permutations, the first r rows of these r columns can be
made linearly independent.  Repeat this process recursively on the remaining northwest principal
submatrices to obtain products of permutation matrices that give nonzero leading principal minors
up to order r.  This defines P and Q, and completes the proof of the theorem.  G

Corollary 2.1.1.  If A is symmetric, then L = U.
Corollary 2.1.2.  (LU Factorization) If A has nonzero leading principal minors, then A can be
written A = LV�, where V���� = DU� is upper triangular with a diagonal coinciding with that of D.

Corollary 2.1.3.  (Cholesky Factorization) If A is symmetric and positive definite, then A can be
written A = VV����, where V = LD1/2 is lower triangular with a positive diagonal.
Corollary 2.1.4.  A symmetric positive semidefinite implies A = PVV����P�, with V lower
triangular with a nonnegative diagonal, P a permutation matrix.
Corollary 2.1.5.  If A is m×n with m 
 n, then there exists a factorization A = PLDU����Q�, with
D n×n diagonal, P a m×m permutation matrix, Q a n×n permutation matrix, U a n×n lower
triangular matrix with ones on the diagonal, and L a m×n lower triangular matrix with ones on
the diagonal (i.e., L has the form L� = [L11�  L21����] with L11  n×n and lower triangular with ones
on the diagonal, and L21 (m-n)×n.  Further, if ρ(A) = n, then (A�A)-1A� = QU����

-1D-1(L�L)-1L�P�.
Corollary 2.1.6.  If the system of equations Ax = y with A m×n of rank n has a solution, then the
solution is given by x = (A�A)-1A�y = QU����

-1D-1(L�L)-1L�P�y. 

Proof outline:  To show Corollary 3, note that a positive definite matrix has positive leading principal
minors, and note from the proof of the theorem that this implies that the diagonal of D is positive.
Take V���� = D1/2U����, where D1/2 is the positive square root.  The same construction applied to the LDU
factorization of A after permutation gives Corollary 4.  To show Corollary 5, note first that the rows
of A can be permuted so that the first n rows are of maximum rank ρ(A).  Suppose A =
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is of this form, and apply the theorem to obtain A11 = P11L11DU����Q�.  The rank condition
A11 A12

A21 A22

implies that A21 = FA11 for some (m-n)×n array F.  Then, A21 = L21DU����Q�, with L21 = FP11L11, so that

   A = DU����Q�.
L11

L21

To complete the proof, apply a left permutation if necessary to undo the initial row permutation of
A.  Corollary 6 is an implication of the last result.  �

The recursion in the proof of the theorem is called Crout's algorithm, and is the method for matrix
inversion of positive definite matrices used in many computer programs.  It is unnecessary to do the
permutations in advance of the factorizations; they can also be carried out recursively, bringing in
rows (in what is termed a pivot) to make the successive elements of D as large in magnitude as
possible.  This pivot step is important for numerical accuracy.

The Cholesky factorization of a n×n positive definite matrix A that was obtained above as a
corollary of the LDU decomposition states that A can be written as A = LL����, where L is lower
triangular with a positive diagonal.  This factorization is readily computed and widely used in
econometrics.  We give a direct recursive construction of L that forms the basis for its computation.
Write the factorization in partitioned form

A = .

A11 A12 A13

A21 A22 A23

A31 A32 A33

�

L11 0 0

L21 L22 0

U31 L32 L33

L11 0 0

L21 L22 0

L31 L32 L33

´

Also, let V = L-1, and partition it commensurately, so that

.

I1 0 0

0 I2 0

0 0 I3

�

L11 0 0

L21 L22 0

L31 L32 L33

´ V11 0 0

V21 V22 0

V31 V32 V33

Then A11 = L11L11�, A12 = L11L21�, A22 = L21L21� + L22L22�, V11 = L11
-1, V22 = L22

-1, and 0 = L21V11 +
L22�V22.  Note first that if A11 is 1×1, then L11 = A11

1/2 and V11 = 1/L11.  Now suppose that one has
proceeded recursively from the northwest corner of these matrices, and that L11 and V11 have already
been computed up through dimension n1.  Suppose that A22 is 1×1.  Then, compute in sequence L21�
= V11�A12

., L22 = (A22 - L12L12�)1/2, V22 = 1/L22, and V12 = - V11L21�V22.  This gives the required factors
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up through dimension n1+1.  Repeat this for each dimension in turn to construct the full L and V
matrices.

An extension of the Cholesky decomposition holds for an n×n positive semidefinite matrix A of
rank r, which can be written as A = PLL����P���� with P a permutation matrix and L a lower triangular
matrix whose first r diagonal elements are positive.  The construction proceeds recursively as before,
but at each stage one may have to search among remaining columns to find one for which L22 > 0,
determining the P matrix.  Once dimension r is reached, all remaining columns will have  L22 = 0.
Now reinterpret L21 and L22  as a partition corresponding to all the remaining columns and compute
L12� = V11�A12

. and L22 = 0 to complete the Cholesky factor. 

2.8.  THE SINGULAR VALUE DECOMPOSITION OF A MATRIX

A factorization that is useful as a tool for finding the eigenvalues and eigenvectors of a symmetric
matrix, and for calculation of inverses of moment matrices of data with high multicollinearity, is the
singular value decomposition (SVD):   

Theorem 2.2.  Every real m×n matrix A of rank r can be decomposed into a product A = UDV�,
where D is a r×r diagonal matrix with positive nonincreasing elements down the diagonal, U is m×r,
V is n×r, and U and V are column-orthonormal; i.e., U�U = Ir = V�V.  

Proof:  Note that the SVD is an extension of the LDU decomposition to non-square matrices.  To
prove that the SVD is possible, note first that the m×m matrix AA� is symmetric and positive
semidefinite.  Then, there exists a m×m orthonormal matrix W whose columns are eigenvectors of
AA� arranged in non-increasing order for the eigenvalues, partitioned W = [W1 W2] with W1 of
dimension m×r, such that W1�(AA�)W1 = Λ is diagonal with positive, non-increasing diagonal
elements, and W2�(AA�)W2 = 0, implying A�W2 = 0.  Define D from Λ by replacing the diagonal
elements of Λ by their positive square roots.  Note that W�W = I = WW� � W1 W1� + W2W2�.
Define U = W1 and V� = D-1U�A.  Then, U�U = Ir and V�V = D-1U�AA�UD-1 = D-1ΛD-1 = Ir.  Further,
A = (Im-W2 W2�)A = UU�A = UDV�.  This establishes the decomposition.  �

If A is symmetric, then U is the array of eigenvectors of A corresponding to the non-zero roots,
so that A�U = UD1, with D1 the r×r diagonal matrix with the non-zero eigenvalues in descending
magnitude down the diagonal.  In this case, V = A�UD-1 = UD1D-1.  Since the elements of D1 and D
are identical except possibly for sign, the columns of U and V are either equal (for positive roots) or
reversed in sign (for negative roots).  Then, the SVD of a square symmetric nonsingular matrix
provides the pieces necessary to write down its eigenvalues and eigenvectors.  For a positive definite
matrix, the connection is direct.  
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When the m×n matrix A is of rank n, so that A�A is symmetric and positive definite, the SVD
provides a method of calculating (A�A)-1 that is particularly numerically accurate:  Substituting the
form A = UDV�, one obtains (A�A)-1 = VD-2V�.   One also obtains convenient forms for a square root
of A�A and its inverse, (A�A)1/2 = VDV� and (A�A)-1/2 = VD-1V�.

The numerical accuracy of the SVD is most advantageous when m is large and some of the
columns of A are nearly linearly dependent.  Then, roundoff errors in the matrix product A�A can lead
to quite inaccurate results when a matrix inverse of A�A is computed directly.  The SVD extracts the
required information from A before the roundoff errors in A�A are introduced.  Computer programs
for the Singular Value Decomposition can be found in Press et al, Numerical Recipes, Cambridge
University Press, 1986.  

2.9.  IDEMPOTENT MATRICES AND GENERALIZED INVERSES

A symmetric n×n matrix A is idempotent if A2 = A.  Examples of idempotent matrices are 0, I,
and for any n×r matrix X of rank r, X(X�X)-1X�.  Idempotent matrices are intimately related to
projections, discussed in the following section. Some of the properties of an n×n idempotent matrix
A are listed below:

(1) The eigenvalues of A are either zero or one.
(2) The rank of A equals tr(A).
(3) The matrix I-A is idempotent.
(4) If B is an orthonormal matrix, then B�AB is idempotent.
(5) If ρ(A) = r, then there exists a n×r matrix B of rank r such that A = B(B�B)-1B�.  [Let C be an
orthonormal matrix that diagonalizes A, and take B to be the columns of C corresponding to the
non-zero elements in the diagonalization.]
(6) A, B idempotent implies AB = 0 if and only if A+B is idempotent.
(7) A, B idempotent and AB = BA implies AB idempotent.  
(8) A, B idempotent implies A-B idempotent if and only if BA = B.

Recall that a n×n non-singular matrix A has an inverse A-1 that satisfies AA-1 = A-1A = I.  It is
useful to extend the concept of an inverse to matrices that are not necessarily non-singular, or even
square.  For an m×k matrix A (of rank r), define its Moore-Penrose generalized inverse A� to be a
k×m matrix with the following three properties: 

(i) AA�A = A, 
(ii) A�AA� = A� 
(iii) AA� and A�A are symmetric 



McFadden, Statistical Tools, © 2000                                                     Chapter 2-18, Page 34 
___________________________________________________________________________

The next theorem shows that the Moore-Penrose generalized inverse always exists, and is unique.
Conditions (i) and (ii) imply that the matrices AA� and A�A are idempotent.  There are other
generalized inverse definitions that have some, but not all, of the properties (i)-(iii); in particular A+

will denote any matrix that satisfies (i), or AA+A = A. 

Theorem 2.3.  The Moore-Penrose generalized inverse of a m×k matrix A of rank r (which has
a SVD A = UDV�, where U is m×r, V is k×r, U and V are column-orthogonal, and D is r×r diagonal
with positive diagonal elements) is the matrix A� = VD-1U�.  Let A+ denote any matrix, including A�,
that satisfies AA+A = A.  These matrices satisfy:

(1) A� = A+ = A-1 if A is square and non-singular.  
(2) The system of equations Ax = y has a solution if and only if y = AA+y, and the linear subspace
of all solutions is the set of vectors x = A+y + [I - A+A]z for z � �k.  
(3) AA+ and A+A are idempotent.  
(4) If A is idempotent, then A = A� .  
(5) If A = BCD with B and D nonsingular, then A� = D-1 C� B-1, and any matrix A+ = D-1C+B-1

satisfies AA+A = A.  
(6) (A�)� = (A�)� 
(7) (A�A)� = A�(A�)� 
(8) (A�)� = A = AA�(A�)� = (A�)�A�A.  

(9) If A = Ai with Ai�Aj = 0 and AiAj� = 0 for i � j, then A� =  Ai
�.  �

i
�

i

Theorem 2.4.  If A is m×m, symmetric, and positive semidefinite of rank r, then 
(1) There exist Q positive definite and R idempotent of rank r such that A = QRQ  and A� =
Q-1RQ-1.
(2) There exists an m×r column-orthonormal matrix U such that U�AU = D is positive diagonal,
A = UDU�, A� = UD-1U� = U(U�AU)-1U�, and any matrix A+ satisfying condition (i) for a
generalized inverse, AA+A = A, has U�A+U = D-1.  
(3) A has a symmetric square root B = A1/2, and A� = B�B�.  

Proof: Let U be an m×r column-orthonormal matrix of eigenvectors of A corresponding to the
positive characteristic roots, and W be a m×(m-r) column-orthonormal matrix of eigenvectors
corresponding to the zero characteristic roots.  Then [U W] is an orthonormal matrix diagonalizing

A, with = and D positive diagonal.  Define Q = ,
U�

W�
A U W

D 0
0 0

U W
D 1/2 0

0 Im����r

U ����

W ����

and R = UU�.  The diagonalizing transformation implies U�AU = D and AW = 0.  One has U�U = Ir,
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W�W = Im-r, and UU� + WW� = Im.  Since AW = 0, A = A[UU� + WW�] = AUU� and D = U�AU =
U�AA+AU = UAUU�A+UU�AU = DU�A+UD, implying U�A+U = D-1.  Define B = UD1/2U�.  G

2.10. PROJECTIONS

Consider a Euclidean space �n of dimension n, and suppose X is a n×p array with columns that
are vectors in this space.  Let X denote the linear subspace of �n that is spanned or generated by X;
i.e., the space formed by all linear combinations of the vectors in X.  Every linear subspace can be
identified with an array such as X.  The dimension of the subspace is the rank of X.  (The array X
need not be of full rank, although if it is not, then a subarray of linearly independent  columns also
generates X.)  A given X determines a unique subspace, so that X characterizes the subspace.
However, any set of vectors contained in the subspace that form an array with the rank of the
subspace, in particular any array XA with rank equal to the dimension of X, also generates X.  Then,
X is not a unique characterization of the subspace it generates.

The projection of a vector y in �n into the subspace X is defined as the point v in X that is the
minimum Euclidean distance from y.  Since each vector v in X can be represented as a linear
combination Xα of an array X that generates X, the projection is characterized by the value of α that
minimizes the squared Euclidean distance of y from X, (y-Xα)�(y-Xα).  The solution to this problem
is the vector ���� = (X����X)�X����y giving v = X���� = X(X����X)�X����y.  In these formulas, we use the
Moore-Penrose generalized inverse (X����X)� rather than (X����X)-1 so that the solution is defined even
if X is not of full rank.  The array PX = X(X����X)�X���� is termed the projection matrix for the subspace
X; it is the linear transformation in �n that maps any vector in the space into its projection v in X.
The matrix PX is idempotent (i.e., PXPX = PX and PX = PX�), and every idempotent matrix can be
interpreted as a projection matrix.  These observations have two important implications:  First, the
projection matrix is uniquely determined by X, so that starting from a different array that generates
X, say an array S = XA, implies PX = PS.  (One could use the notation PX rather than PX to emphasize
that the projection matrix depends only on the subspace, and not on any particular set of vectors that
generate X.)  Second, if a vector y is contained in X, then the projection into X  leaves it unchanged,
PXy = y.

Define QX = I - PX = I - X(X����X)-1X����; it is the projection to the subspace orthogonal to that
spanned by X.  Every vector y in �n is uniquely decomposed into the sum of its projection PXy onto
X and its projection QXy onto the subspace orthogonal to X.  Note that PXQX = 0, a property that holds
in general for two projections onto orthogonal subspaces.

If X is a subspace generated by an array X and W is a subspace generated by a more inclusive
array W = [X Z], then X � W.  This implies that PXPW = PWPX = PX; i.e., a projection onto a subspace
is left invariant by a further projection onto a larger subspace, and a two-stage projection onto a large
subspace followed by a projection onto a smaller one is the same as projecting directly onto the
smaller  one.  The subspace of W  that is orthogonal to X is generated by QXW; i.e., it is the set of
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linear combinations of the residuals, orthogonal to X, obtained by the difference of W and its
projection onto X.  Note that any y in �n has a unique decomposition PXy + QXPWy + QWy into the
sum of projections onto three mutually orthogonal subspaces, X, the subspace of W orthogonal to X,
and the subspace orthogonal to W.  The projection QXPW can be rewritten QXPW = PW - PX = PWQX

= QXPWQX, or since QXW = QX[X  Z] = [0  QXZ], QXPW = = QXZ(Z�QXZ)� Z�QX.PQXW � PQXZ

This establishes that PW and QX commute.  This condition is necessary and sufficient for the product
of two projections to be a projection; equivalently, it implies that QXPW is idempotent since
(QXPW)(QXPW) = QX(PWQX)PW = QX(QXPW)PW = QXPW.

2.11.  KRONECKER PRODUCTS

If A is a m×n matrix and B is a p×q matrix, then the Kronecker (direct) product of A and B is the
(mp)×(nq) partitioned array

  A�B = .

a11B

a21B

:
an1B

a12B

a22B

:
an2B

...

...
:

...

a1mB

a2mB

:
anmB

In general, A�B � B�A.  The Kronecker product has the following properties:

(1) For a scalar c, (cA)�B = A�(cB) = c(A�B).
(2) (A�B)�C = A�(B�C).  
(3) (A�B)� = (A�)�(B�).
(4) tr(A�B) = (tr(A))�(tr(B)) when A and B are square.
(5) If the matrix products AC and BF are defined, then 
  (A�B)(C�F) = (AC)�(BF).
(6) If A and B are square and nonsingular, then (A�B)-1 = A-1�B-1.
(7) If A and B are orthonormal, then A�B is orthonormal.
(8) If A and B are positive semidefinite, then A�B is positive 
  semidefinite.
(9) If A is k×k and B is n×n, then det(A�B) = det(A)n

�det(B)k.
(10) ρ(A�B) = ρ(A)�ρ(B).
(11) (A+B)�C = A�C + B�C.
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2.12.  SHAPING OPERATIONS

The most common operations used to reshape vectors and matrices are (1) C = diag(x) which
creates a diagonal matrix with the elements of the vector x down the diagonal; (2) c = vecc(A) which
creates a vector by stacking the columns of A, and vecr(A) = vecc(A�); (3) c = vech(A) which creates
a vector by stacking the portions of the rows of A that are in the upper triangle of the matrix; and (4)
c = vecd(A) which creates a vector containing the diagonal of A.  (In some computer matrix
languages, vec(A) stacks by row rather than by column.)  There are a few rules that can be used to
manipulate these operations:

(1) If x and y are commensurate vectors, diag(x+y) = diag(x) + diag(y).
(2) vecc(A+B) = vecc(A) + vecc(B).
(3) If A is m×k and B is k×n, then vecr(AB) = (In�A)vecr(B) = (B��Im)vecr(A).
(4) If A is m×k, B is k×n, C is n×p, then vecr(ABC) = (Ip�(AB))vecr© = (C��A)vecr(B) =
((C�B�)�Im)vecr(A).  
(5) If A is n×n, then vech(A) is of length n(n+1)/2.
(6) vecd(diag(x)) = x.

2.13.  VECTOR AND MATRIX DERIVATIVES

The derivatives of functions with respect to the elements of vectors or matrices can sometimes
be expressed in a convenient matrix form.  First, a scalar function of a n×1 vector of variables, f(x),
has partial derivatives that are usually written as the arrays

   �f/�x = , �f2/�x�x� =  .

�f/�x1

�f/�x2

|
�f/�xn

�f 2/�x1 �f 2/�x1�x2 ... �f 2/�x1�xn

�f 2/�x2�x1 �f 2/�x2 ... �f 2/�x2�xn

| | |

�f 2/�xn�x1 �f 2/�xn�x2 ... �f 2/�xn

Other common notation is fx(x) or �xf(x) for the vector of first derivatives, and fxx(x) or �xxf(x) for the
matrix of second derivatives.  Sometimes, the vector of first derivatives will be interpreted as a row
vector rather than a column vector.  Some examples of scalar functions of a vector are the linear
function f(x) = a�x, which has �xf = a, and the quadratic function f(x) = x�Ax, which has �xf = 2Ax.

When f is a column vector of scalar functions, f(x) = [f1(x) f2(x) ... fk(x)]�, then the array of first
partial derivatives is called the Jacobean matrix and is written
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   J(x) = .  

�f 1/�x1 �f 1/�x2 ... �f 1/�xn

�f 2/�x1 �f 2/�x2 ... �f 2/�xn

�f k/�x1 �f k/�x2 ... �f k/�xn

When calculating multivariate integrals of the form g(y)dy, where y � �n, A � �n, and g is a�A

scalar or vector function of y, one may want to make a nonlinear one-to-one transformation of
variables y = f(x).  In terms of the transformed variables, the integral becomes

   g(y)dy = g(f(x))��det(J(x))�dx ,�A �f ����1(A)

where f-1(A) is the set of x vectors that map onto A, and the Jacobean matrix is square and
nonsingular for well-behaved one-to-one transformations.  The intuition for the presence of the
Jacobean determinant in the transformed integral is that "dy" is the volume of a small rectangle in
y-space, and because determinants give the volume of the parallelepiped formed by the columns of
a linear transformation, �det(J(x))dx� gives the volume (with a plus or minus sign) of the image in
x-space of the "dy" rectangle in y-space.

It is useful to define the derivative of a scalar function with respect to a matrix as an array of
commensurate dimensions.  Consider the bilinear form f(A) = x�Ay, where x is n×1, y is m×1, and
A is n×m.  By collecting the individual terms �f/�Aij = xiyj, one obtains the result �f/�A = xy�.
Another example for a n×n matrix A is f(A) = tr(A), which has �f/�A = In.  There are a few other
derivatives that are particularly useful for statistical applications.  In these formulas, A is a square
nonsingular matrix.  We do not require that A be symmetric, and the derivatives do not impose
symmetry.  One will still get valid calculations involving derivatives when these expressions are
evaluated at matrices that happen to be symmetric.  There are alternative, and somewhat more
complicated, derivative formulas that hold when symmetry is imposed.  For analysis, it is unnecessary
to introduce this complication.

   (1) If det(A) > 0, then �log(det(A))/�A = A-1.
   (2) If A is nonsingular, then �(x�A-1y)/�A = - A-1xy�A-1.
   (3) If A = TT�, with T square and nonsingular, then �(x�A-1y)/�T = - 2A-1xy�A-1T.

We prove the formulas in order.  For (1), recall that det(A) = (-1)i+kaikdet(Aik), where Aik is the�
k

minor of aik.  Then, �det(A)/�Aij = (-1)i+jdet(Aij).  From 2.3.17, the ij element of A-1 is
(-1)i+jdet(Aij)/det(A).  For (2), apply the chain rule to the identity AA-1 � I to get ∆ijA-1 + A��A-1/�Aij
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� 0, where ∆ij denotes a matrix with a one in row i and column j, zeros elsewhere.  Then, �x�A-1y/�Aij
= - x�A-1∆ijA-1y = (A-1x)i(A-1y)j.  For (3), first note that �Aij/�Trs = δirTjs+δjrTis.  Combine this with (2)
to get

�x�A-1y/�Trs = (A-1x)i(A-1y)j(δirTjs+δjrTis) �
j

= (A-1x)r(A-1y)jTjs + (A-1x)i(A-1y)rTis = 2(A-1xy�A-1T)rs. �
j

�
i

2.14.  UPDATING AND BACKDATING MATRIX OPERATIONS

Often in statistical applications, one needs to modify the calculation of a matrix inverse or other
matrix operation to accommodate the addition of data, or  deletion of data in bootstrap methods.  It
is convenient to have quick methods for these calculations.  Some of the useful formulas are given
below:

(1) If A is n×n and nonsingular, and A-1 has been calculated, and if B and C are arrays that are n×k
of rank k, then (A+BC�)-1 = A-1 - A-1B(Ik+C�A-1B)-1C�A-1, provided Ik+C�A-1B is nonsingular.  No
matrix inversion is required if k = 1.
(2) If A is m×n with m 
 n and ρ(A) = n, so that it has a LDU factorization A = PLDU����Q� with D n×n

diagonal, P and Q permutation matrices, L and U lower triangular, then the array , with B k×n,
A
B

has the LDU factorization , where C = BQU����
-1D-1.

P 0
0 Ik

L
C

DU�Q�

(3) Suppose A is m×n of rank n, and b = (A�A)-1A�y.  Suppose A* = and with C k×n
A
C

y��
y
w

and w k×1, and b* = (A*�A*)-1 A*�y*.  Then,

b* - b = (A�A)-1C�[Ik+C(A�A)-1C�]-1(w-Cb) = (A*�A*)-1C�[Ik-C(A*�A*)-1C�]-1(w-Cb*).

One can verify (1) by multiplication.  To show (2), use Corollary 5 of Theorem 2.1.  To show (3),
apply (1) to A*�A* = A�A + C�C, or to A�A = A*�A* - C�C, and use A*�y* = Ay + Cw.
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2.15. NOTES AND COMMENTS
   The basic results of linear algebra, including the results stated without proof in this summary, can
be found in standard linear algebra texts, such as G. Hadley (1961) Linear Algebra, Addison-Wesley
or F. Graybill (1983) Matrices with Applications in Statistics, Wadsworth.  The organization of this
summary is based on the admirable synopsis of matrix theory in the first chapter of F. Graybill (1961)
An Introduction to Linear Statistical Models, McGraw-Hill.  For computations involving matrices,
W. Press et al (1986) Numerical Recipes, Cambridge Univ. Press, provides a good discussion of
algorithms and accompanying computer code.  For numerical issues in statistical computation, see
R. Thisted (1988) Elements of Statistical Computing, Chapman and Hall.

2.16. Exercises

1. The conjugate of a complex number z = a+ιb is the complex number z* = a - ιb.  The square of the modulus of a
complex number is the product of the number and its complex conjugate.  Show that this definition is the same as the
definition of the modulus r of a complex number written in polar representation as z = r�eιθ = r(cos θ + ι�sin θ).

2. Show that A \ B = A�Bc, A�B = A�B \ (A\B) \ (B\A),A�B = A�B � (A\B) � (B\A), and if A�B = �, then A\B = A

3. Consider the real-valued function y = f(x) � x2 on the real line.  Find the image of sets of the form [a,b].  Find the
inverse image of sets of the form [c,d].  Is the mapping f-1 a real-valued function?

4. Use the Cauchy criterion to show that the sequence an = 1 + ... + rn has a limit  if |r| < 1, but not if �r� � 1.

5. Show that the real line is a separable metric space for each of the following distance functions:  ρ(x,y) = �x-y�, ρ(x,y)
= �x-y�1/2, ρ(x,y) = min(�x-y�,1).  Show that ρ(x,y) = (x - y)2 fails to satisfy the triangle inequality for distance functions.

6. Show that the function f(x) = sin (1/x) is continuous, but not uniformly continuous, on the set (0,1].  Prove that a
continuous function on a compact set is uniformly continuous.

7. What are the differentiability properties of the real-valued function f(x) =  �x�7/2 at x = 0?  At x � 0?  Does this function
have a second-order Taylor's expansion at x = 0?

8. Find the limit of the function xα�log(x) for positive x as x goes to zero, where α is a positive constant.  What about
(1+αx)1/x?

9. Show that the series an = (-1)n is Cesaro summable, but not summable.

10. Use Kronecker's lemma to show an = log(1+n) and bn = n1/α for any positive constant α imply n-1/α
�log((n+1)!) 	 0.
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11. State Holder's inequality in the limiting case p = 1 and q = +
.

12. Consider the matrix A = .  Is it symmetric?  Idempotent?  What is its rank?
1 0.5

0.5 0.25

13. What is the rank of the matrix A = ?
1 0.5 0.25

0.5 0.25 0.25

14. For the matrices A =  and B = , determine which of the operations in Tables
1 0.5
1 0.5

1 0.5 0.25
0.5 0.25 0.25

2.1-2.3 can be applied, and calculate the result if the operations do apply.

15. The determanent of a 2×2 matrix A =  is det(A) = ad - bc.  Show that this formula satisfies the
a b
c d

determanental identity in Section 2.3.3.

16. Prove Section 2.4 (3) and (4).

17. Prove, by multiplying out the formula, the result in Section 2.5 (2) for the inverse of partitioned matrices.

18. Prove Section 2.6 (1).

19. Calculate the Cholesky factorization and the Singular Value decomposition of the matrix  A = .
2 �1
�1 3

20.  The Singular Value Decomposition of a matrix A of dimension m×k and rank r was defined in Section 2.8 as a
product A = UDV�, where U was m×r, D was r×r, V was k×r, the matrices U and V were both column orthogonal (i.e.,
U�U = I = V�V) and D was diagonal with positive diagonal elements.  An alternative definition, which is equivalent, is
to write A = [U W2][D 0]�V�, where U, D, and V are the same as before, the array of 0's in [D 0] is r×(m-r), W2 is
m×(m-r), and [U W2] is m*m and column orthogonal, and therefore orthonormal.  Some computer programs give SVD's
in  this alternative form.  Define B = V[D-1 0][U W2]� and C = V[D-1 G][U W2]�, where G is any non-zero r×(m-r) array.
Show that ABA = ACA = A and that BAB = CAC = B, but then CAC � C.
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21. Calculate the Moore-Penrose generalized inverse of A = , and show  that A-A and AA- are idempotent.
1 0.5
1 0.5

22. Consider the matrices A = , B = , C = , E = , and F =  .
1 0
1 0

1 0
0 0

1 1
0 0

0.5 0.5
0 0

0.5 0.5
α �α

Which of the matrices B, C, E, F meet which of the conditions in Section 2.9 to be a generalized inverse of A?

23. Prove Theorem 2.3 (2).  Show that if one writes the matrix in terms of its SVD, A  = UDV�, then the equations have
a solution iff UU�y = y, and if there is a solution, then it satisfies x = VD-1U�y + [I - UU�]z.

24. In �3, consider the subspace A generated by the vectors (1,1,1), (1,-1,1), and (1,3,1), the subspace B generated by
the vectors (2,1,1) and (-4,-2,-2), and the  subspace C generated by the vector (1,1,1).  What are the dimensions of these
subspaces?  What is the projection of B and C on A?  Of A and C on B?  Of A and B on C?

25. Prove a linear transformation A in �n is a projection iff A is idempotent.  Show that if A and B are projections, then
A + B is a projection iff AB = BA = 0, and A - B is a projection iff AB = BA = B.

26. Prove 2.11 (6) and (8).

27. Verify Section 2.12 (3) and (4) for the matrices A = , B = , C = .
1 0
1 0

1 0
0 0

1 1
0 0

28. Consider the function g(x1,x2) = exp(-x1/2 -x2/2), and the transformation of  variables x1 = r�cos θ and x2 = r�sin θ for

r � 0 and 0 
 θ 
 2π.  What is the Jacobean of this transformation?  Evaluate the integral  g(x1,x2)dx1dx2.�
��

��

29. Prove 2.14 (1) and (2).

30. Suppose real-valued functions F(x) and G(x) are continuously differentiable on [a,b] with f(x) = �xF(x) and g(x) =
�xG(x).  Then, �x(F(x)�G(x)) = F(x)�g(x) + f(x)�G(x).  Integrate this formula over [a,b] to establish the integration by parts

formula f(x)�G(x)dx = F(b)G(b) - F(a)G(a) - F(x)�g(x)dx.  Evaluate the integral x�e-xdx.�
b

a �
b

a �
��

0


