Econ 240A: Problem Set 6
Solutions to Selected Problems from Chapter 6

Chuan Goh
28 February 2001

1.

a.
The likelihood is just the joint density of the observations, i.e.,

$$f(x; \mu) = (2\pi)^{-\frac{n}{2}} \exp \left\{ -\frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2 \right\}.$$

b.
We have \(p(\mu|x) \propto f(x; \mu)p(\mu) \), where \(p(\mu) = (2\pi)^{\frac{k}{2}} \exp\{ -\frac{k\mu^2}{2} \} \). So

\[
p(\mu|x) \propto \exp \left\{ -\frac{n}{2}(\mu - \bar{x})^2 - \frac{k}{2}\mu^2 \right\}
= \exp \left\{ -\frac{1}{2} \left[(n + k)\mu^2 - 2n\bar{x}\mu + \frac{n^2 \bar{x}^2}{n + k} - \frac{n^2 \bar{x}^2}{n + k} + n\bar{x}^2 \right] \right\}
= \exp \left\{ -\frac{1}{2} \left(\frac{n + k}{\sqrt{n + k}} \mu - \frac{n\bar{x}}{\sqrt{n + k}} \right)^2 \right\}
= \exp \left\{ -\frac{n + k}{2} \left(\mu - \frac{n\bar{x}}{n + k} \right)^2 \right\},
\]
which shows that \(\mu|x \sim N(\frac{n\bar{x}}{n + k}, \frac{1}{n + k}) \).

c.
The Bayes risk \(R(T, \mu) \) of an estimate \(T \) is its expected posterior loss, i.e.,
\(R(T, \mu) = E_{\mu|x} L(T, \mu) \). Here \(L(T, \mu) = (T - \mu)^2 \), so

\[
R(T, \mu) = T^2(x) - 2T(x) \frac{n\bar{x}}{n + k} + \left[\frac{1}{n + k} + \left(\frac{n\bar{x}}{n + k} \right)^2 \right].
\]
d.

From part c, it should be fairly clear that the procedure T that minimizes Bayes risk is just the posterior mean of μ, i.e., $T^*(x) = \frac{\sum x_i}{n+k}$.

2.

a.

$$f(x; \mu) = \lambda^n \exp(-\lambda \sum_{i=1}^{n} x_i)$$

b.

Differentiating $\log f(x; \lambda)$ with respect to λ and setting the derivative to zero we find that the maximum likelihood estimator to be $\lambda_{ML} = \frac{\sum x_i}{\sum x_i} = \bar{x}^{-1}$.

c.

We have an exponential prior density $\pi(\lambda) = \alpha \exp(-\alpha \lambda)$. Let $t = \sum_{i=1}^{n} x_i$ and $u = \lambda(t + \alpha)$. Note that

\[
\int_{0}^{\infty} \pi(\lambda) f(x; \lambda) d\lambda = \int_{0}^{\infty} \alpha \lambda^n \exp(-\lambda(t + \alpha)) d\lambda = \alpha \int_{0}^{\infty} \left(\frac{u}{t + \alpha} \right)^n \cdot \frac{1}{t + \alpha} e^{-u} du = \frac{\alpha}{(t + \alpha)^{n+1}} \Gamma(n + 1) = \frac{\alpha n!}{(t + \alpha)^{n+1}}.
\]

Therefore the posterior density of λ is given by $\pi(\lambda|x) = \frac{1}{\Gamma(n+1)} \lambda^n (t+\alpha)^{n+1} e^{-\lambda(t+\alpha)}$. The Bayes estimate of λ, that is, the estimate that minimizes posterior loss is the posterior mean of λ if we have a quadratic loss function as in Exercise 1 above:

\[
E[\lambda|x] = \frac{1}{n!} \int_{0}^{\infty} \lambda^{n+1} e^{-\lambda(t+\alpha)} d\lambda = \frac{(t+\alpha)^{n+1}}{n!} \cdot \frac{1}{(t+\alpha)^{n+2}} \int_{0}^{\infty} u^{n+1} e^{-u} du = \frac{\Gamma(n+2)}{n!(t+\alpha)} = \frac{n+1}{t+\alpha}
\]
d.

We have \(W = 2n \lambda \bar{x} = 2 \lambda \sum_{i=1}^{n} x_i \), so the characteristic function of \(W \) is given by

\[
c_W(s) = E[e^{iWt}] = \prod_{i=1}^{n} e^{i(2\lambda s)} = \prod_{i=1}^{n} \int_{0}^{\infty} \lambda \exp\{i 2 \lambda x_i s - \lambda x_i \} dx_i = \prod_{i=1}^{n} (1 - 2i s)^{-1} = (1 - 2i s)^n = (1 - 2i s) \frac{n!}{(\alpha - 1)^n},
\]

which is the characteristic function of a \(\chi^2_{2n} \) random variable.

We have \(\lambda_{ML} = \frac{2n \lambda}{\nu} \), which is distributed as \(2n \lambda \chi^{-2}_{\nu} \), where \(\chi^{-2}_{\nu} \) refers to an inverse chi-square distribution with \(\nu \) degrees of freedom.\(^1\) The pdf of the MLE of \(\lambda \) is therefore given by

\[
p(\lambda_{ML}) = \frac{(2n \lambda)^n}{2^{\nu} \Gamma(n)} \frac{\lambda_{ML}^{n-1}}{\chi^{-2}_{\nu} \exp \left\{ - \frac{1}{2} \cdot \frac{2n \lambda}{\lambda_{ML}} \right\} }.
\]

The derivation of \(p(\lambda_{ML}) \) is left as an exercise.

4.

We have \(k_1, \ldots, k_n \) iid Bernoulli(\(p \)), so the likelihood function is given by

\[
f(k_1, \ldots, k_n) = p^{\sum_{i=1}^{n} k_i} \frac{(1 - p)^{n - \sum_{i=1}^{n} k_i}}{n!}.
\]

Let \(K = \sum_{i=1}^{n} k_i \). \(K \) is clearly sufficient for \(p \) by the factorization criterion. It is also minimal sufficient.\(^2\) Note that if there exists a function \(h \) and a statistic \(U \) such that \(K = h(U) \), then \(K \) cannot contain more information about \(p \) than \(U \), which (after a moment’s thought) indicates that \(U \) is also sufficient for \(p \). (Alternatively, sufficiency can be shown by substituting \(h(U) \) for \(K \) in the likelihood function for the sample.)

a.

We have \(U = (k_1, \ldots, k_n) \). Then \(K = \sum_{i=1}^{n} U_i \), so \(U \) is sufficient.

\(^1\) Suppose \(X \sim \chi^2_{\nu} \). Then \(X^{-1} \sim \chi^{-2}_{\nu} \).

\(^2\) See handout on sufficiency. The Bernoulli class of distributions can be shown to be a member of the exponential family of distributions.
b.
We have $U = (k_1^2, (k_2 + \cdots + k_n)^2)$. Then $K = \sqrt{U_1} + \sqrt{U_2}$ so U is sufficient.

c.
We have $U = \frac{K}{n}$. Then $K = nU$ so U is sufficient.

d.
We have $U = (\frac{K}{n}, k_2^2 + \cdots + k_n^2)$. Then $K = nU_1$ so U is sufficient.

e.
We have $U = k_1^2 + \cdots + k_n^2$. Here $K = U$ so U is sufficient.

6. We have an estimator $T(X)$ that has finite variance V_T and is unbiased for θ, so its mean squared error is V_T. Denote a Stein shrinkage estimator by $S_\lambda(X) = (1 - \lambda)T(X) + \lambda \theta$. Note that in general $S_\lambda(X)$ will be biased for θ. Denote the mean squared error of $S_\lambda(X)$ by $M(\lambda)$:

$$M(\lambda) = (1 - \lambda)^2 V_T + \lambda^2 (17 - \theta)^2.$$

Its derivative is given by

$$M'(\lambda) = -2(1 - \lambda)V_T + 2\lambda(17 - \theta)^2.$$

For any value of θ $M'(\lambda) < 0$ whenever $\lambda < \frac{V_T}{(17 - \theta)^2 + V_T} \leq 1$. Since $S_0(X) = T(X)$, this shows that for λ strictly between zero and a small number less than or equal to 1 the MSE of $S_\lambda(X)$ will be uniformly smaller than that of $T(X)$. Whether $S_\lambda(X)$ or $T(X)$ is the better estimator naturally depends on the utility function of the investigator for the particular application at hand.