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Chapter 4. Limit Theorems in Statistics

1. Sequences of Random Variables

1,Y2...,Yn,... . These random

variables are all functions of the same state of Nature s, but may depend on different

1.1 Consider a sequence of random variables Y

parts of s. The joint distribution (CDF) of a finite subsequence (Yl’""Yn)’ denoted

by FYl,DﬂYn(yl""’yn)’ is defined as the probability of a state of nature such that

all of the inequalities Y1 < yl""’Yn < Yp hold. The random variables in the
sequence are independent if for every finite sub-sequence YooYy the joint CDF

factors:

F (Y1:-0¥n) = Fy (VLB (Y,)-
Y Y Y1 v, V1 v In

1.2 There are several possible concepts for the limit of a sequence of random

variables, | im Yn = YO. Since the Yn are functions of states of nature, these limit
Nn-00

concepts will correspond to different ways of defining limits of functions. Panel (a)
of Figure 1 graphs Yn and Y0 as functions of the state of nature; Wn is the set of
states of Nature for which Yo(s) and Yn(s) differ by more than € > 0. Panel (b)
graphs the CDF’s of Y0 and Yn. Note that these CDF’s are rotated so the probability
iIs on the horizontal axis. The limit definitions below will be discussed using this

figure.
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FIGURE 1. Convergence Concepts
(a) (b)
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1.3 Y, converges in probability to Y, denoted Y 2, Y, if for each & > 0,

lim Prob(DYn -Y U= €) = 0. In Figure 1, W is the set of states of nature for which
N->00

OY, (W) - Yow)d > & Y, N Y, means Prob(W) - 0.

1.4 Y, converges almost surely to Yo denoted Yn 2, Yo if for each € > 0,

lim Prob(sup 0OY _,- Y_[0>¢€) = 0. For W_ defined in Figure 1, the set of states of
: n "o n
n-00 n'=n
nature for which DYn,(w) - YO(W)D > ¢ forsomen >nis U W, Then Y 2, Y, means
n'=n

Prob( U Wn') > 0. An implication of almost sure convergence is lim Yn(s) = Yo(s) for
n'n
almost all w (i.e., except for a set of states of nature of probability zero); this is
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not an implication of Y _ BN Yo

15 Yn converges in order-p mean (also called convergence in i 0 norm, or
convergence in Lp space) to Y0 if im EDYn - YODp = 0. For p = 2, this is called
n->c0

convergence in quadratic mean. In Figure 1(a), the p-order mean corresponds to
raising DYn(s) - YO(S)D to power p, weighting by the probability measure P(dw), and
integrating; the resulting sequence of scalars has limit zero as n > o when this type

of convergence holds.

1.6 Yn converges in distribution to YO, denoted Yn LN YO, if the CDF of Yn
converges to the CDF of Y0 at each continuity point of YO; ie., if FY IS continuous
0

aty, then Iim Fy, (y) = Fy (y). In Figure 1(b), this means that F,, converges to the
N> 'n Yo Yn

function FY point by point, except at jumps in FY . If A is an open set, then
0 0

Yn LN Y0 implies |im inf FY (A) =2 FY (A); see Billingsley, Convergence of
Nso0 N'2n n 0]

Probability Measures, Theorem 2.1. Convergence in distribution is also called weak

convergence in the space of distribution functions.

1.7 The relationships between different types of convergence are summarized in
Figure 2. Explanations and examples follow. On first reading, skim Sections 1.8-

1.18, and skip the proofs.
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FIGURE 2. Relationships Between Stochastic Limits

(Section numbers for details are given in parentheses)
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as p - d
Yn-YOHO =0 Yn-YOHO 0 —1 Yn YOHO

(1.10)
d
Y, — ¢ (a constant) ——0 Y. P,c

(1.11)

Y, -5 Y, O—0 Eg(Y,) — Eg(Y,) for all bounded continuous g

(1.12)

ECY, - YODp — 0 (for some p > 0) —0 Y Yo

(1.13)

EOY, - Y, P <M (alln&yY, Y, —0 EO¥, -Y,050for0<A<p

(o]
(1.14)

p as -
Yn LN Y0 =0 Yn = Y0 for some subsequence Ny k=12,.

k
(1.15)

Y EOV,, - YODp < +oo (for some p > 0) —0 Y *5Y
n

(0]

(1.16)
d p d
YnHYO&Zn-YnHO =0 ZnHY0

(1.17)

p p H
Yo — Y, =0 g(Yn) — g(YO) for all continuous g

(1.18)

d d .
Yn — Y0 =0 g(Yn) — g(YO) for all continuous ¢
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1.8 Y, %5 Y implies Prob(W ) < Prob( U W,_) - 0, and hence Y %Y
n'=n

o
However, one can construct examples where Prob(Wn) > 0 but U Wn’ Is the set of states
n'n
of Nature which has probability one. Hence Y LN Y, does not imply Y =, Y, To
illustrate, take the universe of states of nature to be the points on the unit circle
with uniform probability, take the W, to be successive arcs of length 1/n, and take Yn
to be 1 on Wn’ 0 otherwise. Then Yn P, 0 since Pr(Yn # 0) = 1/n, but Yn fails to
converge almost surely to zero since the successive arcs wrap around the circle an

infinite number of times, and every s in the circle is in an infinite number of Wn'

1.9 Suppose Yn SN YO. It is a good exercise in manipulation of probabilities
of events to show that Yn LN YO. Given € > 0, define Wn as before to be the set of

states of Nature where DYn(s) - YO(S)D > ¢. Given y, define An’ B_, and C0 to be,

01
respectively, the states of Nature with YoSVY, Yy sY-¢g and Yosy te Then
B0 O AnDWn (i.e., Yo(s) <y - € implies either Yn(s) <y or DYO(S) - Yn(s)D > ¢) and
An U CODWn (i.e., Yn(s) <y implies Yo(s) <y+eor DYO(S) - Yn(s)D > €). Hence, for
n large enough so Prob(Wn) < g,

FYO(y-a) = Prob(BO) < Prob(An) + Prob(Wn) < FYn(y) + €

and
FYn(y) = Prob(An) < Prob(Co) + Prob(Wn) < FYO(Y+8) + g,
implying FY (y-§) -e< |im FY (y) FY (y+e) + €. If y is a continuity point of YO,
0 nsco N o]

then FYO(y-a) and FYO(y+s) approach FYO(y) as € > 0, implying |im FYn(y) = FYO(y).

N-oo

This establishes that Y LN Y,

Convergence in distribution of Yn to Yo does not alone imply that Yn and Y0 are
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close to each other as n — . For example, if Y and Y, are independently
identically distributed (i.i.d.) standard normal, then Yn LN Y0 trivially, but
clearly not Y | P, Y, since Y - Y is normal with variance 2, and LY . - Y O > & with

a positive, constant probability.

1.10 Convergence in distribution and convergence in probability to a constant
are equivalent. If Y % c constant, then Y| 9, ¢ as a special case of (1.9) above.

Conversely, Yn 4, ¢ constant means FY (y) » FC(y) at continuity points, where FC(y) =
n
0 fory < c and FC(y) =1 fory =c. Then given € > 0, Prob(DYn -c>¢) = Fy (c-g)
n
+ 1 - F, (cte) - 0, so Y, P, ¢. This result implies particularly that the
n

statements Y_ - Y, -2 0 and Y, - Y, 4, 0 are equivalent, and YooY, 95 0 is not

. d
equivalent to Yn — YO.

1.11 The condition that convergence in distribution is equivalent to convergence
of expectations of all bounded continuous functions is a fundamental mathematical

result called the Helly-Bray-Alexandroff theorem.

1.12 A Chebyshev-like inequality is obtained by noting for a random variable Z

that

EzcP = szPr(2)dz 2 f ePt(z)dz = €P Prob(tz0 > ¢),
[zite

or Prob([IzO > ¢) < ErzPreP. (When p = 2, this is the conventional Chebyshev

inequality. When p =1, one has Prob([Z[0> €) < E[ZZ[Je.) TakingZ = Yn - YO, one has
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i B} Py B} Y
lim Prob(DYn YOD>e)se lim EDYn YOD.

n-»>oo n-oo
Hence, convergence in p-mean (for any p > 0) implies convergence in probability. An
example shows, however, that convergence almost surely or in probability does not
necessarily imply convergence in p-mean. Suppose Yn is discrete with fY 0)=1- n
n
and f,, € = n? Then Y, %5 0 since
n
Prob(Y,, # 0 for any n" > n) < Z fy (en') < 1/n,
n>n N

but EDYnDp = ePn? = +o0 for any p > 0.

1.13 Adding a condition of a uniformly bounded p-order mean EDYnDp < M to
convergence in probability Yn SN Y0 yields the result that for 0 < A < p, EDYOER‘
exists and EDYnER‘ — EDYOER‘. This result can be restated as "the moments of the limit
equal the limit of the moments" for moments of order A less than p. Replacing Yn by
Yn - Y0 and Y0 by O gives the result in Figure 2.

To prove this result, we will find useful the following property of moments:
EDYD)‘ < (EDYDp))‘/p for 0 < A < p. This follows from Holder's inequality (Rao, Linear
Statistical Models, p. 55, 149), which states

r1/r

EOUVO < (ECUC) s

1 1

(EEIVDS) forrrs>0andr~ +s~ =1,

by taking U = DYDA V =1, and r = p/A. To show that EDYOER‘ exists for 0 < A < p,

note that EDYnEP < M implies, by the property of moments above, that
W
MMP s v O = ijD*fYn(y)dy > [ gty o)y

where g(y) = min (Dy[f‘,k)‘). Then, in particular,
Kk
M > JDprfY (y)dy — kPProb(0v 0 > k).
k n
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The Helly-Bray theorem implies, since g is continuous, that

Kk
A
Jowty dy — oty mdy = [y, @)dy + KProb(Y, 0> K).
n 0 0

-k

Kk

Hence, M 2 JDprfY (y)dy for all k, implying that EDYODp < M exists, and given € > 0,
k Y

there exists k such that I DprfY (y)dy < e. Also,
Oy>k 0

ey, O - Eg(Y, )0 < | My, ()dy < KNP [ oPry oy < MKMP.
Oy>k n Oy>k n
Then, for k and n sufficiently large, Mk)"p < ¢ and

ceDy, MEDY CMosCEDY, (MEg(Y, ) +EEG(Y )-Eg(Y )+ CEQ(Y  -EDY, (M < 3e.

This proves that EDYnD)‘ — EDYOD)‘.
An example shows that EDZnD)‘ — 0 for A <p does not imply EDZnEP bounded. Take
_ . _ . _ log(n) _ log(n)

Zn discrete with fzn(O) =1 —n and fzn(n) = =5 Then for A < 1,

1

ez, 0 = lognyn'™ — o0, but E0Z, % = log(n) — + w.

1.14 |If Yn Py YO, then Prob(Wn) — 0. Choose a subsequence Ny such that

Prob(W, ) < 2K Then Prob( U W, ) < Z Prob(W,, ) < Z oK = ok implying
K K>k K K>k K sk
Y. &7,

1.15 By the Chebyshev-like inequality in (1.12), Prob( U Wn,) < Z Prob(Wn,) <
n'=n n'=n
Z EDYn’ - YODplsp. If this right-hand expression is finite, then it goes to zero as
n'n
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n — o implying Y 2, Yo The example at the end of (1.12) shows that almost sure
convergence does not imply convergence in p-mean. Also, the example mentioned in 1.8
which has convergence in probability but not almost sure convergence can be

constructed to have p-mean convergence but not almost sure convergence.

1.16 A result which is very useful in applied work is that if two random
variables Yn and Z, have a difference which converges in probability to zero, and if
Y, converges in distribution to Yo then Z, LN Yo also. In this case, Y and Z, are
termed asymptotically equivalent. The argument demonstrating this result is similar

to that for 1.9. Let y be a continuity point of FY and define the following events:
0

A = {stZ(s) <y} B, = {sY(s) sy - &},

Ch~= {sDYn(s) <y + g, D, = {sO DYn(s) - Zn(s)D > g}
Then An U CnDDn and Bn U AnDDn, implying

FYn(y-a) - Prob(Dn) < an(y) < FYn(y+s) + Prob(Dn).

Given & > 0, one can choose € > 0 such that y-¢ and y+& are continuity points of Fy
0
and FY (y+e) - FY (y-¢) < &/3. Then one can choose n sufficiently large so that
0 0
Prob(D,) < &/3, OF,, (y+¢) - Fy, (y+&) < d/3 and [F,, (y+€) - F, (y+€) < d/3. Then
n i Yo Yn Yo

OF5 (y) - Fy (y)O < 0.
Zn Y0

1.17 A useful property of convergence in probability is that

Y, N Y, =0 9(Y,) LN g(Y,) for any continuous function g.

If A denotes the support of Yo then this result holds if g is continuous on a

neighborhood of A; i.e., given € > 0 and y[A, there exists & > 0 such that [y'-y(1< &
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=0 [g(y") - g(y)d < &. (Note in this definition that y' is not required to be in A.)
This results holds for vectors of random variables as well, and specializes to the
H p p
rules that if Yin — Y10 and Yon — Your then
(a) YanZn - Y10w20
(b) Y

+Y +Y

1n 2n - Y10 20

(c) If (Prob(0Y,,0 < ) = 0 for some & > 0, then Y, /Y, 2, Y10Yo0:
These results obviously continue to hold when Y10 and/or Y20 are constants.

Demonstrating the result g(Yn) 2, g(YO) IS a good exercise in advanced calculus.
Given € > 0, choose M such that Prob(DYOD > M) < ¢/2, and define AM to be the set of
points in A satisfying [yl < M. Then A is closed and bounded. The mathematical
properties of continuous functions on closed and bounded sets imply there exists d > 0
such that for all y [ AM, Oy'-yO < & =0 [g(y') - g(y)d < . Choose No such that for
n>ng,, Prob(DYn - YOD > Q) <¢/2. Then Prob(Dg(Yn) - g(YO)D >¢€) < Prob(DYOD > M or

oY, - Y 0> 9 <&

1.18 The preceding result has an analog for convergence in distribution:

Y, -5 Yo =0 d(Y,) -5 g(Y,) for any continuous function g

This result holds so long as g is continuous on a neighborhood of the support of Yo'
It also holds for vectors of random variables. To illustrate the result, suppose
Yn LN Yo’ with Y0 standard normal. Then Yg is chi-squared, implying that Yﬁ
converges in distribution to a chi-squared random variable.

The result g(Yn) LN g(YO) IS now proved. Let Se be the open set of points a
distance less than € from the support of YO; Then g is continuous on 83‘g for some
e > 0. From mathematical analysis, there is a continuous function A(y) that equals 1

fory O Se and O for y [ SZs' Then g(y) = g(y)A(y) is continuous for all y. Let Fn
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be the CDF of Y, F the CDF of Y, G the CDF of Z = §(Yn), and G the CDF of
Z = g(Y,)
Eznh(Zn) = EYnh(ﬁ(Yn))HEYOh(ﬁ(YO))EEZh(Z) since h(g(y)) is a bounded continuous

g(YO). By 1.11, for any bounded continuous function h,

function and Yn LN Yo' Then, Zn 4, 7. But for any € > 0, Prob(D{j(Yn)-g(Yn)Ebe’) <
Prob(Yn U Se) =1 - FYn(Se) and, from 1.8, lim sup FYn(Se) > FYO(SS) = 1. Then

§(Yn) - g(Yn) 2, 0, implying by 1.16 that g(Yn) LN g(Yo).

1.19 Convergence properties are sometimes summarized in a notation called Op([ﬂ
and op([ﬂ which is very convenient for manipulation. (Sometimes too convenient; it is
easy to get careless and make mistakes using this calculus.) The definition of op([ﬂ
is Y Y, O=0Y, = Yo*+0,(1), and Ny -Y) H00=0 VY, -Y, = op(no‘). Thus
op([ﬂ is a notation for convergence in probability to zero of a suitably normalized
sequence of random variables.

The notation Y, = Op(l) is defined to mean that given € > 0, there exists a large
M (not depending on n) such that Prob(DYnD > M) < g for all n. A sequence with this
property is called stochastically bounded. An abbreviated list of rules for op and Op
IS given in Figure 3.

A sequence that is convergent in distribution is stochastically bounded, but the
reverse is not necessarily true. We first show convergence in distribution implies
stochastic boundedness: If Yn LN YO, then one can find M and n_ such that £+ M are

(0]

continuity points of Y _, Prob(ClY .0 < M) > 1-¢/2,andforn>n_,F,, andF,, evaluated
0] 0] 0] Yn Y0

at M or -M respectively differ by at most €/4. Then Prob(DYnD > M) < ¢ forn> Ny
This implies Yo = Op(l). On the other hand, one can have Y, = Op(l) without having

convergence to any distribution (e.g., consider Y, =0 for n odd and Yn standard
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normal for n even). The notation Yn = Op(na) means n'aYn = Op(l).

Figure 3. Rules for Op([ﬂ and op([ﬂ

Definition: Yn
Definition: Yn

op(na) 0-=0 Prob(Dn'aYnEDe) > 0 for each € > 0.

Op(na) O =0 for each € > 0, there exists M > 0
such that Prob(Dn'uYnEDM) < ¢ forall n

1. Y, = op(no‘) —0 Y, = op(no‘)
2. Y, = op(na) & B>a=0 Yn = op(nB)
3 Y=o ep>a—0 Y, = op(nB)

4. Y _ = op(na) & 7, = op(nB) =0 Y.z, = Op(na+B)

5. Y, = 0,0% &7, Op(nB) —0 VY, 2, = op(n‘”B)

6. Y, =0, &z, = op(nB) —0vY,Z, = op(nOH'B)

7. Y, =0,0" &z, = op(nB) &Bza—0 Y +2 = op(nB)

8. Y, =0, &z, = Op(nB) &Bza—0 Y +2 = Op(nB)
9. Y, =0, &z, = op(nB) &B>a—0 Y +2z = op(nB)

10. Y, = 00" &z, = op(nB) &B<a—0 Y, +2 =0,%

11. Y, = op(no‘) &7, op(no‘) —0 Y, +Z = op(no‘)

As an illustration of 1.19, we prove the very useful rule 6:

n'aYn stochastically bounded & n'BZn P50 =0 n'a'BYnZn 2,0
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Given e >0, Y = Op(na) —0 OM > 0 such that Prob(Dn'aYnD > M) < €/2. Next

n
Prob(Dn'a'BYnZnD >€) < Prob(Dn'aYnD > M) + Prob(Dn'BZnD > /M) < €. Demonstration of

Z = op(nB) implies [ n, such that for n > N Prob(Dn'BZnD > ¢/M) < g/2. Hence
the remaining rules is left as an exercise.

2. Laws of Large Numbers

2.1 Consider a sequence of random variables Y Y2,...,Yn,... and a corresponding

11

n
sequence of averages Xn = %ZYi. Laws of large numbers are concerned with the
i=1

conditions under which the X, converge to a constant, either in probability (weak

laws) or almost surely (strong laws).

2.2 Figure 4 lists a sequence of laws of large numbers. The case of independent
identically distributed (i.i.d.) random variables yields the strongest result
(Kolmogorov 1). With additional conditions it is possible to get a WLLN even for
correlated variable provided the correlations of distant random variables approach
zero sufficiently rapidly.

To illustrate the basis of laws of large numbers, the proofs of the first three
WLLN will be outlined. Consider first Khinchine's theorem. Let Y(t) be the
characteristic function of Yq- Then X has characteristic function lp(t/n)n. Since
EY, exists, Y has a Taylor's expansion Y(t) = 1 + @'(At)t, where 0 < A < 1. Then
lp(t/n)n =1+ %w,()\%)]n_ But @'(At/n) — Y'(0) = 1. There is a mathematical result
stating that when a sequence of scalars o has a limit, then

[1+an/n]n — exp(lim an). Then qJ(t/n)n — e'M But this is the characteristic

function of a constant random variable y, implying X 4, n, and hence Xq 5.
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n
Figure 4. Laws of Large Numbers for Xn = % Z Yi
i=1

WEAK LAWS (WLLN)
1. (Khinchine) If the Yn are i.i.d., and E Yn = M, then Xn P

2. (Chebyshev) If the Y, are uncorrelated with E Y, = H and

n
2 _ 2 ik U A 2 _ p
E(Yn - W= o, satisfying |im — Zci = 0, then Xn — M
N-co N~ . °
=1
_ 2 _ 2
3. If the Yn have E Yn =\, E(Yn-u) =0, and DE(Yn-u)(Ym-u)D <
n 00

. . 1 2 _ 2 0
Prr-mCnCm With 1im = ) 65 = 0 and ) p7 < +w, then X - p
Moo N i=0 i=0

STRONG LAWS (SLLN)

1. (Kolmogorov 1) If the Yn are i.i.d., and E Yn = W, then Xn |

2. (Kolmogorov II) If the Yn are independent, E Yn = M, and
[00]
2 _ 2 i 2,2 as
E(Y,W)* = o, satisfying Z or/n® < +oo, then X =5 1
n=1

3. (Kolmogorov Ill) If the Yn are uncorrelated, E Yn = M, and

(00]
E(y,- W) = oﬁ satisfying Z (log n)zoﬁ/n2 < + o, then X_ T}

n=1
2

4. (Serfling) If the Yn have E Yn =\, E(Yn-u)2 =0 and
o 2
- log(i)| -2
DE(Yn-u)(Ym-u)D < P-m®nCm with Z [—I—] 0§ < too and
i=1

[e0]

Zp% < +oo, then X %5 1
i=0
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Next consider Chebyshev's theorem. One has E(Xn-u)2 — Z c . If this
n? i=1
approaches zero, then Chebyshev’s inequality implies Xn 5.

Finally, consider version 3 of the WLLN. Chebyshev's inequality states that

n n
P(CX -p0 < €) < E(X ) 212 < —2—2 Z Zo iPrio An application of the Cauchy-
€ i=1 =1
Schwartz inequality yields
n n n 1/2 n n 1/2
1 1 2 1 2 2
;zz ) 60 iPoi-jo = ;zzci ;zz zojpDi-jD
i=1 j=1 I= i=1 j=1
n 1/2 n 1/2 n
2
1 2 M _ 1 2
<|3% ) _ZZO = M| Jof| —0
n“ .= n® 5 n® .5
n 00
where ) péi-jD <2} pi = M2 < +oo.
i=1 k=0

3. Central Limit Theorems

4.1 Consider a sequence of random variables YaYp with zero means, and the

associated sequence of normalized averages Zn = ZY Central limit theorems

ﬁ |

(CLT) are concerned with conditions under which the Zn converge in distribution to a

normal random variable Zo: Figure 5 lists several basic central limit theorems.
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108
n
Figure 5. Central Limit Theorems for Z_ = 1 Z Y.
no . [
=1
. . _ 2 _ 2
1. (Lindeberg-Levy) Yn Li.d., EYn =0, EYn = 0” < +o
d 2
= Z,— Z, ~ N(0,07)
2. (Lindeberg-Feller) Yn independent, EYn =0, EY% = oﬁ,
n
Bﬁ = ZO‘% — +00, cﬁ/Bﬁ > 0, and for £ > 0,
i=1
n 5 BZ
1 f d L d _ - n
EZZ J yyi(y)yﬁo_m Z, = Zg ~ NO, | im )
ni=1 DyD>an
3. (Corollary to Lindeberg-Feller) Zn s Z0 ~ N(O,cr(z)) if the Yn are
n
independent, EY, = 0, EY% = oﬁ, % Z oﬁ — og < +00, and one of the
i=1
following conditions holds:
n
) q/2
() for some q > 2, Z EDYiDq/[ Zci] —0
i=1 i=1
(i) for some q > 2, EDYnoan is uniformly bounded, all n
n n
Gi) tim 1im% ¥ f y?fy (y)dy > 0 and § o3 5 0
ksoo nsoo N E i L
i=1 EIyD>kcri =1
4. (Ibragimov-Linnik) Yn stationary and strongly mixing with mixing
coefficients a(n), EY, = 0, EY% - o2 EDYan < +o and
[00] [00]
1-2/q d 2
) a(n) < +w for some q > 2 —0 Z — Z_ ~ N(0,0°+2 ) EY;Y,,)
n=1 i=1
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Generally, stronger conditions are needed for CLT than were required for laws of
large numbers. The most straightforward results are obtained for independent and
identically distributed (iid) random variables. When the variables are not
independent, one must impose conditions that limit the degree of dependence in order
to get a CLT. One such result is the Ibragimov-Linnik CLT in the table. A sequence

Y  is stationary if the vector (Yl""’Ym) and the vector (Yi’ ) have the same

n i+m

joint distribution, for every m and i. An implication of stationarity is that the Y;
all have the same mean and the same variance (if they exist). Recall the definition
of strong mixing from Chap. 3. Let z' be the product o-field of events that use only

information up through time t. Let 2t denote the product o-field of events that use

t+n
only information from time t+n on. The Y- are strong mixing if there exists a scalar

a(n) satisfying I |m a(n) = 0 such that OP(anB) - P(a)P(B)T < a(n) for all o O z and

B O3 they are uniform mixing if OP(alB) - P(A)DJ < @n) for all o O z and

t+n’

B [ Et_'_n

Y(n)P(a)P(B) and rI]im Y(n) = 0. There are links between the mixing conditions and
->00

and rI]im @n) = 0. They are strict mixing if OP(anB) - P(A)PB)I <
00

bounds on correlations between events that are remote in time:

(1) Strict mixing =0 Uniform mixing =0 Strong mixing.

(2) If the Y- are uniform mixing with EYi = 0 and EY% = 0% < +oo, then

CEY.Y., [O< Zlcp(n)o o.

I 1+Nn I-1+n°

(3) If the Y; are strong mixing with EY, =0 and EDYiDd < +oo for some d > 2, then

1- 2/d
DEY|Y|+nD 8a(n) O00isn-

(4) If there exists a sequence p; with Eim p; =0 such that E(U-EU)(W-EW)O <
00

an(E(U-EU)Z)(E(W-EW)Z) for all bounded continuous functions U = g(Yl’""Yt) and
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W = h(Yt+n""’Yt+n+m) and all t, n, m, then the Yi are strict mixing.

Only a proof of the Lindeberg-Levy central limit theorem (CLT) will be outlined
here. The approach is to show that the characteristic function of Zn converges for
each argument to the characteristic function of a normal. The CLT then follows from

the limit properties of characteristic functions (Chap. 3).

Let Y(t) be the cf of Yl' Then Zn has cf lp(t/\/ﬁ)n. Since EY1 =0 and EY%: 02,
Y(t) has a Taylor's expansion Y(t) = [1 + qJ"()\t)t2/2], where 0 < A < 1 and (" is
continuous with "(0) = -02. Then
"(A\tVR)t2 219\lim w" o2t
oy = [1 + W' (Atvin) N, e(t72)Im §AUVR) _ o-0t2

2n

Thus, the cf of Zn converges for each t to the cf of ZO~ N(O,O’Z).

4. Extensions of Limit Theorems

4.1. Limit theorems can be extended in several directions: (1) obtaining results
for weighted sums of random variables, (2) sharpening the rate of convergence to the
limit for "well-behaved” random variables, and (3) establishing "uniform” laws that
apply to random functions. In addition, there a variety of alternatives to the cases
given above where independence assumptions are relaxed. The first extension gives
limit theorems for random variables weighted by other (non-random) variables, a
situation that occurs often in econometrics. The second extension provides tools that
allow us to bound the probability of large deviations of random sums. This is of
direct interest as a sharper version of a Chebychev-type inequality, and also useful
in obtaining further results. To introduce uniform laws, first define a random

function (or stochastic process) y = Y(0,s) that maps a state of Nature s and a real
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variable (or vector of variables) 6 into the real line. This may also be written,
suppressing the dependence on s, as Y(0). Note that Y(LWw) is a realization of the
random function, and is itself an ordinary non-random function of 6. For each value
of 8, Y(6,) is an ordinary random variable. A uniform law is one that bounds sums of
random functions uniformly for all arguments 6. For example, a uniform WLLN would say
Lim P(sup D% Z Yi(e,[ﬂD > ¢) = 0. Uniform laws play an important role in establishing
N0 i<n

the properties of statistical estimators that are nonlinear functions of the data,
such as maximum likelihood estimates.

4.2 Consider a doubly indexed array of constants & defined for 1 < i < n and
n

n = 1,2,..., and weighted sums of the form Xn = Z ainYi' If the Yi are independent,
i=1

what are the limiting properties of Xn? The way arrays like & typically arise is

n
that there are some weighting constants C;» and either a, = Ci/ZCj or
=1

n

_ 2
a. = ¢l ch
=1

to the standard limit theorems.

If ¢, = 1 for all i, then a,_ = n“or n?, respectively, leading

Assume the Yi are independently identically distributed with mean zero. If the
n

a satisfy | im Z Oa, O0=0and |im max Oa;, 0= 0, then X_ -5 0. This is a weighted
in - in n
Nn->o0 =1 N> | <N

version of Khinchine’s WLLN, and is proved in the same way. Let {(t) be the second

characteristic function of Yl' From the properties of characteristic functions we

have ('(0) = 0 and a Taylor's expansion {(t) = tld'(At) for some O < A < 1. The
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second characteristic function of Xn is then

n
V) = ) At A3yt
=1
n n
implying Oy(t)O < ZElamtEl A D0 < DtDE(rnax '\ |nt)D)DZ Oa, O
=1 =n =1

n

Then lim Z Ela D < o and lim (max Ela D) = 0 imply y(t) — 0 for each t, and hence
i—1 i <n

Xn converges in distribution, hence in probability, to O.

Next assume the Yi are independently identically distributed with mean zero and

n

variance 02 < o, [im (max ElamD) =0, and lim Z a = 1. Then Xn converges in
nsco |<n Nn-oo i=1

distribution to a normal random variable with mean zero and variance 02.

The proof of this proposition parallels the Lindeberg-Levy CLT proof. The second

characteristic function of X, now has the Taylor's expansion

n

YO = W20 § a2+ [0 a ol
[ i=1

222_

The limit assumptions imply y(t) + (1/2)02t2 iIs bounded in magnitude by

n
T X' o D+o2las (212 < Za t2/2| Enax(C"(\, & D+0°0 — 0,
i=1 '=n

implying that for each t, y(t) converges to the characteristic function of a normal

with mean 0 and variance 02.
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4.3 Chebyshev bounds give an easy, but crude, bound on the probability in the

00

tail of a density: for € > 0, Prob(Y >¢) < [ (DyEVs)pr(y)dy < EYDYDp/sp. For random
€

variables with well behaved tails, sharper bounds can be found, and used in turn to

get sharper limit theorems. First, suppose independent identically distributed random
n

variables Yi with zero mean and the bound DYiD < 1, and Xn = % Z Yi' Chebyshev’s
i=1

inequality gives P(Xn > €) < 1/n82, since var(Yi) < 1. However, a better inequality

2
due to Hoeffding states that Prob(Xn > €) < e e /2. This and similar bounds can be

found in Pollard, Convergence of Stochastic Processes, and Shorak and Wellner,

Empirical Processes. If the Yi are not necessarily bounded, but have a proper moment

-tevn +
Tevin K, where 1T and K

generating function, one can get the inequality P(Xn >¢g)<e
are positive constants determined by the distribution of Yi'

To illustrate the use of the last inequality, note that

o)
(o0} -
P(sup (X0 > ¢) <} 26 TEITK o 1 2 2Ky, < grtevinT)e NI o,
i=n . n-1
i=n

This implies X %, 0, a SLLN.

To show the inequality P(X | > €) < o TEVNHK

€

, first note for any random variable X

that P(X > ¢) < inf e
t>0

mY(t) < o for 0t < 21, then mY(t) =1+ mY"()\t)t2/2 for some [AD < 1, for each

tmx(t), where My is the mgf of X. Second, if Yi has mgf

(0 < 2t, from the properties of the moment generating function. Define

M = max my,"(t); then my(t) <1 + Mt2/2 for (X0 < t. The mgf of X _ then satisfies
Y Y n
Ut <t
my(® < (1 + M%72n%)" for 0 < 1. Hence,

PX, > ¢ < inf L + MtP2n?)"
O<t<t
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|\/|T2/2

Taking t = n and using the inequality (1+MT2/2n)n <e gives the claimed result

with Kk = |\/|T2/2.

4.4 This section states a uniform SLLN for random functions on a subset © of a
Euclidean space rRA. Let (S,F,P) denote a probability space. Define a random function
as a mapping Y from ©xS into R with the property that for each 6 O ©, Y(6,0} is
measurable with respect to (S,F,P). Note that Y(6,0l is simply a random variable, and
that Y(L5) is simply a function of 8 O ©. Usually, the dependence of Y on the state
of nature is suppressed, and we simply write Y(B8). A random function is also called a
stochastic process, and Y([5) is termed a realization of this process. A few
definitions are needed:

A measurable random function Y(6,0] is separable if there exists a countable
dense subset @0 of ® and a set A OO F with P(A) = 1 such that foreachs 0 Aand 6 0 ©,

there exists a sequence ei O @0 such that lim Y(ei,s) = Y(6,s).
100

A measurable random function Y(6,0l is almost surely continuous at eo 0 © if for
each € > 0, there exist measurable events Ak(s,eo) which contain all states of Nature

s such that sup  [IY(6,s) - Y(GOS)D > ¢ and which converge monotonically as k — o
[0-6,k1/k

to a set A*(s,eo) that has probability zero.

Finite-dimensional Euclidean spaces contain countable dense subsets (e.g., the
points with rational coordinates), and any closed and bounded subset of a space with
this property also contains a countable dense subset. Then, the main restriction
imposed by separability when © is closed and bounded is that Y is regular enough so
that its values everywhere are determined by its values on a countable dense subset.

This is a much weaker condition than continuity, as we require only that some sequence
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yield the limiting value, not all sequences. Furthermore, we can handle a countable
number of isolated points of discontinuity simply by including them in @0. Often in
the theory of stochastic processes, separability is assumed by construction: a random
function Y’(6,s) which may not be separable is replaced by an "equivalent” version
Y(®,s) = limsup Y'(6,s) for 8 O OO.
6'00,&0'-6

The condition of almost sure continuity allows the modulus of continuity to vary
with state of Nature, so there is not necessarily a fixed neighborhood of 90 on which
the function does not vary by more than g, independent of the state of Nature. For
example, the function Y(6,s) = 6° defined for 8 O [0,1] and s distributed uniformly on
the unit interval is continuous at 6 = 0 for every s, but Ak(s,O) = (O,ilngkﬁ) has
positive probability for all k. The exceptional sets Ak(s,e) can vary with 6, and
there is no requirement that there be a set of states of Nature with probability one,
or for that matter with positive probability, where Y(6,s) is continuous for all 6.
As a result, a function can be pointwise almost surely continuous, and still always
have discontinuities. For example, assuming 8 [ [0,1] and s distributed uniformly on
the unit interval, and defining Y(8,s) = 1 if 8 = s and Y(8,s) = 0 otherwise gives a
function that always has a discontinuity, but is nevertheless almost surely
continuous. For closed and bounded ©, which always contains a countable dense set,
almost sure continuity implies separability.  The following result establishes a

uniform SLLN for random functions that satisfy almost sure continuity.

Lemma. Assume Yi(e) are independent identically distributed random functions
with a finite mean Q(0) for 6 in a closed bounded set © [1 rRd . Assume that for each

6 O ©, Yi([jJ is almost surely continuous at 6. Assume there exists a positive
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envelope random variable Z satisfying Z = max DYi(e)D and E Z < +w. Then,

n
xn(e) = % ZYi(G) satisfies sup DXn(e) - P(B)0 =5 0.
i—1 00O

Proof: We follow an argument of Tauchen (1985). Let (S,F,P) be the underlying

probability space, and write the random function Yi(e,s) to make its dependence on the

underlying state of Nature explicit. We have y(0) = IY(G,S)P(dS). Define u(eo,s,k) =
S

sup  [Y(6,s) - Y(GO,S)D. Let € > 0 be given. Let Ak(elz,eo) be the measurable
[0-6,[x1/k

set given in the definition of almost sure continuity, and note that for k = k(s/Z,eo)

sufficiently large, the probability of Ak(slz,eo) is less than €/40(E Z). Then,

Eu(eo,Ek) < J u(eo,s,k)P(ds) + J u(eo,s,k)P(ds)
A(E/2,8,) A (€12,8,)°

< j 2[Z(s)P(ds) + j (e/2)P(ds) < ¢ .
A(el2,8,) A (€12,8,)°

Let B(GO) be an open ball of radius 1/k(s/2,80) about 90. These balls constructed for
each 90 [0 © cover the compact set ©, and it is therefore possible to extract a finite

subcovering of balls B(Gj) with centers at points ej for j = 1,..J. Let

U

J = Eu(ej,Ek(SIZ,ej)) <e For6 [ B(Gj), p(0) - lp(ej)D < “j < & Then

sup DXn(e) - OO0 < sup DXn(e) - xn(ej) - ujD + “j
eDB(ej) e0B(6;)

+ X (6) - w(®)0 + sup [W(6) - w(6)U
J J 601B(8) J
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n
1
=1
Apply Kolmogorov’'s SLLN to each of the first and third terms to determine a sample

size nj such that

n
P(sup Ot T (B, Ck(©/2,8)) - W > ©) < &/23
n2n .5

and

P(sup Dxn(e.) - (6,)0 > ¢€) < €/27 .
n2n, J J

With probability at least 1 - €/J, sup sup Dxn(e) - YO0 < 4e.  Then, with
n=n; GDB(BJ-)

probability at least 1 - €, sup sup Dxn(e) - P(0)0 < 4¢, where ng = max(n,). o
n=ng 60O J

The construction in the proof of the lemma of a finite number of approximating
points can be reinterpreted as the construction of a finite family of functions, the
Y(ej,[ﬂ, with the approximation property that the expectation of the absolute
difference between Y(6,0] for any 8 and one of the members of this finite family is
less than €. Generalizations of the uniform SLLN above can be obtained by recognizing
that it is this approximation property that is critical, with a Ilimit on the how
rapidly the size of the approximating family can grow with sample size for a given ¢,

rather than continuity per se; see Pollard (1984).

4.5 Central limit theorems for sums of non-independent random variables are
critical for time-series analysis. The result of Ibragimov and Linnik given in Figure

5 is a typical and fairly strong representative of the variety of results that are
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available. To illustrate its use, consider a structure that appears frequently in
econometric time series analysis. Suppose Zi are i.i.d. random variables with three

finite moments and a zero mean, and that Yi are weighted averages of current and past

[00] [o0]
Zi; le., Yi = ZBij-i’ a moving average process. If Ze)‘J[BjZ < +oo for some
j=0 j=0
A > 0, so that the moving average weights eventually decay at an exponential rate,
then the Y; are stationary with three finite moments and mean zero, and one strong
mixing. This is sufficient for application of the Ibragimov-Linnik CLT.
In general, CLT are much messier to state and prove than the independent case.
One powerful tool is martingale theory, which exploits the property that when sums of
innovations that have conditional mean zero satisfy some boundedness properties, then

these sums behave much like sums of independent innovations. Martingale methods will

be presented in a future version of this book.



