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CHAPTER 6.  SIMULTANEOUS EQUATIONS

1. INTRODUCTION

Economic systems are usually described in terms of the behavior of various economic agents,
and the equilibrium that results when these behaviors are reconciled.  For example, the operation of
the market for Ph.D. economists might be described in terms of demand behavior, supply behavior,
and equilibrium levels of employment and wages.   The market clearing process feeds back wages
into the behavioral equations for demand and supply, creating simultaneous or joint determination
of the equilibrium quantities.  This causes econometric problems of correlation between explanatory
variables and disturbances in estimation of behavioral equations.

Example 1.  In the market for Ph.D. economists, let q = number employed, w = wage rate,
s = college enrollment, and m = the median income of lawyers.  Assume that all these variables are
in logs.  The behavioral, or structural, equation for demand in year t is

(1)                               qt = β11 + β12st + β13wt + �1t ;

this equation states that the demand for economists is determined by college enrollments and by the
wage rate for economists.  The behavioral equation for supply is

(2)                               qt = β21 + β22mt + β23wt + β24qt-1 + �2t ;

this equation states that the supply of economists is determined by the wage rate, the income of
lawyers, which represents the opportunity cost for students entering graduate school, and lagged
quantity supplied, which reflects the fact that the pool of available economists is a stock that adjusts
slowly to market innovations.  Equations (1) and (2) together define a structural simultaneous
equations system.  The disturbances �1t and �2t reflect the impact of various unmeasured factors on
demand and supply.  For this example, assume that they are uncorrelated over time.  Assume that
college enrollments st and lawyer salaries mt are exogenous; meaning that they are determined
outside this system, or functionally, that they are uncorrelated with the disturbances �1t and �2t.  Then,
(1) and (2) are a complete system for the determination of the two endogenous or dependent
variables qt and wt.  

Suppose you are interested in the parameters of the demand equation, and have data on the
variables appearing in (1) and (2).  How could you obtain good statistical estimates of the demand
equation parameters?  It is useful to think in terms of the “experiment” run by Nature, and the
experiment that you would ideally like to carry out to form the estimates.

Figure 1 shows the demand and supply curves corresponding to (1) and (2), with w and q
determined by market equilibrium.  Two years are shown, with solid curves in the first year and
dashed curves in the second.  The equilibrium wage and quantity are of course determined by the
condition that the market clear.  If both the demand and supply curves shift between periods due to
random disturbances, then the locus of equilibria will be a scatter of points (in this case, two) which
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will not in general lie along either the demand curve or the supply curve.  In the case illustrated, the
dotted line which passes through the two observed equilibria has a slope substantially different than
the demand curve.  If the disturbances mostly shift the demand curve and leave the supply curve
unchanged, then the equilibria will tend to map out the supply curve.  Only if the disturbances mostly
shift the supply curve and leave the demand curve unchanged will the equilibria tend to map out the
demand curve.  These observations have several consequences.  First, an ordinary least squares fit
of equation (1) will produce a line like the dotted line in the figure that is a poor estimate of the
demand curve.  Only when most of the shifts over time are coming in the supply curve so that the
equilibria lie along the demand curve will least squares give satisfactory results.  Second, exogenous
variables shift the demand and supply curve in ways that can be estimated.  In particular, the variable
m that appears in the supply curve but not the demand curve shifts the supply curve, so that the locus
of w,q pairs swept out when only m changes lies along the demand curve.  Then, the ideal
experiment you would like to run in order to estimate the slope of the demand curve is to vary m,
holding all other things constant.  Put another way, you need to find a statistical analysis that mimics
the ideal experiment by isolating the partial impact of the variable m on both q and w. 

The structural system (1) and (2) can be solved for qt and wt as functions of the remaining variables

(3)                      wt =  
(β11�β21) � β12st � β22mt � β24qt�1 � (�1t��2t)

β23 � β13

(4)            qt = 
(β11β23�β21β13) � β23β12st � β13β22mt � β13β24qt�1 � (β23�1t�β13�2t)

β23 � β13

Equations (3) and (4) are called the reduced form.  For this solution to exist, we need β23 - β13
non-zero.  This will certainly be the case when the elasticity of supply β23 is positive and the
elasticity of demand β13 is negative.  Hereafter, assume that the true β23 - β13 > 0.  Equations (3) and
(4) constitute a system of regression equations, which could be rewritten in the stacked form
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where the π's are the combinations of behavioral coefficients, and the ν's are the combinations of
disturbances, that appear in (3) and (4).  The system (5) can be estimated by GLS.  In general, the
disturbances in (5) are correlated and heteroskedastic across the two equations.  However, exactly
the same explanatory variables appear in each of the two equations.  If the correlation pattern is the
same in each equation, so that Eνitνjs = σijρts, or Eνν� = R�Σ, then GLS using this covariance structure
collapses to GLS applied separately to each equation.  When there is no correlation across t, GLS
collapses to OLS.

Suppose you are interested in estimating the parameters of the behavioral demand equation
(1).  For OLS applied to (1) to be consistent, it is necessary that the disturbance �1t be uncorrelated
with the right-hand-side variables, which are st and wt.  This condition is met for st, provided it is
indeed exogenous.  However, from (3), an increase in �1t increases wt, other things being equal, and
in (1) this results in a positive correlation of the RHS variable wt and the disturbance �1t.  

Instrumental variables estimation is one alternative for the estimation of (1).  In this case, one
needs to introduce at least as many instrumental variables as there are RHS variables in (1), and these
variables need to be uncorrelated with �1t and fully correlated with the RHS variables.  The list of
instruments should include the exogenous variables in (1), which are the constant, 1, and st.  Other
candidate instruments are the exogenous and predetermined variables elsewhere in the system, mt
and qt-1.

Will IV work?  In general, to have enough instruments, there must be at least as many
predetermined variables excluded from (1) and appearing elsewhere in the system as there are
endogenous variables on the RHS of (1).  When this is true, (1) is said to satisfy the order condition
for identification.  In the example, there is one RHS endogenous variable, wt, and two excluded
exogenous and predetermined variables, mt and qt-1, so the order condition is satisfied.  If there are
enough instruments, then from the general theory of IV estimation, the most efficient IV estimator
is obtained by first projecting the RHS variables on the space spanned by the instruments, and then
using these projections as instruments.  In other words, the best combinations of instruments are
obtained by regressing each RHS variable in (1) on the instruments 1, st, mt, and qt-1, and then using
the fitted values from these regressions as instruments.  But the reduced form equation (3) is exactly
this regression.  Therefore, the best IV estimator is obtained by first estimating the reduced form
equations (3) and (4) by OLS and retrieving fitted values, and then estimating (1) by OLS after
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replacing RHS endogenous variables by their fitted values from the reduced form.  For this to yield
instruments that are fully correlated with the RHS variables, it must be true that at least one of the
variables mt and qt-1 truly enters the reduced form, which will happen if at least one of the
coefficients β22 or β24 is nonzero.  This is called the rank condition for identification.

2. STRUCTURAL AND REDUCED FORMS

In general a behavioral or structural simultaneous equations system can be written

(6)                                 yt�B + zt�Γ = �t�,

where yt� = (y1t, .,yNt) is a 1×N vector of the endogenous variables, B is a N×N array of coefficients,
zt� = (zn1, .,zMt) is a 1×M vector of predetermined variables, Γ is a M×N array of coefficients, and �t�
is a 1×N vector of disturbances.  Let Σ denote the N×N covariance matrix of �t.  The reduced form
for this system is
(7)                                         yt� = zt�Π + νt�,

where Π = - ΓB-1 and νt� = �t�B-1, so that the covariance matrix of νt is Ω = B�-1ΣB-1.   Obviously, for
(6) to be a well-defined system that determines yt, it is necessary that B be non-singular.

3. IDENTIFICATION

It should be clear that some restrictions must be imposed on the coefficient arrays B and Γ,
and possibly on the covariance matrix Σ, if the remaining coefficients are to be estimated
consistently.  First, post-multiplying (6) by a nonsingular diagonal matrix leaves the reduced form
solution (7) unchanged, so that all versions of (6) that are rescaled in this way are observationally
equivalent.   Then, for estimation of (6) it is necessary to have a scaling normalization for each
equation.  Second, counting parameters, B, Γ, and Σ contain N(N-1) + NM + N(N+1)/2  parameters,
excluding the N parameters determined by the scaling normalizations and taking into account the
symmetry of Σ.  However, Π and Ω contain only NM + N(N+1)/2 parameters.  Therefore, an
additional N(N-1) restrictions on parameters are necessary to determine the remaining structural
parameters from the reduced form parameters.  

It is traditional in econometrics texts to work out detailed order and rank conditions for
identification.  These come from the structure of the B and Γ matrices and the condition that ΠB +
Γ = 0 relating the reduced form coefficients to the structural parameters.  However, it is much
simpler to think of identification in terms of the possibility for IV estimation:  An equation (with
associated restrictions) is identified if and only if there exists a consistent IV estimator for the
parameters in the equation; i.e., if there are sufficient instruments for the RHS endogenous variables
that are fully correlated with these variables.  Even covariance matrix restrictions can be used in
constructing instruments.  For example, if you know that the disturbance in an equation you are
trying to estimate is uncorrelated with the disturbance in another equation, then you can use a
consistently estimated residual from the second equation as an instrument.  If you are not
embarrassed to let a computer do your thinking, you can even leave identification to be checked
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numerically: an equation is identified if and only if you can find an IV estimator for the equation that
empirically has finite variances.  

Exercise 1.  Show that the condition above requiring N(N-1) restrictions on parameters will
hold if the order condition, introduced in the example of the market for economists, holds for each
equation.  In the general case, the order condition for an equation states that the number of excluded
predetermined (including strictly exogenous) variables is at least as great as the number of included
RHS endogenous variables.  Add the number of excluded RHS endogenous variables to each side
of this inequality, and sum over equations to get the result.

4. 2SLS

For discussions of estimators for simultaneous equations systems, it is convenient to have
available the systems (6) and (7) stacked two different ways.   First, one can stack (6) and (7)
vertically by observation to get

(8)                                             YB + ZΓ = �
and
(9)                                             Y = ZΠ + ν,

where Y, �, and ν are T×N and Z is T×K.  With this stacking, one has E���/T = Σ and
Eν�ν/T = B-1ΣB�-1.  Note that post-multiplying (8) by a non-singular diagonal matrix leaves the
reduced form unchanged; hence this modification is observationally equivalent.  Then, we can
choose any convenient diagonal matrix as a normalization.  In particular, we can renumber the
equations and rescale them so that the dependent variable ynt appears with a coefficient of one in the
n-th equation.  This is equivalent to saying that we can write B = I - A, where A is a matrix with
zeros down the diagonal, and that the behavioral system (8) can be written

(10)                  Y = YA - ZΓ + � � [Y | Z]  � XC + �.
A
�Γ

In this setup, Y and � are T×N, X is T×(N+K), and C is (N+K)×N.  Restrictions that exclude some
variables from some equations will force some of the parameters in C to be zero.  Rewrite the n-th
equation from (10), taking these restrictions into account, as

(11)                    yn = YnAn - ZnΓn + �n � XnCn + �n,

where this equation includes Mn endogenous variables and Kn predetermined variables on the RHS.
Then, yn is T×1, Yn is T×Mn, and Zn is T×Kn, and Xn is T×(Mn+Kn).

A second method of stacking which is more convenient for empirical work is to write down
all the observations for the first equation, followed by all the observations for the second equation,
etc.  This amounts to starting from (11), and stacking the T observations for the first equation,
followed by the T observations for the second equation, etc.  Since the Cn differ across equations,
the stacked system looks like
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Note that X in (12) is not the same as X in (10); X is NT×J, where J = J1 + .  + JN and Jn = Mn + Kn
is the number of RHS variables in the n-th equation.  The system (12) has the appearance of a system
of regression equations.  Because of RHS endogenous variables, OLS will not be consistent, so that
we have to turn to IV methods.  In addition, there are GLS issues due to the correlation of
disturbances across equations.

Suppose you are interested in estimating a single equation from the system, say y1 =  Y1A1
- Z1Γ1 + �1 � X1c1 + �1.  The IV method states that if you can find instruments W that are uncorrelated
with �1 and fully correlated with X1, then the best IV estimator, �1 =
[X1�W(W�W)-1W�X1]-1X1�W(W�W)-1W�y1 is consistent.  But the potential instruments for this
problem are Z = [Z1 | Z-1], where Z-1 denotes the predetermined variables that are in Z, but not in Z1.
The order condition for identification of this equation is that the number of variables in Z-1 be at least
as large as the number of variables in Y1, or the number of excluded predetermined must be as large
as the number of included RHS endogenous.  The rank condition is that X1� W be of maximum rank.
For consistency, you need to have X1�W/T converging in probability to a matrix of maximum rank.

Exercise 2.  Show that the rank condition implies the order condition.  Show in the example
of the supply and demand for economists that the order condition can be satisfied, but the rank
condition can fail, so that the order condition is necessary but not sufficient for the rank condition.

The best IV estimator can be written �1 = [X1e�X1e]-1X1e�y1, where X1e = W(W�W)-1W�X1  is
the array of fitted values from an OLS regression of X1 on the instruments W = Z; i.e., the reduced
form regression.  Then, the estimator has a two-stage OLS (2SLS) interpretation:

(1) Estimate the reduced form by OLS, and retrieve the fitted values of the endogenous variables.
(2) Replace endogenous variables in a behavioral equation by their fitted values from the reduced
form, and apply OLS.

Recall from the general IV method that the procedure above done by conventional OLS programs
will not produce consistent standard errors.  Correct standard errors can be obtained by first
calculating residuals from the 2SLS estimators in the original behavioral model, u1 = y1 - X1�2SLS,
estimating σ̂2 = u1�u1/(T-K1), and then estimating Ve(�2SLS) = σ̂2[X1�X1]-1.

5. 3SLS

The 2SLS method does not exploit the correlation of the disturbances across equations.  You
saw in the case of systems of regression equations that using FGLS to account for such correlations
improved efficiency.  This will also be true here.  To motivate an estimator, write out all the moment
conditions available for estimation of each equation of the system:
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The disturbances in the NK×1 system (13) have the covariance matrix Σ�(Z�Z).  Then, by analogy
to GLS, the best estimator for the parameters should be

(14)               �3SLS = X�(IN�Z)(Σ-1�(Z�Z)-1)(IN�Z�)y X�(IN�Z)(Σ�1�(Z�Z)�1)(IN�Z�)X �

                               = X�(Σ-1�(Z(Z�Z)-1)Z�))y .X�(Σ�1�(Z(Z�Z)�1Z�))X �1

This estimator can be obtained in three OLS stages, hence its name:
(1-2) Do 2SLS on each equation of the system, and retrieve the residuals calculated at the 2SLS
estimators and the original (not the fitted) RHS variables.
(3) Estimate Σ from the residuals just calculated, and then do FGLS regression of y on X using
the GLS weighting matrix Σ-1�(Z(Z�Z)-1)Z�).

The large-sample approximation to the covariance matrix for (14) is, from the usual GLS
theory, 

(15)                          V(�3SLS) = .X�(Σ�1�(Z(Z�Z)�1Z�))X �1

The FGLS third stage for the 3SLS estimator can be done conveniently by a OLS on transformed
data.  Let L be a lower triangular Cholesky factor of Σe

-1 and Q be a lower triangular Cholesky factor
of (Z(Z�Z)-1)Z�.  Then (L�Q)(L�Q)� = Σe

-1�(Z(Z�Z)-1)Z�).   Transform (L�Q)y = (L�Q)Xc + η and
apply OLS to this system to get the 3SLS estimators.

The main advantage of 3SLS over 2SLS is a gain in asymptotic efficiency.  The main
disadvantage is that the estimators for a single equation are potentially less robust, since they will
be inconsistent if the IV assumptions that Z is predetermined fail in any equation, not just a particular
one of interest.

6. TESTING FOR OVER-IDENTIFYING RESTRICTIONS

Consider an equation y = Xβ + u from a system of simultaneous equations, and let W denote
the array of instruments (exogenous and predetermined variables) in the system.  Let X* = PWX
denote the fitted values of X obtained from OLS estimation of the reduced form; where PW =
W(W’W)�W’ is the projection operator onto the space spanned by W.  The equation is
over-identified if the number of instruments W exceeds the number of right-hand-side variables X.
From Chapter 3, the GMM test statistic for over-identification is the minimum in β of 

2nQn(β) = u�PW u/σ2 = u�PX* u/σ2 + u�(PW - PX*)u/σ2,



8

where u = y - Xβ.  One has u�(PW - PX*)u = y�(PW - PX*)y, and at the minimum in β, u�PX*u = 0, so
that 2nQn = y�(PW - PX*)y/σ2.  Under Ho, this statistic is asymptotically chi-squared distributed with
degrees of freedom equal to the difference in ranks of W and X*.  This statistic can be interpreted
as the difference in the sum of squared residuals from the 2SLS regression of y on X and the sum
of squared residuals from the reduced form regression of y on W, normalized by σ2.  A
computationally convenient equivalent form is 2nQn = ��W - �X*�

2/σ2, the sum of squares of the
difference between the reduced form fitted values and the 2SLS fitted values of y, normalized by σ2.
Finally, 2nQn = y�QX*PWQX*y/σ2 = nR2/σ2, where R2 is the multiple correlation coefficient from
regressing the 2SLS residuals on all the instruments; this result follows from the equivalent formulas
for the projection onto the subspace of W orthogonal to the subspace spanned by X*.  This test
statistic does not have a version that can be written as a quadratic form with the wings containing
a difference of coefficient estimates from the 2SLS and reduced form regressions.  Note that if the
equation is just identified, with the number of proper instruments excluded from the equation exactly
equal to the number of right-hand-side included endogenous variables, then there are no over-
identifying restrictions and the test has no power.  However, when the number of proper instruments
exceeds the minimum for just identification, this test amounts to a test that all the exclusions of the
instruments from the structural equation are valid. 

7. TIME-SERIES APPLICATIONS OF SIMULTANEOUS EQUATIONS MODELS

The example of the market for economists that introduced this chapter was a time- series
model that involved lagged dependent variables.  In the example, we assumed away serial
correlation, but in general serial correlation will be as issue to be dealt with in applications of
simultaneous equations models to time series.  The setup (6) for a linear simultaneous equations
model can be expanded to make dependence on lagged dependent variables explicit:

(16)     yt�B + yt-1�Λ  + zt�Γ = �t�.

Recall that the variables yt-1 and zt in this model are predetermined if they are  uncorrelated with the
disturbance �t, and strongly predetermined if �t is statistically independent of yt-1 and zt.  In this
model, the strictly exogenous variables zt may include lags (and, if it makes economic sense, leads).
It is not restrictive to write the model as a first-order lag in yt, as higher-order lags can be
incorporated by including lagged values of the dependent variables as additional components of yt,
with identities added to the system of equations to link the variables at different lags.  (This was done
in Chapter 5 in discussing the stability of vector autoregressions.)

The reduced form for the system (16), also called the final form in time series applications,
is

(17)               yt� = yt-1�Θ + zt�Π + νt�,

where Θ = - ΛB-1, Π = - ΓB-1, and νt� = �t�B-1, so that the covariance matrix of νt is Ω = B�-1ΣB-1.
Identification of the model requires that B be nonsingular, and that there be exclusion and/or
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covariance restrictions that satisfy a rank condition.  Stability of the model requires that the
characteristic roots of Θ all be less than one in modulus.  If one started with a stable structural model
that had disturbances that were serially correlated with an autoregressive structure, then with suitable
partial differencing the model could be rewritten in the form (17), the disturbances νt would be
innovations that are independent across t, and the explanatory variables in (17) would be strongly
predetermined.  Further, the dynamics of the system would be dominated by the largest modulus
characteristic root of Θ.  In this stable case, estimation of the model can proceed in the manner
already discussed:  Estimate the reduced form, use fitted values of yt (along with zt and yt-1) as
instruments to obtain 2SLS estimates of each equation in (17), and finally use fitted covariances
from these equations (calculated at the 2SLS estimates) to carry out 3SLS.

If the final form (17) is not stable, and in particular Λ has one or more unit roots, then the
statistical properties of 2SLS or 3SLS estimates are quite different:  some estimates may converge
in asymptotic distribution at rate T rather than the customary T1/2, and the asymptotic distribution
may not be normal.  Consequently, one  must be careful in conducting statistical inference using
these estimates.  There is an extensive literature on analysis of systems containing unit roots; see the
chapter by Jim Stock in the Handbook of Econometrics IV.  When a system is known to contain a
unit root, then it may be possible to transform to a stable system by appropriate differencing.

8. NONLINEAR SIMULTANEOUS EQUATIONS MODELS  

In principle, dependent variables may be simultaneously determined within a system of
equations that is nonlinear in variables and parameters.  One might, for example, consider a system

(18)     Fi(y1t,y2t,...,yNt;zit,θ) = �it, i = 1,...,N

for the determination of (y1t,y2t,...,yNt) that depends on a K×1 vector of parameters θ, vectors of
exogenous variables zit, and disturbances �it.  Such systems might arise naturally out of economic
theory.  For example, consumer or firm optimization may be characterized by first-order conditions
that are functions of dependent decision variables and exogenous variables describing the economic
environment of choice, with the �it appearing due to errors in optimization by the economic agents,
arising perhaps because ex post realizations differ from ex ante expectations, or due to
approximation errors by the analyst.  For many plausible economic models, linearity of the system
(18) in variables and parameters would be the exception rather than the rule, with the common linear
specification justifiable only as an approximation.  The nonlinear system (18) is well-determined if
it has a unique solution for the dependent variables, for every possible configuration of the z's and
�'s, and for all θ's in a specified domain.  If it is well-determined, then it has a reduced form

(19)     yit = fi(z1t,z2t,...,zNt,�1t,�2t,...,�Nt,θ), i = 1,...,N.

This reduced form can also be written

(20)     yit = hi(z1t,z2t,...,zNt,θ) + uit, i = 1,...,N
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where 

 hi(z1t,z2t,...,zNt,θ) = E{fi(z1t,z2t,...,zNt,�1t,�2t,...,�Nt,θ)�zt},

and uit is the disturbance with conditional mean zero that makes (20) hold.  In this form, (20) is a
system of nonlinear equations in the form considered in Chapter 5, and the treatment there can also
be applied to estimate the structural parameters from this reduced form.  (The specification (20)
guarantees that the reduced form disturbances have conditional expectation zero; but the additional
assumption that u's are statistically independent of z's, or even that they are homoskedastic, is  rarely
justifiable from economic theory.  Then statistical analysis based on this assumption may be invalid
and misleading for many application.)

Recall that in Chapter 4, estimation of a nonlinear equation with contaminated explanatory
variables was discussed, a best nonlinear 2SLS (BN2SLS) estimator was defined, and practical
approximations to the BN2SLS were discussed.  The equations in (18) would correspond directly
to this structure if in equation i, one had

(21)     Fi(y1t,y2t,...,yNt;zit,θ) = yit - h(y1t,...,yi-1,t,yi+1,t,...,yNt,zit,θ),

Absent this normalization, some other normalization is needed for identification in Fi, either on the
scale of the dependence of Fi on one variable, or in the scale of �it. This is no different in spirit than
the normalizations needed in a linear simultaneous equations specification.  Given an identifying
normalization, it is possible to proceed in essentially the same way as in Chapter 4.  Make a
first-order Taylor's expansion of (18) about an initial parameter vector θo to obtain

(22) Fi(y1t,y2t,...,yNt;zit,θo) � - �(θk-θok) + �it.�
K

k�1

�Fi(y1t,y2t,...,yNt;zit,θo)
�θk

Treat the expressions xitk = -�Fi(y1t,y2t,...,yNt;zit,θo)/�θk as contaminated explanatory variables, and the
expectations of xikt given z1t,...,zNt as the ideal best instruments.  Approximate these best instruments
by regressing the xitk on suitable functions of the z's, as in Chapter 4, and then estimate (22) by this
approximation to best 2SLS.  Starting from an initial guess for the parameters, iterate this process
to convergence, using the estimated coefficients from (22) to update the parameter estimates.  The
left-hand-side of (22) is the dependent variable in these 2SLS regressions, with the imposed
normalization guaranteeing that the system is identified.  This procedure can be carried out for the
entire system (22) at one time, rather than equation by equation.  This will provide nonlinear 2SLS
estimates of all the parameters of the system.  These will not in general be best system estimates
because they do not take into account the covariances of the �'s across equations.  Then, a final step
is to apply 3SLS to (22), using the previous 2SLS estimates to obtain the feasible GLS
transformation.  The procedure just described is what the LSQ command in TSP does when applied
to a system of nonlinear equations without normalization, with instrumental variables specified.

When the nonlinear reduced form (20) can be obtained as an analytic or computable model,
it is possible to apply nonlinear least squares methods directly, either equation by equation as N2SLS
or for the system as N3SLS.  This estimation procedure is described in Chapter 5.  One caution is
that while the disturbances uit in (20) have conditional mean zero by construction, economic theory
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will rarely imply that they are, in addition, homoskedastic, and the large sample statistical theory
needs to be reworked when heteroskedasticity of unknown form is present.  Just as in linear models,
consistency is generally not at issue, but standard errors will typically not be estimated consistently.
At minimum, one should be cautious and use robust standard error estimates that are consistent
under heteroskedasticity of unknown form.


