1. Define \(x = [1 \ p \ w \ a \ s]' \), \(\beta = [\beta_1 \ \beta_2 \ \beta_3 \ \beta_4 \ \beta_5]' \), \(\theta = [\theta' \ \sigma]' \)

(a) \(L(\theta) = d^* \log \left[\Phi \left(\frac{x'\beta-f}{\sigma} \right) \right] + (1-d)^* \log \left[1 - \Phi \left(\frac{x'\beta-f}{\sigma} \right) \right] \)

(b) Define \(y_i = \text{Ind}(i \ \in \ \text{sample of actual purchases}) \). The LR statistic below is asymptotically distributed as an \(\chi^2 \) under the null:

\[
LR = 2 \left[\max_{\beta_1, \sigma, \sigma_h} \sum_{i=1}^{N+M} \left(\Phi \left(\frac{x_i'\beta-f}{\sigma} \right) + (1-d_i)^* \log \left[1 - \Phi \left(\frac{x_i'\beta-f}{\sigma} \right) \right] \right) \right] \\
- \max_{\beta, \sigma} \left[\sum_{i=1}^{N+M} \left(\Phi \left(\frac{x_i'\beta-f}{\sigma} \right) + (1-d_i)^* \log \left[1 - \Phi \left(\frac{x_i'\beta-f}{\sigma} \right) \right] \right) \right]
\]

(c) \(LR = 2 \left[\max_{\beta_1, \sigma, \sigma_h} \sum_{i=1}^{N+M} \left(\Phi \left(\frac{x_i'\beta-f}{\sigma} \right) + (1-d_i)^* \log \left[1 - \Phi \left(\frac{x_i'\beta-f}{\sigma} \right) \right] \right) \right] \rightarrow \chi^2

2. Using WESML approach:

\[
\hat{\mu} = \sum_{y_i = \text{log}(20k)}^{+} \frac{y_i}{9} \sum_{y_i = \text{log}(20k)}^{\text{log}(20k)} \frac{y_i}{.6} \\
\sum_{y_i = \text{log}(20k)}^{+} \frac{1}{9} \sum_{y_i = \text{log}(20k)}^{\text{log}(20k)} \frac{1}{.6}
\]

3. (a) It will not be consistent as long as \(z \) is not clean. This condition does not depend on the true value of \(y \).

(b) Do the omitted variable version of the Hausman Test: Regress \(y \) on \(1, x, z \) and \(z \# \) and test whether the coefficient of \(z \# \) is zero by means of a Wald test.

4. (a) If \(X_1 = X_2 = X \), then: \(\hat{\epsilon}_i = Q \epsilon_i \), \(\hat{\epsilon}_2 = Q \epsilon_2 \), \(Q = I - X(X'X)^{-1}X' \) and \(\text{tr}(E[\hat{\epsilon}_i \hat{\epsilon}_2']) = \text{tr}(Q) = (T-K) \sigma_{12} \neq 0 \)

(b) \(\hat{\beta}_j = \beta_j - (X_j'X_j)^{-1}X_j' \hat{\epsilon}_j \), \(j = 1, 2 \). If \(X_1, X_2 = 0 \), then \(E[(\hat{\beta}_1 - \beta_1)(\hat{\beta}_2 - \beta_2)] = (X_1'X_1)^{-1}X_1'X_2' \sigma_{12} = 0 \)

5. (a) Let \(z_i \) be any random variable. Then the following must hold:

\[\text{cov}(z_i, \hat{\epsilon}_i) = \text{cov}(z_i, \epsilon_i) - (\hat{\beta}_2 - \beta_2) \text{cov}(z_i, w_i) \]

And, asymptotically, \(\text{cov}(z_i, \hat{\epsilon}_i) = \text{cov}(z_i, \epsilon_i) \). Thus, for \(z_i = \epsilon_2i \):

\[\text{cov}(\epsilon_2i, \hat{\epsilon}_i) = \text{cov}(\epsilon_2i, \epsilon_i) = 0 \]

And for \(z_i = w_i \):

\[\text{cov}(w_i, \hat{\epsilon}_i) = \text{cov}(w_i, \epsilon_i) \neq 0 \]

(b) From (a) we can see that \(\hat{\epsilon}_i \) is a proper instrument for \(w_i \), then supply equation can be estimated by 2SLS using \(1, m_i \) and \(\hat{\epsilon}_i \) as instruments.