Exogeneity Test – A Simple Case

Consider the linear model \(y = X\beta + \varepsilon \), where \(y \) is \(n \times 1 \), \(X \) is \(n \times k \), \(\beta \) is \(k \times 1 \), and \(\varepsilon \) is \(n \times 1 \). Partition \(X = [X_1 \ X_2] \), where \(X_1 \) is \(n \times p \). Suppose that \(X_2 \) is believed to be orthogonal to the disturbance \(\varepsilon \) in the population, but that \(X_1 \) is suspected of contamination, making it non-orthogonal to \(\varepsilon \) in the population. This can occur, for example, if \(\varepsilon \) contains omitted variables that are correlated with the included variables in \(X_1 \), if \(X_1 \) contains measurement errors, or if \(X_1 \) contains endogenous variables that are determined jointly with \(y \).

Suppose that there is a \(n \times m \) array of proper instruments \(Z = [V \ X_2] \), where \(V \) is a \(n \times r \) array of instruments that are excluded from \(X \), and one has \(m \geq n \), or equivalently \(r \geq p \). If \(X_1 \) is clean, then the broader array \(W = [Z \ X_1] = [V \ X] \) also constitute proper instruments.

Suppose one calculates a 2SLS estimator of \(\beta \) using either the narrow array of instruments \(Z \), or the broad array of instruments \(W \). The first estimator will always be consistent, while the second estimator will be consistent only if all the instruments in \(W \) are proper; i.e., if \(X_1 \) is clean. On the other hand, if \(X_1 \) is clean, the second estimator will be more efficient.

The first estimator is

\[
\hat{b}_{2SLS} = [X'Z(Z'Z)^{-1}Z'X]^{-1}X'Z(Z'Z)^{-1}Z'y.
\]

The second estimator using \(W \) as instruments simplifies to \(\hat{b}_{OLS} \). To see this, think of doing 2SLS with \(W \) as instruments by first regressing \(X \) on \(W \), and then regressing \(y \) on the fitted values of \(X \) from the first stage. But \(W \) includes \(X \), so that the first stage returns fitted values for \(X \) equal to the observed values, and the second stage is just the OLS regression of \(y \) on \(X \). The test statistic for the Hausman exogeneity test then specializes to

\[
(b_{2SLS} - b_{OLS})' [V(b_{2SLS}) - V(b_{OLS})]^{-1} (b_{2SLS} - b_{OLS}),
\]

where \([\cdot]^{-1} \) denotes a generalized inverse. When \(X \) is not contaminated, so that \(W \) is clean, this statistic is asymptotically chi-square with degrees of freedom equal to the rank of the covariance matrix in the center of the quadratic form.

Another formulation of an exogeneity test, as an omitted variable test with appropriately constructed auxiliary variables, is more convenient to compute, and is asymptotically equivalent to the Hausman test statistic.

First do an OLS regression of \(X_1 \) on \(Z \) and retrieve fitted values \(X_1^* = Z(Z'Z)^{-1}Z'X_1 \). Second, do an OLS regression on the auxiliary regression model \(y = X\beta + X_1^*\gamma + \eta \). Then test the null hypothesis that the coefficients \(\gamma \) are zero; i.e., an omitted variable test for the variables \(X_1^* \). This test can be done as a conventional F-test for omitted variables. The numerator degrees of freedom will be \(p \).

We next show that this test is indeed an exogeneity test. First, the OLS estimates of the parameters in the model \(y = X\beta + X_1^*\gamma + \eta \) satisfy
\[
\begin{bmatrix}
\begin{bmatrix}
X X' & X'QX_i' \\
X_1'QX & X_1'QX_i'
\end{bmatrix}^{-1}
\begin{bmatrix}
X'Y \\
X_1'QY
\end{bmatrix}
\end{bmatrix}
+ \begin{bmatrix}
X X' & X'QX_i' \\
X_1'QX & X_1'QX_i'
\end{bmatrix}^{-1}
\begin{bmatrix}
X'\varepsilon \\
X_1'Q\varepsilon
\end{bmatrix}
\] \\
\]

Where \(Q = Z(Z'Z)^{-1}Z' \), implying \(QX_1 = X_1^\ast \), and \(QX_2 = X_2 \). But \(X'Q\varepsilon/n \overset{p}{\rightarrow} 0 \) when \(Z \) is clean. Similarly, \(X'\varepsilon/n \overset{p}{\rightarrow} 0 \) when \(X_1 \) is clean and \(X_2'\varepsilon/n \overset{p}{\rightarrow} 0 \) since \(X_2 \) is clean by assumption, but \(X_1'\varepsilon/n \overset{p}{\rightarrow} C \neq 0 \) when \(X_1 \) is contaminated. Define

\[
\begin{bmatrix}
X'X/n & X'QX/n \\
X_1'QX/n & X_1'QX/n
\end{bmatrix}^{-1} = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\]

From the formula for a partitioned inverse,

\[
A_{11} = (X'[I - QX_1(X_1'QX_1)^{-1}]X_1'Q)X/n)^{-1}
\]

\[
A_{22} = (X_1'Q[I - X(X'X)^{-1}X']QX/n)^{-1}
\]

\[
A_{21} = -(X_1'QX_1)^{-1}X_1'QX_1'QX_1 = -A_{22}(X_1'QX)(X'X)^{-1} = A_{12}'
\]

Hence,

(16) \[c_p = A_{22}[X_1'Q\varepsilon/n - (X_1'QX)(X'X)^{-1}X'\varepsilon/n]. \]

If \(X_1 \) is clean, then \(c_p \overset{p}{\rightarrow} 0 \) and \(n^{1/2}c_p \) is asymptotically normal. On the other hand, if \(X_1 \) is contaminated, then \(c_p \) has a non-zero probability limit. Then, a test for \(\gamma = 0 \) using \(c_p \) is a test of exogeneity.

The test above can be reinterpreted as a Hausman test involving differences of \(b_{\text{OLS}} \) and \(b_{\text{2SLS}} \). Recall that \(b_{\text{2SLS}} = \beta + (X'QX)^{-1}X'Q\varepsilon \) and \(b_{\text{OLS}} = \beta + (X'X)^{-1}X'\varepsilon \). Then

(17) \[(X'QX)(b_{\text{2SLS}} - b_{\text{OLS}}) = [X'Q\varepsilon/n - (X'QX)(X'X)^{-1}X'\varepsilon/n]. \]

Then in particular for the linearly independent subvector \(X_1 \) of \(X \),

\[
A_{22}(X_1'QX)(b_{\text{2SLS}} - b_{\text{OLS}}) = A_{22}[X_1'Q\varepsilon/n - (X_1'QX)(X'X)^{-1}X'\varepsilon/n] = c_p.
\]

Thus, \(c_p \) is a linear transformation of \((b_{\text{2SLS}} - b_{\text{OLS}}) \). Then, testing whether \(c_p \) is near zero is equivalent to testing whether a linear transformation of \((b_{\text{2SLS}} - b_{\text{OLS}}) \) is near zero. When \(X_1 \) is of rank \(p \), this equivalence establishes that the Hausman test in its original form is the same as the test that \(c_p \) is zero.

RELATION TO GMM TEST FOR OVER-IDENTIFICATION

Let \(W = [Z X_1] = [V X] \) be all the variables that are orthogonal to \(\varepsilon \) in the population under the null hypothesis that \(X \) and \(\varepsilon \) are uncorrelated. Let \(P_w \) denote the projection operator onto the subspace spanned by \(W \); i.e., \(P_w = W(W'W)^{-1}W' \). As in the omitted variables problem, consider the test statistic for over-identifying restrictions, \(2nQ_n = \min_u u'P_wu/\sigma^2 \), where \(u = y - Xb \).
Decompose $P_w = P_x + (P_w - P_x)$. Then $u'(P_w - P_x)u = y'(P_w - P_x)y$ and the minimizing b sets $u'P_xu = 0$, so that $2nQ_a = y'(P_w - P_x)y/\sigma^2$. This statistic is the same as the test statistic for the hypothesis that the coefficients of X_i are zero in a regression of y on X and X_i^*; thus the test for over-identifying restrictions is an omitted variables test. One can also write $2nQ_a = \|\hat{y}_w - \hat{y}_x\|^2/\sigma^2$, so that a computationally convenient equivalent test is based on the difference between the fitted values of y from a regression on X and X_i^* and a regression on X alone. Finally, we will show that the statistic can be written

$$2nQ_a = (b_{1,2SLS} - b_{1,OLS})\left[(V(b_{1,2SLS}) - V(b_{1,OLS}))^{-1} (b_{1,2SLS} - b_{1,OLS}) \right].$$

In this form, the statistic is the Hausman test for exogeneity in the form developed by Hausman and Taylor, and the result establishes that the Hausman test for exogeneity is equivalent to a GMM test for over-identifying restrictions.

Several steps are needed to demonstrate this equivalence. Note that $b_{2SLS} = (X'P_MX)^{-1}X'P_My$, where $M = [V X_2]$. Write

$$b_{2SLS} - b_{OLS} = (X'P_MX)^{-1}X'P_My - (X'X)^{-1}X'y$$

$$= (X'P_MX)^{-1}X'[P_M - X'P_MX(X'X)^{-1}X']y$$

$$= (X'P_MX)^{-1}X'P_MQ_Xy,$$

where $Q_M = I - P_M$. Since X_2 is in M, $P_MX_2 = X_2$, implying $X'P_MX = \begin{bmatrix} X_1'P_MQ_X \\ X_2'P_MQ_X \end{bmatrix} = \begin{bmatrix} X_1'Q_X \\ X_2'Q_X \end{bmatrix}$. Then

$$\begin{bmatrix} X_1'P_MQ_X \\ 0 \end{bmatrix} = (X'P_MX)(b_{2SLS} - b_{OLS}) \equiv \begin{bmatrix} X_1'P_MX_1 \\ X_1'P_MX_2 \end{bmatrix} = \begin{bmatrix} X_1'X_1 \\ X_1'X_2 \end{bmatrix}. $$

From the second block of equations, one obtains the result that the second subvector is a linear combination of the first subvector. This implies that a test statistic that is a function of the full vector of differences of 2SLS and OLS estimates can be written equivalently as a function of the first subvector of differences. From the first block of equations, substituting in the solution for the second subvector of differences expressed in terms of the first, one obtains

$$[X_1'P_MX_1 - X_1'X_2(X_2'X_2)^{-1}X_2'X_1](b_{1,2SLS} - b_{1,OLS}) = X_1'P_MQ_Xy$$

The matrix on the left-hand-side can be rewritten as $X_1'P_MQ_XX_1$, so that
\[
\begin{align*}
\mathbf{b}_{1,2SLS} - \mathbf{b}_{1,OLS} &= (X_1' \mathbf{P}_M \mathbf{Q}_2 \mathbf{P}_M X_1)^{-1} X_1' \mathbf{P}_M Q X y.
\end{align*}
\]

Next, we calculate the covariance matrix of \(\mathbf{b}_{2SLS} - \mathbf{b}_{OLS}\), and show that it is equal to the difference of \(V(\mathbf{b}_{2SLS}) = \sigma^2 (X'P_M X)^{-1}\) and \(V(\mathbf{b}_{OLS}) = \sigma^2 (X'X)^{-1}\). From the formula \(\mathbf{b}_{2SLS} - \mathbf{b}_{OLS} = (X'P_M X)^{-1} X'P_M Q X P_M X (X'P_M X)^{-1}\), one has \(V(\mathbf{b}_{2SLS} - \mathbf{b}_{OLS}) = \sigma^2 (X'P_M X)^{-1} X'P_M Q X P_M X (X'P_M X)^{-1}\).

On the other hand,
\[
\begin{align*}
V(\mathbf{b}_{2SLS}) - V(\mathbf{b}_{OLS}) &= \sigma^2 (X'P_M X)^{-1} [X'P_M X - X'P_M X (X'X)^{-1} X'P_M X] (X'P_M X)^{-1} \\
&= \sigma^2 (X'P_M X)^{-1} [X'P_M [I - X(X'X)^{-1} X'] P_M X] (X'P_M X)^{-1} \\
&= \sigma^2 (X'P_M X)^{-1} X'P_M Q X P_M X (X'P_M X)^{-1}.
\end{align*}
\]

Thus, \(V(\mathbf{b}_{2SLS} - \mathbf{b}_{OLS}) = V(\mathbf{b}_{2SLS}) - V(\mathbf{b}_{OLS})\). This is a consequence of the fact that under the null hypothesis OLS is efficient among the class of linear estimators including 2SLS. Expanding the center of this expression, and using the results \(P_M X_2 = X_2\) and hence \(Q_X P_M X_2 = 0\), one has
\[
X'P_M Q X P_M X =
\begin{bmatrix}
X_1'P_M Q X P_M X_1 & 0 \\
0 & 0
\end{bmatrix}.
\]

Hence, \(V(\mathbf{b}_{2SLS}) - V(\mathbf{b}_{OLS})\) is of rank \(p\); this also follows by noting that \(\mathbf{b}_{2SLS} - \mathbf{b}_{OLS}\) could be written as a linear transformation of \(\mathbf{b}_{1,2SLS} - \mathbf{b}_{1,OLS}\).

Next, use the formula for partitioned inverses to show for \(N = M\) or \(N = I\) that the northwest corner of \(X_1'P_M Q X P_M X_1\) is \((X_1'P_M Q X P_M X_1)^{-1}\). Then,
\[
V(\mathbf{b}_{1,2SLS} - \mathbf{b}_{1,OLS}) = \sigma^2 (X_1'P_M \mathbf{Q}_2 \mathbf{P}_M X_1)^{-1} X_1'P_M Q X P_M X_1 (X_1'P_M \mathbf{Q}_2 \mathbf{P}_M X_1)^{-1}.
\]

Using the expressions above, the quadratic form can be written
\[
(b_{1,2SLS} - b_{1,OLS})V(b_{1,2SLS} - b_{1,OLS})^{-1}(b_{1,2SLS} - b_{1,OLS}) = y'Q_X P_M X_1 (X_1'P_M Q X P_M X_1)^{-1} X_1'P_M Q_X y / \sigma^2.
\]

Finally, one has, from the test for over-identifying restrictions,
\[
2nQ_n = y'(P_w - P_X)y / \sigma^2 = y'Q_X P_M X_1 (X_1'P_M Q X P_M X_1)^{-1} X_1'P_M Q_X y / \sigma^2,
\]

so that the two statistics coincide.