
1

GENERALIZED METHOD OF MOMENTS

z  data generated by a process parameterized by a
k×1 vector 2222.  

l(z,2222)  log likelihood of z, 
2222o   true value of 2222 in the population.  
g(z,2222)  m×1 vector of functions of z and 2222 that have

zero expectation in the population if and only
if 2222 equals 2222o: 

(1) Eg(z,2222) //// IIIIg(z,2222)@@@@el(z,2222o)dz = 0 iff 2222 = 2222o.   

The Eg(z,2222) are generalized moments, and the
analogy principle suggests that an estimator of 2222o
can be obtained by solving for 2222 that makes the
sample analogs of the population moments small.

Example.  z = (x,y), y = f(x,22220) + ,,,,, x mlmlmlml ,,,,

g(z,2222) = P(x)NNNN(y-f(x,2222))

with P(x) a vector of polynomials in x.
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Assume g(z,2222o) has a positive definite m×m
covariance matrix.  
The GMM problem is under-identified if m < k, just-
identified if m = k, and over-identified if m > k.  
If m > k, there are over-identifying moments that can
be used to improve estimation efficiency and/or test
the internal consistency of the model.

Suppose an i.i.d.  sample z1,...,zn from the data
generation process.  A GMM estimator of 2222o is a
vector Tn that minimizes the generalized distance of
the sample moments from zero,

(2) Qn(2222) = ½gn(2222)NNNNWn(JJJJn)gn(2222),    with   

gn(2222) //// ,

Wn(2222) is a m×m positive definite symmetric matrix,
in general depending on 2222, evaluated at some
sequence of “preliminary estimates” JJJJn.  
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The Wn(JJJJn) define a "distance metric".  Let Wn =
Wn(JJJJn).  Assume that Wn(2222) converges in probability
uniformly in 2222 to W(2222), a continuous positive
definite limit.  Let W = plim Wn.  If plim JJJJn = 2222o,
then plim Wn(JJJJn) = W(2222o) = W.  

It is unnecessary to know the form of the log
likelihood function l(z,2222) in order to calculate the
GMM estimator, and in fact GMM estimation is
particularly useful when l(z,2222) is not completely
specified and only the moment condition 
E g(z,2222o) = 0 can be assumed.  However, some
statistical properties of GMM estimators (e.g.,
possibly asymptotic efficiency) will depend on the
interplay of g(z,2222) and l(z,2222). 
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SSSS(2222) //// E g(z,2222)g(z,2222)NNNN m×m covariance matrix of
the moments.

  
Efficient weighting requires plim Wn = SSSS(2222o)-1.  Call
a GMM estimator that has plim Wn = SSSS(2222o)-1 a best
GMM estimator.  A good candidate for Wn is
SSSSn(JJJJn)-1, where

(3) SSSSn(2222) = g(zt,2222)g(zt,2222)NNNN, 

and JJJJn is a consistent preliminary estimate of 2222o. 
One good way to get a consistent preliminary
estimator JJJJn is to first minimize a GMM criterion
using the identity matrix Im for Wn.
G(2222) //// -E LLLL2222g(z,2222) m×k Jacobean matrix

(4) Gn(2222) = LLLL2222g(zt,2222).

Gn(JJJJn) evaluated at a consistent preliminary estimate
JJJJn of 2222o has probability limit G(2222o).  Hereafter, SSSSn
and Gn will be used as shorthand for SSSSn(JJJJn) and
Gn(JJJJn), respectively, and SSSS and G will be used as
shorthand for SSSS(2222o) and G(2222o).
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A GMM estimator with a distance metric Wn
that converges in probability to a positive definite
matrix W will be CAN with an asymptotic
covariance matrix (GNNNNWG)-1GNNNNWSSSSWG(GNNNNWG)-1,
and a best GMM estimator with a distance metric
Wn that converges in probability to SSSS(2222o)-1 will be
CAN with an asymptotic covariance matrix
(GNNNNSSSS-1G)-1.  The following lemma justifies the
sorbeque “best”:

Lemma 3.1. 

(GNNNNWG)-1GNNNNWSSSSWG(GNNNNWG)-1 - (GNNNNSSSS-1G)-1 

is positive semidefinite.
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Special cases

CCCC    f(z,2222) is a scalar function with the property that 
E f (z,2222o) #### E f (z,2222).  Minimize the sample analog

fn(2222) = ; this is called an extremum

estimator.  A leading example is f (z,2222) = - l(z,2222), the
negative of a full or limited information log
likelihood function.  A GMM estimator with
moments g(z,2222) = LLLL2222 f (z,2222) and any distance metric
has the property that the GMM criterion is
minimized at the extremum estimator.  When one
can guarantee that the GMM criterion has no roots
other than the extremum estimator, then one can
treat the extremum estimator in its equivalent
GMM form. 
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CCCC z = (y,x,w) and g(z,2222) = wNNNN(y-x2222), so that the
moment conditions assert orthogonality in the
population between instruments w and regression
disturbances gggg = y - x2222o.  For this problem, GMM
specializes to two-stage least squares (2SLS), 
or if w = x, to OLS.  

CCCC     These linear regression setups generalize
directly to nonlinear regression orthogonality
conditions based on the form g(z,2222) = wNNNN(y-h(x,2222)),
where h is a function that is known up to the
parameter 2222 and by assumption a vector of m
exogenous variables w are orthogonal to the
regression disturbances y - h(x,2222o). 
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Denote convergence in probability by 6666p, and
convergence in distribution by 6666d.  
If a sequence of events occur with probability
approaching one, we say that they occur in
probability limit.   
A sequence of random variables Yn is stochastically
bounded if for each gggg > 0 there exists a constant M
such that for all n, Prob(|Yn| > M) < gggg.  
We will sometimes use the notation Yn = Yo + op for
Yn 6666p Yo and Yn = Op(1) for a stochastically bounded
sequence.

We will need some definitions for random
functions on a subset 1111 of a Euclidean space úúúúk.  Let
(S,F,P) denote a probability space.  Define a random
function as a mapping Y from 1111×S into úúúú with the
property that for each 2222 0000 1111, Y(2222,"""") is measurable
with respect to (S,F,P).  Note that Y(2222,"""") is simply a
random variable, and that Y("""",s) is simply a function
of 2222 0000 1111.  Usually, the dependence of Y on the state
of nature is suppressed, and we simply write Y(2222). 
A random function is also called a stochastic process,
and Y("""",s) is termed a realization of this process.  
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A random function Y(2222,"""") is almost surely continuous
at 2222o 0000 1111 if for s in a set that occurs with probability
one, Y("""",s) is continuous in 2222 at 2222o.  In detail, for
each gggg > 0, define 

Ak(gggg,2222o) = . 

Almost sure continuity states that these sets
converge monotonically as k6666 4444 to a set Ao(gggg,2222o) that
has probability zero.  

Example: the function Y(2222,s) = 2222s for 2222 0000 [0,1]
and s uniform on [0,1] is continuous at 2222 = 0 for

every s, but Ak(gggg,0) = [0, ) has positive

probability for all k.  
Example: The exceptional sets Ak(gggg,2222) can vary

with 2222, and there is no requirement that there be a
set of s with probability one, or for that matter with
positive probability, where Y(2222,s) is continuous for
all 2222.  If 2222 0000 [0,1] and s is uniform on [0,1], Y(2222,s) =
1 if 2222 $$$$ s and Y(2222,s) = 0 otherwise is almost surely
continuous everywhere but has a discontinuity.
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Lemma 3.2. For sequences of random vectors Yn
and Zn, (1) for c a constant, Yn 6666p c if and only if 
Yn 6666d c; (2) if Yn 6666d Yo and Zn - Yn 6666p 0, then 
Zn 6666d Yo; and (3) if Yn 6666d Yo and f is a continuous
function on an open set containing the support of Yo,
then f(Yn) 6666d f(Yo).

Lemma 3.3 (Uniform WLLN).  Assume Yi(2222) are
independent identically distributed random functions
with a finite mean RRRR(2222) for 2222 in a closed bounded set
1111 ffff úúúúk .  Assume Yi("""") is almost surely continuous at
each 2222 0000 1111.  Assume that Yi("""") is dominated; i.e., 
there exists a random variable Z with a finite mean
that satisfies Z $$$$ sup222200001111****Y1(2222)****.  Then RRRR(2222) is

continuous in 2222 and Xn(2222) =  satisfies

sup222200001111****Xn(2222) - RRRR(2222)**** 6666p 0. 

Lemma 3.4 (Continuous Mapping).  If Yn(2222) 6666p
Yo(2222) uniformly for 2222 in 1111 ffff úúúúk,  random vectors JJJJo,JJJJn
0000 1111 satisfy JJJJn 6666p JJJJo, and Yo(2222) is almost surely
continuous at JJJJo,  then Yn(JJJJn) 6666p Yo(JJJJo).
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Theorem 3.1.  (Newey and McFadden (1994, Thm.
2.6 and Thm. 3.4)) Consider an i.i.d. sample zt, for 
t = 1,...,n; the GMM criterion Qn(2222) = ½gn(2222)NNNNWngn(2222)
given by (2), with Wn = Wn(JJJJn) and JJJJn a sequence of
“preliminary estimates” converging in probability to a
limit JJJJo; the arrays SSSSn(2222) given by (3) and Gn(2222) given
by (4); and the GMM estimator Tn = argmin222200001111  Qn(2222). 
Assume (i) to (vii):

(i) The domain 1111 of 2222 is a compact subset of úúúúk

and 2222o is in its interior.  
(ii) The log likelihood function l(z,2222) is
measurable in z for each 2222, and almost surely
(with respect to z) twice continuously
differentiable with respect to 2222 in a
neighborhood of 2222o.  
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(iii) The function g is measurable in z for each
2222, and almost surely (with respect to z) is
continuous on 1111 and on a neighborhood of 2222o
continuously differentiable in 2222, with the
derivative Lipschitz; i.e., there is a function """"(z)
with finite expectation such that for 2222,2222NNNN in the
neighborhood of 2222o, *L*L*L*L2222g(z,2222) - LLLL2222g(z,2222NNNN)**** ####
""""(z)****2222 - 2222N*N*N*N*.  
(iv) Eg(z,2222) = 0 if and only if 2222 = 2222o.  
(v) SSSS(2222o) is a positive definite m×m matrix and
G(2222o) is an m×k matrix of rank k. 
(vi) W(2222) is a positive definite m×m matrix that
is continuous in 2222, Wn(2222) 6666p W(2222) uniformly in
2222, and Wn 6666p W.
(vii) There exists a function """"(z), with finite
expectation, that dominates g(z,2222)g(z,2222)NNNN and
LLLL2222g(z,2222); i.e., +4444 > E""""(z), ****g(z,2222)g(z,2222)N*N*N*N* #### """"(z),
and *L*L*L*L2222g(z,2222)**** #### """"(z).
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If an estimator Tn* satisfies Qn(Tn*) 6666p 0, then Tn*
6666p 0, and if nAAAAQn(Tn*) is stochastically bounded,
then n1/2AAAAgn(Tn*) and n1/2AAAA(Tn* - 2222o) are
stochastically bounded.  The unconstrained GMM
estimator Tn satisfies these conditions and is
consistent and asymptotically normal (CAN), with  

(5) n1/2(Tn - 2222o) 6666d 
N(0,(GNNNNWG)-1GNNNNWSSSSWG(GNNNNWG)-1).

If in addition either Wn  6666p SSSS-1, or else just-
identification (i.e., m = k) with Wn an arbitrary
non-singular matrix, then Tn is a best GMM
estimtor that is CAN with B //// GNNNNSSSS-1G and 

(6) n1/2(Tn - 2222o) 6666d N(0,B-1).
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Proof of Theorem 1.  Step 0 shows that n1/2 gn(2222o)
is asymptotically normal, that Gn(2222), SSSSn(2222), and
Wn(2222) converge in probability uniformly in 2222 to
G(2222), SSSS(2222), and W(2222), respectively, and that
nAAAAQn(2222o) is stochastically bounded.  Step 1 shows
for Tn* satisfying Qn(Tn*) 6666p 0 that Tn* 6666p 2222o. 
Step 2 shows for Tn* satisfying nAAAAQn(Tn*)
stochastically bounded that n1/2AAAA(Tn* - 2222o) is
stochastically bounded. These two steps imply
that a preliminary estimator JJJJn that uses an
easily calculated distance metric such as Im is
consistent, and hence that SSSSn(JJJJn)6666p SSSS and Gn(JJJJn)
6666p G.  They also imply that Tn is consistent and
stochastically bounded.  Step 3 applies the mean
value theorem to the first-order condition for Tn
and uses rules for asymptotic limits to show that
n1/2(Tn - 2222o) is asymptotically normal.
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Step 0: The expression gn(2222o) is a sample average
of i.i.d. random vectors with mean zero and
finite covariance matrix SSSS.  Then the Lindeberg-
Levy central limit theorem implies 

(7)              SSSS-1/2n1/2gn(2222o) //// Un 6666d U ~ N(0,Im).

The expressions gn(2222), Gn(2222), and SSSSn(2222) are
sample averages that converge in probability for
each fixed 2222 to Eg(2222), G(2222), and SSSS(2222),
respectively, by Kinchine’s law of large
numbers.  Conditions (i), (iii), and (vii) establish
that these functions are dominated and almost
surely continuous on the compact set 1111.  Then
the hypotheses of Lemma 3 are satisfied, so the
convergence is uniform in 2222.  Condition (vi) gives
Wn(2222) 6666p W(2222) uniformly in 2222.  This condition
plus (7) implies by Lemma 2 that nAAAAQn(2222o) is
stochastically bounded.
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Step 1:  Consider any estimator Tn* that satisfies
Qn(Tn*) 6666p 0.  For each fixed 2222, the Kinchine law
of large numbers implies that gn(2222) 6666p Eg(2222).  We
have established that the convergence in
probability of gn(2222) to Eg(2222) is uniform in 2222. 
Combined with the condition Wn 6666p W from (vi),
this implies Qn(2222)  6666p ½(Eg(2222))NNNNW(Eg(2222))
uniformly in 2222.  Outside each small
neighborhood of 2222o, the probability limit of
Qn(2222) is uniformly bounded away from zero by
(iv).  Therefore, Tn*  is, with probability
approaching one, within each small
neighborhood.  This establishes consistency of
Tn*.
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Step 2:  Consider any estimator Tn* that satisfies
nAAAAQn(Tn*) stochastically bounded.  This condition
implies Qn(Tn*) 6666p 0, and thus Tn* 6666p 2222o by Step
1.  The mean value theorem and (7) give

(8)        n1/2gn(Tn*) = n1/2gn(2222o) - Gn n1/2(Tn*-2222o) 
= SSSS1/2Un - Gn n1/2(Tn*-2222o),

with Gn evaluated at points between Tn* and 2222o. 
Apply the triangle inequality for the GMM
distance metric to the vector Gn n1/2(Tn*-2222o) =
SSSS1/2Un - n1/2gn(Tn*) to obtain

(9) ½n1/2(Tn*-2222o)NNNNGnNNNNWnGn n1/2(Tn*-2222o) ####
½UnNNNNSSSS

1/2Wn SSSS1/2Un + nAAAAQn(Tn*).

The first term on the right-hand-side of (9)
converges in distribution by Lemma 2, and
hence is stochastically bounded.  Together with
the hypothesis that nAAAAQn(Tn*) is stochastically
bounded, this implies that n1/2(Tn*-2222o)NNNNGnNNNNWnGn
n1/2(Tn*-2222o) is stochastically bounded.   
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The uniform convergence of Gn(2222) and Lemma 4
imply GnNNNNWnGn 6666p  GNNNNWG positive definite.  Let
8888 > 0 be the smallest characteristic root of
GNNNNWG.  Then in probability limit

(10) (8888/2)@@@@n1/2 @@@@|Tn*-2222o|2 ####
n1/2(Tn*-2222o)NNNNGnNNNNWnGn n1/2(Tn*-2222o) =
Op(1),

establishing that n1/2(Tn*-2222o) is stochastically
bounded.  In (8), this implies that n1/2gn(Tn*) is
stochastically bounded.
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Step 3:  Consider the GMM estimator Tn =
argmin222200001111 Qn(2222).  Then Qn(Tn) #### Qn(2222o), and the
condition that nAAAAQn(2222o) is stochastically bounded
implies by Steps 1 and 2 that Tn is consistent and
n1/2(Tn-2222o) is stochastically bounded.  The first-
order condition for Tn is 0 = G(Tn)NNNNWn n1/2gn(Tn). 
Substituting the mean value expansion (7) in this
first-order condition gives

(11) 0 = -G(Tn)NNNNWnSSSS
1/2Un 

+ G(Tn)NNNNWnGn n1/2(Tn-2222o). 

We established in Step 2 that in probability
limit, G(Tn)NNNNWnGn is non-singular and
(G(Tn)NNNNWnGn)-1 6666p (GNNNNWG)-1.  Then, n1/2(Tn-2222o) =
(G(Tn)NNNNWnGn)-1 G(Tn)NNNNWnSSSS

1/2Un  exists in
probability limit.  The array (G(Tn)NNNNWnGn)-1

converges in probability, and hence in
distribution, to (GNNNNWG)-1; the array
G(Tn)NNNNWnSSSS

1/2 converges in probability, and hence
in distibution, to GNNNNWSSSS1/2;  and Un converges in
distribution to U.  
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Then Lemma 2 implies that the continuous
function that is the product of these terms
converges in distribution to the product of the
limits; i.e., n1/2(Tn-2222o) 6666d (GNNNNWG)-1GNNNNWSSSS1/2U,
which is normal with covariance matrix
(GNNNNWG)-1GNNNNWSSSSWG(GNNNNWG)-1.  This establishes
(5).  When W = SSSS-1 or m = k, (6) follows.  ~~~~

The asymptotic covariance matrices
(GNNNNWG)-1GNNNNWSSSSWG(GNNNNWG)-1 or B-1 =  (GNNNNSSSS-1G)-1

can be estimated using Gn(JJJJn) and SSSSn(JJJJn), where
JJJJn is any consistent (preliminary) estimator of 2222o,
by Lemmas 3 and 4.  A practical procedure for
estimation is to first estimate 2222o using the GMM
criterion with an arbitrary Wn, such as the m×m
identity matrix Im.  This produces an initial CAN
estimator JJJJn.  Then use the formulas above to
estimate the asymptotically efficient Wn =
SSSSn(JJJJn)-1, and use the GMM criterion with this
distance metric to obtain the final estimator Tn.  
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Differentiating the identity 0 //// IIIIg(z,2222)el(z,2222)dz
with respect to 2222, and evaluating the result at 2222o  

(15) '''' //// Eg(z,2222o)LLLL2222l(z,2222o)NNNN //// -ELLLL2222g(z,2222o) //// G.   

It will sometimes be convenient to estimate G by 

(16) ''''n = g(zt,JJJJn)LLLL2222l(zt,JJJJn)NNNN. 

In the maximum likelihood case g = LLLL2222l, one has
SSSS = '''' = E[LLLL2222l(zt,2222o)]NNNN[LLLL2222l(zt,2222o)]NNNN and by the
information equality, G = -E LLLL22222222l(zt,2222o) =
E[LLLL2222l(zt,2222o)]NNNN[LLLL2222l(zt,2222o)]NNNN = SSSS, so that the
asymptotic covariance matrix of the
unconstrained estimator simplifies to SSSS-1.
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   ''''nNNNNSSSSn
-1 = . 

Each row of this array can be interpreted as the
coefficients obtained from an OLS regression of
the corresponding component of LLLL2222l(zt,JJJJn) on
g(zt,JJJJn).  Then the right-hand side of the first-
order condition for a best GMM estimator, 0 =
''''nNNNNSSSSn

-1gn(Tn), can be usefully interpreted as the
projection of LLLL2222l(zt,JJJJn) onto the subspace spanned
by g(zt,JJJJn).  This is then the linear combination of
g(zt,JJJJn) that most closely approximates LLLL2222l(zt,JJJJn). 
The GMM estimator Tn sets this approximate
score to zero.  One implication of this result is
that if g(zt,JJJJn) = LLLL2222l(zt,JJJJn), then the projection
returns this vector and ''''nNNNNSSSSn

-1 is the identity
matrix.  Another implication is that if g(zt,JJJJn)
contains LLLL2222l(zt,JJJJn) plus other moments, then
''''nNNNNSSSSn

-1 will be the horizonal concatination of an
identity matrix and a matrix of zeros, so that the
GMM first-order condition coincides with the
condition for MLE, and the added moments are
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given zero weight.  
THE NULL HYPOTHESIS AND THE
CONSTRAINED GMM ESTIMATOR

Suppose there is an r-dimensional null
hypothesis on the data generation process, 

(17) Ho:a(2222o) = 0, 

where a("""") is a r×1 vector of continuously
differentiable functions and the r×k matrix A ////
LLLL2222a(2222o) has rank r.  The null hypothesis may be
linear or nonlinear.  A particularly simple case is
Ho: 2222 = 2222o, or a(2222) //// 2222 - 2222o, so the parameter
vector 2222 is completely specified under the null. 
Other examples are a(2222o) = 22221o, a linear
hypothesis that the first parameter is zero, and
a(2222o) = (222210/222220 - 222230/222240), a non-linear hypothesis
that two ratios of parameters are equal.  In
general there will be k-r parameters to be
estimated when one imposes the null. 
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We will consider alternatives to the null of the
form 

(18) H1: a(2222o) ………… 0,  

or asymptotically local alternatives of the form 

(19) H1n: a(2222o) = ****n-1/2 ………… 0. 

For local alternatives we consider the sequence
of problems where l(z,2222) is the log likelihood of
an observation, 2222no = 2222o - A(ANNNNA)-1****n-1/2 is the
sequence of true parameter values, and an(2222) =
****n-1/2 + A(2222-2222o) is the sequence of (locally linear)
constraints.  These problems then satisfy an(2222no)
= 0 and an(2222o) = ****n-1/2.  In econometric analysis,
interesting alternatives are often sufficiently
“local” in large samples so that asymptotic
distributions under local alternatives give good
estimates of power.  
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One can define a constrained GMM estimator by
optimizing the GMM criterion subject to the null
hypothesis: 

(20)   Tan = argmin222200001111Qn(2222)  subject to a(2222) = 0.  

For local alternatives, the constraints become
an(2222) = ****n-1/2 + A(2222-2222o). The following result
establishes consistency of Tan under the null
hypothesis or local alternatives:

Lemma 3.5. Assume conditions (i)-(vii) in
Theorem 1.  Assume that under the null
hypothesis the true parameter vector 2222o satisfies
the constraints a(2222o) = 0, and that in the sequence
of local alternative problems the true parameter
vectors 2222no = 2222o - A(ANNNNA)-1****n-1/2 satisfy the
sequence of constraints an(2222) = ****n-1/2 + A(2222-2222o) =
0.  Then Tan 6666p 2222o and n1/2AAAA(Tan - 2222o) is
stochastically bounded.  
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Consider asymptotic normality of the
constrained estimator under the null or local
alternatives.  Define a Lagrangian for Tan:
Ln(2222,(((() = Qn(2222) - a(2222)NNNN((((.  In this expression, (((( is
the r×1 vector of undetermined Lagrangian
multipliers; these will be non-zero when the
constraints are binding.  The first-order
conditions for solution of the constrained
optimization problem are 

(21)  = .  

The Lagrangian multipliers ((((an are random
variables.  Lemma 5, and when applicable the
argument given in the proof of Corollary 1,
imply LLLL2222Qn(Tan) 6666p -GNNNNWEg(z,2222o) = 0.  Further,
LLLL2222a(Tan) 6666p A, implying ANNNN((((an = -LLLL2222Qn(Tan) + op 6666p
0, and since A is of full rank, ((((an 6666p 0.  
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The argument for asymptotic normality parallels
the argument given in Theorem 1 for the
unconstrained estimator, and relates the
asymptotic distributions of Tn, Tan, and ((((an.  
Noting that Tan satisfies (8), and then
approximating Gn by G and Wn by W, one gets

n1/2gn(Tan) = n1/2gn(2222o) - Gn n1/2(Tan - 2222o) 
= SSSS1/2Un - G n1/2(Tan - 2222o) + op

and n1/2LLLL2222Qn(Tan) = GNNNNW n1/2gn(Tan) + op.  Under
local alternatives (or the null when **** = 0),

n1/2a(Tan) = n1/2a(2222o) + A n1/2(Tan - 2222o) + op 
//// **** + A n1/2(Tan - 2222o) + op.

Substituting these in the first-order conditions
and letting C = GNNNNWG yields

(22)    =  + op. 
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From the formulas for partitioned inverses,  

= , 

Applying this to (22) yields (23):   

From Corollary 1, n1/2(Tn-2222o) = C-1GNNNNWSSSS1/2Un + op. 
Substitute this in (23) to conclude that 

(24)       n1/2(Tn-Tan) 
= C-1ANNNN(AC-1ANNNN)-1AC-1GNNNNWSSSS1/2Un 

+ C-1ANNNN(AC-1ANNNN)-1**** + op. 

Note that An1/2(Tn-Tan) = AC-1GNNNNWSSSS1/2Un + **** + op,
and that n1/2(Tn-Tan) can be represented as the
linear transformation C-1ANNNN(AC-1ANNNN)-1 of
An1/2(Tn-Tan). We also have

(25) n1/2a(Tn) = n1/2a(2222o) + A n1/2(Tn - 2222o) + op 
= AC-1GNNNNWSSSS1/2Un + **** + op.
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The expansion 

n1/2gn(Tan) = GNNNNWSSSS1/2Un - GNNNNWG n1/2(Tan - 2222o) + op
 
combined with (23) and 
K = (Im - GC-1GNNNNW + GC-1ANNNN(AC-1ANNNN)-1AC-1GNNNNW)
implies

 n1/2gn(Tan) = KSSSS1/2Un 
+ GC-1ANNNN(AC-1ANNNN)-1**** + op, 

and 

n1/2
LLLL2222Qn(Tan) = GNNNNW n1/2gn(Tan) 

= ANNNN(AC-1ANNNN)-1AC-1GNNNNWSSSS1/2Un 
+ ANNNN(AC-1ANNNN)-1**** + op.  

Then,

(26) AC-1n1/2
LLLL2222Qn(Tan) = AC-1GNNNNWn1/2gn(Tan) + op

= AC-1GNNNNWSSSS1/2Un + **** + op.
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Table 1 summarizes the results.  The table shows
that the r×1 vectors An1/2(Tn-Tan), n1/2a(Tn),
(AC-1ANNNN)n1/2((((an, and AC-1n1/2

LLLL2222Qn(Tan) all equal
AC-1GNNNNWSSSS1/2Un + **** + op.  Consequently, they are 
asymptotically equivalent and asymptotically
normal with mean **** and non-singular covariance
matrix A(GNNNNWG)-1GNNNNWSSSSWG(GNNNNWG)-1ANNNN.  This
table shows that all the statistics can be expressed
as linear transformations of n1/2(Tn-2222o).  This
makes it simple to determine the asymptotic
distributions of tests that use these statistics.

The asymptotic covariance matrices for the
Table 1 statistics follow from their formulas and
the result that Un  is asymptotically standard
normal, and are given in Table 2.  For a best
GMM estimator, with W = SSSS-1 implying that H ////
GNNNNWSSSSWG = GNNNNSSSS-1G = C = B, the asymptotic
covariance matrices simplify considerably.  The
asymptotic covariances matrices always satisfy

acov(Tn-Tan) = acov(Tn) + acov(Tan) - acov(Tn ,Tan) 
- acov(Tan ,Tn),
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but for a best GMM estimator one has 
acov(Tn ,Tan) = acov(Tan), giving the simplification

(27) acov(Tn-Tan) = acov(Tn) - acov(Tan)

or the variance of the difference equals the
difference of the variances.  This proposition is
familiar in a maximum likelihood context where
the variance in the deviation between an efficient
estimator and any other estimator equals the
difference of the variances.  We see here that it
also applies to relatively efficient GMM estimators
that use available moments and constraints
optimally.  
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Table 1.  The Statistics and their Relationships

Statistic Formula (with C = GNWG) Transformations of Other Statistics
1 n1/2gn(2o) S1/2Un + op GGG

2 n1/2(Tn-2o) C-1GNWS1/2Un + op C-1GNWn1/2gn(2o)
3 n1/2(Tan-2o) -C-1AN(AC-1AN)-1* + [C-1-C-1AN(AC-1AN)-1AC-1]GNWS1/2Un + op n1/2(Tn-2o) - C-1AN(AC-1AN)-1 n1/2a(Tn)
4 n1/2(Tn-Tan) C-1AN(AC-1AN)-1* + C-1AN(AC-1AN)-1AC-1GNWS1/2Un + op C-1AN(AC-1AN)-1 n1/2a(Tn)
5 A n1/2(Tn-Tan) * + AC-1GNWS1/2Un + op n1/2a(Tn)
6  n1/2(an (AC-1AN)-1* + (AC-1AN)-1AC-1GNWS1/2Un + op (AC-1AN)-1 n1/2a(Tn)
7 AC-1ANn1/2(an * + AC-1GNWS1/2Un + op n1/2a(Tn)
8  n1/2a(Tn) * + AC-1GNWS1/2Un + op * + A n1/2(Tn-2o)
9  n1/2

L2Qn(Tan) AN(AC-1AN)-1* + AN(AC-1AN)-1AC-1GNWS1/2Un + op AN(AC-1AN)-1 n1/2a(Tn)
10 AC-1n1/2

L2Qn(Tan) * + AC-1GNWS1/2Un + op n1/2a(Tn)

Table 2. Asymptotic Covariance Matrices
(Note: B = GNS-1G, C = GNWG, H = GNWSWG)

Statistic Asymptotic Covariance Matrix Asymptotic Covariance Matrix if W = SSSS-1

1 n1/2gn(2o) S S

2 n1/2(Tn-2o) C-1HC-1 B-1

3 n1/2(Tan-2o) [C-1-C-1AN(AC-1AN)-1AC-1]H[C-1-C-1AN(AC-1AN)-1AC-1] B-1 - B-1AN(AB-1AN)-1AB-1

4 n1/2(Tn-Tan) C-1AN(AC-1AN)-1AC-1HC-1AN(AC-1AN)-1AC-1 B-1AN(AB-1AN)-1AB-1

5 A n1/2(Tn-Tan) AC-1HC-1AN AB-1AN

6  n1/2(an (AC-1AN)-1AC-1HC-1AN(AC-1AN)-1 (AB-1AN)-1

7 AC-1ANn1/2(an AC-1HC-1AN AB-1AN

8  n1/2a(Tn) AC-1HC-1AN AB-1AN

9  n1/2
L2Qn(Tan) AN(AC-1AN)-1AC-1HC-1AN(AC-1AN)-1A AN(AB-1AN)-1A

10 AC-1n1/2
L2Qn(Tan) AC-1HC-1AN AB-1AN
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3.  THE TEST STATISTICS

The test statistics for the null hypothesis fall
into three major classes, sometimes called the
trinity.  Wald statistics are based on deviations of
the unconstrained estimates from values
consistent with the null.  Lagrange Multiplier
(LM) or Score statistics are based on deviations of
the constrained estimates from values solving the
unconstrained problem.  Distance metric statistics
for best GMM estimators are based on differences
in the GMM criterion between the unconstrained
and constrained estimators.  In the case of
maximum likelihood estimation, the distance
metric statistic is asymptotically equivalent to the
likelihood ratio statistic.  There are several
variants for Wald statistics in the case of the
general non-linear hypothesis; these reduce to the
same expression in the simple case where the
parameter vector is completely determined under
the null.  The same is true for LM statistics.  
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There are often significant computational
advantages to using one member or variant of the
trinity rather than another.  On the other hand,
the Wald and LM statistics are all asymptotically
equivalent, and for best GMM estimators the
distance metric statistic is also asymptotically
equivalent  Thus, at least to first-order asymptotic
approximation, there is no statistical reason to
choose between them.  This pattern of first-order
asymptotic equivalence for GMM estimates is
exactly the same as for maximum likelihood
estimates.  
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Table 3 gives the test statistics that can be used for
the hypothesis a(2222o) = 0.  For best GMM
estimators with W = SSSS-1, the full trinity of tests are
available.  Some of the test statistics that are
available for best GMM estimators do not have
versions that are asymptotically equivalent for
general GMM estimators, and the corresponding
cells are omitted from the table. 

The central result is that all of the test
statistics in each column are asymptotically
equivalent under the null hypothesis or a local
alternative to the null.  Under the null, they have a
common limiting chi-square distribution with
degrees of freedom r equal to the dimension of the
null hypothesis.  Under a local alternative, they
have a common limiting non-central chi-square
distribution with r degrees of freedom and non-
centrality parameter  ****NNNN[AC-1HC-1ANNNN]-1 ****  in the
general case and ****NNNN(AB-1ANNNN)-1

**** in the best
estimator case.  
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It is useful to relate the expression for the non-
centrality parameter to outputs from econometric
estimation packages.  Typically, a package that
does GMM estimation, or one of its specializations
such as maximum likelihood or non-linear least
squares, will automatically estimate SSSSn

-1 and use it
as the distance metric, and will supply an estimate
V of the covariance matrix of the estimates;
namely V = (GnNNNNSSSSn

-1Gn)-1/n, where Gn and SSSSn are
estimates of G and SSSS respectively.  If the
alternative to the null is H1: a(2222o) = c, then **** =
cn1/2, and the non-centrality parameter written in
terms of V and c is ****NNNN(AB-1ANNNN)-1

**** = cNNNN(AVANNNN)-1c.  
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Table 3.  Test Statistics for GMM Estimators
(Note: B = GNS-1G, C = GNWG, H = GNWSWG)

General Estimators with W ………… SSSS-1 Best Estimators with W = SSSS-1

Wald Statistics 

   W1n na(Tn)N[AC-1HC-1AN]-1a(Tn) na(Tn)N[AB-1AN]-1a(Tn)
 W2n, flavor 1 n(Tn-Tan)Nacov(Tn - TAn)G(Tn -Tan) n(Tn-Tan)N{acov(Tn) - acov(TAn)}G(Tn -Tan)
W2n, flavor 2       n(Tn-Tan)NAN[AC-1HC-1AN]-1A(Tn-Tan)         n(Tn-Tan)NAN(AB-1AN)-1A(Tn-Tan)

   W3n G G \G n(Tn-Tan)NB(Tn-Tan)

Lagrange Multiplier Statistics
   LM1n n(anNAC-1AN[AC-1HC-1AN]-1AC-1AN (an n(anNAB-1AN(an

   LM2n, flavor 1 nL2Qn(Tan)N[AN(AC-1AN)-1AC-1HC-1AN(AC-1AN)-1A]GL2Qn(Tan) nL2Qn(Tan)N{AN(AB-1AN)-1AN}GL2Qn(Tan)
   LM2n, flavor 2       nL2Qn(Tan)NAN[AC-1HC-1AN]-1AL2Qn(Tan)  nL2Qn(Tan)NB-1AN(AB-1AN)-1AB-1

L2Qn(Tan)
   LM3n G G G nL2Qn(Tan)NB-1

L2Qn(Tan)

Distance Metric Statistic 

 DMn G G G 2n[Qn(Tan) - Qn(Tn)]

Asymptotic Distribution
Under the Null: P2(r) P2(r)

Asymptotic Distribution
Under Local Alternatives P2(r,nc) P2(r,nc)

Non-centrality Parameter (nc) *N(AC-1HC-1AN)-1* *N(AB-1AN)-1*
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FIGURE 1.  GMM TESTS
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Figure 1 illustrates the relationship between
distance metric (DM), Wald (W), and Score (LM)
tests for a best GMM estimator.  In the case of
maximum likelihood estimation, this figure is
inverted, the criterion is log likelihood rather than
the distance metric, and the DM test is replaced by
the likelihood ratio test.  The “Optimum” and
“Null” points on the 2222 axis give the unconstrained
(Tn) and constrained (Tan) estimators, respectively.
The GMM criterion function is plotted, along with
quadratic approximations to this function through
the respective arguments Tn and Tan.  
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The Wald statistic (W) can be interpreted as twice
the difference in the height at Tn and Tan of the
quadratic approximation through the optimum; the
height d in the figure.  The Lagrange Multiplier
(LM) statistic can be interpreted as twice the
difference in the height at Tn and Tan of the
quadratic approximation through the null; the
difference a - b in the figure.  The Distance Metric
(DM) statistic is twice the difference in the height at
Tn and Tan of the GMM criterion, the height c in the
figure.  Note that if the criterion function were
exactly quadratic, then the three statistics would be
identical.
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The Wald statistic W1n asks how close are the
unconstrained estimators to satisfying the
constraints; i.e., how close to zero is a(Tn)?  This
variety of the test is particularly useful when the
unconstrained estimator is available and the matrix
A is easy to compute.  For example, when the null is
that a subvector of parameters equal constants, then
A is a selection matrix that picks out the
corresponding rows and columns of acov(Tn) =
C-1HC-1 (which reduces to B-1 for a best estimator),
and this test reduces to a quadratic form with the
deviations of the estimators from their hypothesized
values in the wings, and the inverse of their
asymptotic covariance matrix in the center.  In the
special case Ho: 2222 = 2222o, one has A = Ik.
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The Wald test W2n is useful if both the
unconstrained and constrained estimators are
available.  For best GMM estimation, its first
version requires only the readily available
asymptotic covariance matrices of the two
estimators, but for r < k requires calculation of a
generalized inverse.  Algorithms for this are
available, but are often not as numerically stable as
classical inversion algorithms because near zero and
exact zero characteristic roots are treated very
differently.  The second version of W2n, available for
either general or best GMM estimators, involves
only ordinary inverses, and is potentially quite
useful for computation in applications.  
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The Wald statistic W3n, which is only available for
best GMM estimators, treats the constrained
estimators as if they were constants with a zero
asymptotic covariance matrix.  This statistic is
particularly simple to compute when the
unconstrained and constrained estimators are
available, as no matrix differences or generalized
inverses are involved, and the matrix A need not be
computed.  The statistic W2n is at least as large as
W3n in finite samples, since the center of the second
quadratic form is acov(Tn)-1 and the center of the
first quadratic form is {acov(Tn) - acov(Tan)}GGGG, while
the tails are the same.  Nevertheless, the two
statistics are asymptotically equivalent.
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The approach of Lagrange multiplier or score tests
is to calculate the constrained estimator Tan, and
then to base a statistic on the discrepancy from zero
at this argument of a condition that would be zero if
the constraint were not binding.  The statistic LM1n
asks how close the Lagrangian multipliers ((((an,
measuring the degree to which the hypothesized
constraints are binding, are to zero.  This statistic is
easy to compute if the constrained estimation
problem is actually solved by Lagrangian methods,
and the multipliers are obtained as part of the
calculation.  The statistic LM2n asks how close to
zero is the gradient of the distance criterion,
evaluated at the constrained estimator.  This
statistic is useful when the constrained estimator is
available and it is easy to compute the gradient of
the distance criterion, say using the algorithm to
seek minimum distance estimates.  The second
version of LM2n  avoids computation of a
generalized inverse.  

The statistic LM3n for best GMM estimators,
bears the same relationship to LM2n that W3n bears
to W2n.  
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This flavor of the test statistic is particularly
convenient to calculate when the gradient of the
likelihood function is available, as it can be obtained
by two auxiliary regressions starting from the
constrained estimator Tan:   
  

a.  Regress LLLL2222l(zt,Tan)NNNN on g(zt,Tan), and retrieve
fitted values LLLL2222l*(zt,Tan)NNNN.  

b.  Regress 1 on LLLL2222l*(zt,Tan), and retrieve fitted

values íííít.  Then LM3n = íííít
2 .  

For MLE, g = LLLL2222l and the first regression is
redundant, so that this procedure reduces to OLS.
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Another form of the auxiliary regression for
computing LM3n is available in the case of
non-linear instrumental variable regression.
Consider the model yt = h(xt,2222o) + ggggt with E(ggggt****wt) =
0 and E(ggggt

2****wt) = FFFF2, where wt is a vector of
instruments.  Define zt = (yt,xt,wt) and g(zt,2222) =
wt[yt-h(xt,2222)].  Then Eg(z,2222o) = 0 and Eg(z,2222o)g(z,2222o)NNNN
= FFFF2EwwNNNN.  The GMM criterion Qn(2222) for this model
is (28)

( wt(yt-h(xt,2222))NNNN( wtwtNNNN)-1( wt(yt-h(xt,2222))/2FFFF2.

Optimization is not affected by the scalar FFFF2.  
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Consider the hypothesis a(2222o) = 0, and let Tan be the
constrained GMM estimator.  One can compute
LM3n by the following method: 

a.  Regress LLLL2222h(xt,Tan) on wt, and retrieve the
fitted values LLLL2222¡¡¡¡t.  
b.  Regress the residual ut = yt - h(xt,Tan) on LLLL2222¡¡¡¡t,
and retrieve the fitted values ût.

Then LM3n = n ût
2'''' ut

2 //// nR2, with R2 the

uncentered multiple correlation coefficient.  Note
that this is not in general the same as the standard
R2 produced by OLS programs, since the
denominator of that definition is the sum of
squared deviations of the dependent variable
about its mean.  When the dependent variable has
mean zero, the centered and uncentered definitions
coincide.  
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The approach of the distance metric test is based
on the difference between the values of the
distance metric at the constrained and
unconstrained estimates.  It has a limiting chi-
square distribution and is asymptotically
equivalent to the other members of the trinity only
for best GMM estimators.  This estimator is
particularly convenient when both the
unconstrained and constrained estimators can be
computed, and the estimation algorithm returns
the goodness-of-fit statistics.  In the case of linear
or non-linear least squares, this is the familiar test
statistic based on the sum of squared residuals
from the constrained and unconstrained
regressions. 
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TESTS FOR OVER-IDENTIFYING RESTRICTIONS
Consider the GMM estimator based on moments g(zt,2222),
where g is m×1, 2222 is k×1, and  m > k, so there are
over-identifying moments.  The criterion 

Qn(2222) = (1/2)gn(2222)NNNNSSSSn
-1gn(2222), 

 
evaluated at its minimizing argument Tn for any SSSSn 6666p SSSS, has
the property that 2nQn //// 2nQn(Tn) 6666d PPPP2(m-k) under the null
hypothesis that Eg(z,2222o) = 0.

The test for overidentifying restrictions can be recast as
a LM test by artificially embedding the original model in a
richer model.  Partition the moments  

g(z,2222) = ,  

where g1 is kx1 with G1 = ELLLL2222g1(z,2222o) of rank k, and g2 is
(m-k)x1 with G2 = ELLLL2222g2(z,2222o).  Embed this in the model 

g*(z,2222,RRRR) =  

where RRRR is a (m-k) vector of additional parameters.  The
first-order-condition for GMM estimation of this expanded
model is 



50

 =  

The second block of conditions are satisfied by RRRRn = gn(Tan),
no matter what Tan, so Tan is determined by O = GnSSSSngn(Tan).
This is simply the estimator obtained from the first block of
moments, and coincides with the earlier definition of Tan.
Thus, unconstrained estimation of the expanded model
coincides with restricted estimation of the original model.
Next consider GMM estimation of the expanded model
subject to Ho:RRRR = O.  This constrained estimation obviously
coincides with GMM estimation using all moments in the
original model, and yields Tn.  Thus, constrained estimation
of the expanded model coincides with unrestricted estimation
of the original model.  

The Distance Metric test statistic for the constraint RRRR =
0 in the expanded model is DMn = 2n[Qn(Tn,0) - Qn(Tn,RRRRn)] ////
2nQn(Tn), where Qn denotes the criterion as a function of the
expanded parameter list.  One has Qn(Tn,0) //// Qn(Tn) from
the coincidence of the constrained expanded model estimator
and the unrestricted original model estimator, and one has
Qn(Tan,RRRRn) = 0 since the number of moments equals the
number of parameters.  Then, the test statistic 2nQn(Tn) for
overidentifying restrictions is identical to a distance metric
test in the expanded model, and hence asymptotically
equivalent to any of the trinity of tests for Ho: RRRR = O in the
expanded model.  
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We give four examples of econometric problems that can
be formulated as tests for over-identifying restrictions: 

Example 1.  If y = x$$$$+gggg with E(gggg|x) = 0, E(gggg2|x) = FFFF2, then
the moments

g1(z,$$$$) =  

can be used to estimate $$$$ and FFFF2.  If gggg is normal, then GMM
estimators based on g1 are MLE.   Normality can be tested
via the additional moments that give skewness and kurtosis,

g2(x,$$$$) = .  

GMM estimators based on all the moments g are again MLE
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Example 2.  In the linear model y = xb+gggg with E(gggg|x) = 0
and E(ggggtggggs|x) = 0 for t…………s, but with possible heteroskedasticity
of unknown form, one gets the OLS estimates b of $$$$ and
V(b) = s2(XNNNNX)-1 under the null hypothesis of
homoskedasticity.  A test for homoskedasticity can be based
on the population moments 0 = E vecu[xNNNNx(gggg2- FFFF2)], where
"vecu" means the vector formed from the upper triangle of
the array.  The sample value of this moment vector is 

vecu ,

the difference between the White robust estimator and the
standard OLS estimator of vecu[XNNNNSSSSX].  
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Example 3.  If l(z,2222) is the log likelihood of an
observation, and Tn is the MLE, then an additional moment
condition that should hold if the model is specified correctly
is the information matrix equality
 

0 = E LLLL22222222l(z,2222o) + ELLLL2222l(z,2222o)LLLL2222l(z,2222o)NNNN. 
  

The sample analog is White's information matrix test, which
then can be interpreted as a GMM test for over-identifying
restrictions.
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Example 4.  In the nonlinear model y = h(x,2222) + gggg with
E(gggg|x) = 0, and Tn a GMM estimator based on moments
w(x)(y-h(x,2222)), where w(x) is some vector of functions of x,
suppose one is interested in testing the stronger assumption
that gggg is independent of x.  A necessary and sufficient
condition for independence is E[w(x) - Ew(x)]f(y- h(x,2222o)) =
0 for every function f and vector of functions w for which the
moments exist.  A specification test can be based on a
selection of such moments.   
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SPECIFICATION TESTS IN LINEAR MODELS

GMM tests for over-identifying restrictions have
particularly convenient forms in linear models.  Three
standard specification tests will be shown to have this
interpretation.  Let PX = X(XNNNNX)GGGGX denote the projection
matrix from úúúún onto the linear subspace X spanned by a n×p
array X; note that it is idempotent.  (We use a
Moore-Penrose generalized inverse in the definition of PX to
handle the possibility that X is less than full rank.)  Let QX =
I - PX denote the projection matrix onto the linear subspace
orthogonal to X.  If X is a subspace generated by an array X
and W is a subspace generated by an array W = [X Z] that
contains X, then PXPW = PWPX = PX and QXPW = PW - PX.

Omitted Variables Test: Consider the regression model y
= X$$$$ + gggg, where y is n×1, X is n×k, E(gggg****X) = 0, and E(ggggggggN*N*N*N*X)
= FFFF2I.  Suppose one has the hypothesis Ho: $$$$1 = 0, where $$$$1 is
a p×1 subvector of $$$$, and let X* denote the n×(k-p) array of
variables whose coefficients are not constrained under the
null hypothesis.  Define u = y - Xb to be the residual
associated with an estimator b of $$$$.  The GMM criterion is
then 2nQ = uNNNNX(XNNNNX)-1XNNNNu/FFFF2.  
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The projection matrix PX //// X(XNNNNX)-1XNNNN that appears in the
center of this criterion can obviously be decomposed as PX ////
PX* + (PX - PX*).  Under Ho, u = y - X2b2 and XNNNNu can be
interpreted as k = p + q over-identifying moments for the q
parameters $$$$2.  Then, the GMM test statistic for
over-identifying restrictions is the minimum value 2nQn* in
b2 of uNNNNPXu/FFFF2.  But PXu = PX* u + (PX - PX*)y and uNNNN

PX*u = 0 (at the OLS estimator under Ho that makes u
orthogonal to X2).  Then 2nQn = yNNNN(PX - PX*)y/FFFF2.  The
unknown variance FFFF2 in this formula can be replaced by any
consistent estimator s2, in particular, the estimated variance
of the disturbance from either the restricted or the
unrestricted regression, without altering the asymptotic
distribution, which is PPPP2(q) under the null hypothesis.

The statistic 2nQn has three alternative interpretations.
First, 

2nQn = yNNNNPXy/FFFF2 - yNNNNPX* y/FFFF2 = ,

which is the difference of the sum of squared residuals from
the restricted regression under Ho and from the unrestricted
regression, normalized by FFFF2.  This is a large-sample version
of the usual finite-sample F-test for Ho.  
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Second, note that the fitted value of the dependent variable
from the restricted regression is íííío = PX* y, and from the
unrestricted regression is ííííu = PXy, so that

2nQn = (ííííoNNNNíííío - ííííuNNNNííííu)/FFFF2 = (íííío - ííííu)NNNN(íííío - ííííu)/FFFF2 = 2222íííío -ííííu2222
2/FFFF2. 

Then, the statistic is calculated from the distance between
the fitted values of the dependent variable with and without
Ho imposed.  Note that it can be computed from fitted values
without any covariance matrix calculation.  

Third, let bo denote the GMM estimator restricted by Ho and
bu denote the unrestricted GMM estimator.  Then, bo
consists of the OLS estimator for $$$$2 and the hypothesized
value 0 for $$$$1, while bu is the OLS estimator for the full
parameter vector.  Note that íííío = Xbo and ííííu = Xbu, so that
íííío - ííííu = X(bo - bu).  Then

  2nQn = (bo - bu)NNNN(XNNNNX/FFFF2)(bo - bu) 
= (bo - bu)NNNNV(bu)-1(bo - bu). 

This is the Wald statistic W3n.  From the equivalent form W2n
of the Wald statistic, this can also be written as a quadratic
form 2nQn = b1,uNNNNV(b1,u)-1b1,u, where b1,u is the subvector of
unrestricted estimates for the parameters that are zero
under the null hypothesis. 


