1. Facts on Circular Functions: Consider the trigonometric functions \(\cos(\omega) \) and \(\sin(\omega) \), where \(\omega \) is a real number giving the angle in radians. These functions are periodic, with \(\cos(\omega+2\pi k) = \cos(\omega) \), \(\cos(\pi k) = (-1)^k \), \(\sin(\omega+2\pi) = \sin(\omega) \), \(\sin(\pi k) = 0 \), and \(\cos(\omega) = \sin(\omega+\pi/2) \) for \(k = \pm1,\pm2,... \). Define the complex valued function \(\exp(\omega) = \cos(\omega) + i\sin(\omega) \), where \(i = (-1)^{1/2} \). Then \(\exp(\omega+2\pi) = \exp(\omega) \) and \(\exp(\pi k) = (-1)^k \). Here are some other useful relationships —

(1) \[\cos(\omega) = \frac{e^{i\omega} + e^{-i\omega}}{2} \quad \text{and} \quad \sin(\omega) = \frac{e^{i\omega} - e^{-i\omega}}{2i} \]

(2) \[\int_{-\pi}^{\pi} \cos(\omega k)d\omega = \int_{-\pi}^{\pi} \sin(\omega k)d\omega = \int_{-\pi}^{\pi} \exp(\omega k)d\omega = 0 \quad \text{for} \quad k = \pm1,\pm2,... \]

(3) \[\int_{-\pi}^{\pi} \cos(0)d\omega = \int_{-\pi}^{\pi} \exp(0)d\omega = 2\pi \quad \text{and} \quad \int_{-\pi}^{\pi} \sin(0)d\omega = 0 \]

(4) \[\int_{-\pi}^{\pi} \cos(\omega k)^2d\omega = \int_{-\pi}^{\pi} \sin(\omega k)^2d\omega = \pi \quad \text{for} \quad k = \pm1,\pm2,... \]

(5) \[\int_{-\pi}^{\pi} \exp(\omega k)\exp(-\omega k)d\omega = 2\pi \quad \text{for} \quad k = \pm1,\pm2,... \]

(6) \[\int_{-\pi}^{\pi} \exp(\omega k)\exp(-\omega m)d\omega = 0 \quad \text{for} \quad k,m = 0,\pm1,\pm2,... \quad \text{and} \quad k \neq m \]

(7) \[\int_{-\pi}^{\pi} \cos(\omega k)\cos(\omega m)d\omega = \int_{-\pi}^{\pi} \sin(\omega k)\sin(\omega m)d\omega = 0 \quad \text{for} \quad k,m = 0,\pm1,\pm2,... \quad \text{and} \quad k \neq m \]

(8) \[\int_{-\pi}^{\pi} \cos(\omega k)\sin(\omega m)d\omega = 0 \quad \text{for} \quad k,m = 0,\pm1,\pm2,... \]
These formulas are found in handbooks of mathematical functions, and are demonstrated in textbooks on orthogonal polynomials or on Fourier analysis.

Suppose \(T > 1 \) is an integer, and define \(n = \lfloor T/2 \rfloor \), the largest integer satisfying \(n \leq T/2 \). Define the system of functions \(\psi_k(t) = (T)^{-1/2} \exp(i2\pi tk/T) \) for \(t = 1, \ldots, T \) and \(k = -n, -n+1, \ldots, 0, \ldots, n-1 \) for \(T \) even or \(k = -n+1, \ldots, 0, \ldots, n-1 \) for \(T \) odd.

Every complex-valued function \(h(t) \) can be written as \(h(t) = h_1(t) + i h_2(t) \) with \(h_1 \) and \(h_2 \) real-valued. The complex conjugate of \(h \) is \(h^*(t) = h_1(t) - i h_2(t) \), and the product \(h(t)h^*(t) = h_1(t)^2 + h_2(t)^2 \). Apply the formula for geometric sums to show that

\[
\sum_{k=-n}^{n-1} \psi_k(t) \psi_m^*(t) = \delta(k-m).
\]

Then the system of circular functions \(\psi_k(t) \) form an orthonormal basis for \(\mathbb{R}^T \). Suppose \(y_1, \ldots, y_T \) is a sequence of numbers, which may be deterministic or may be a realization from some stochastic process. This sequence can be represented in terms of the system of circular functions. Hereafter, assume \(T \) even and \(n = T/2 \). (Analogous formulas hold when \(T \) is odd, \(n = (T+1)/2 \), and the \(k = -n \) term in the sums below are dropped.) The relationship is

\[
y_i = \sum_{k=-n}^{n-1} \psi_k(t) x_k
\]

with

\[
x_k = \sum_{t=1}^{T} \psi_k^*(t) y_t.
\]

Verify that these formulas follow from the projection of \((y_1, \ldots, y_T) \) on the space spanned by the vectors \((\psi_k(1), \ldots, \psi_k(T)) \) for \(k = -n, \ldots, n-1 \); i.e., the regression of \((y_1, \ldots, y_T) \) on these vectors. The vector \((x_1, \ldots, x_T) \) is termed the Fourier representation of \((y_1, \ldots, y_T) \). Write out the real and imaginary parts of (10) and (11) to get the equivalent formulas

\[
y_i = \sum_{k=-n}^{n-1} \cos(2\pi kt/T) a_k + \sum_{k=-n}^{n-1} \sin(2\pi kt/T) b_k
\]

with

\[
a_k = T^{-1} \sum_{t=1}^{T} \cos(2\pi kt/T) y_t \quad \text{and} \quad b_k = T^{-1} \sum_{t=1}^{T} \sin(2\pi kt/T) y_t.
\]

Show that \(\sum_{t=1}^{T} y_t^2 = \sum_{k=-n}^{n-1} x_k x_k^* \).
2. Suppose \(h \) is a real-valued function on an interval \([-\pi, \pi]\). For \(T \) a large even integer and \(n = T/2 \), define \(y_t = h(-\pi + 2\pi t/T)T^{-1/2} \). Let \(x_k \) be the Fourier coefficient given by (11), and define \(z_k = 2\pi e^{ikx_k} \). The Fourier representation of the sequence \(y_t \), from (11), is

\[
(14) \quad x_k = \sum_{t=-T}^{T} \psi^\ast(t)y_t = T^{-1} \sum_{t=-T}^{T} e^{i2\pi kn/T}h(-\pi + 2\pi t/T),
\]

implying

\[
(15) \quad z_k = \frac{2\pi}{T} \sum_{t=-T}^{T} e^{i2\pi kn/T}h(-\pi + 2\pi t/T)
\]

and, from (10),

\[
(16) \quad h(-\pi + 2\pi t/T) = \sum_{k=-n}^{n-1} e^{i2\pi kn/T}z_k/2\pi.
\]

Now let \(T \to \infty \). Suppose \(h \) is of bounded variation (i.e., can be written as the difference of two increasing bounded functions). Then it is continuous except at most at a countable number of points, and is square integrable. Then (15) converges to

\[
(17) \quad z_k = 2\pi \int_{0}^{1} e^{i2\pi ks+\pi kn}h(-\pi + 2\pi s)ds.
\]

A further change of variable to \(r = -\pi + 2\pi s \), implying \(-12\pi k s + \pi kn = -1kr \), yields

\[
(18) \quad z_k = \int_{-\pi}^{\pi} e^{i\pi r}h(r)dr.
\]

Show that the \(z_k \) satisfy

\[
\sum_{k=-n}^{n-1} z_k^\ast(z_k) = (4\pi^2/T) \int_{-\pi}^{\pi} h(-\pi + 2\pi t/T)^2 \to 2\pi \int_{-\pi}^{\pi} h(r)^2dr.
\]

Then, the limit of (16), evaluated at \(t = [T(r+\pi)/2\pi] \), as \(n \to \infty \) exists for \(r > -\pi \) and equals

\[
(19) \quad h(r) = \sum_{k=-\infty}^{+\infty} e^{ikr}z_k/2\pi
\]

at all continuity points of \(h \). The pair (18) and (19) give a Fourier representation of a function on
a bounded interval. If the function is periodic with \(h(r \pm 2\pi) = h(r) \) for all \(r \), then the Fourier representation holds for all \(r \). Using orthogonality properties of \(e^{ikr} \), show directly that if \(z_k \) is a square summable sequence, then applying (19) then (18) reproduces the sequence. Note that if \(h(z) \) is a sum of sines and cosines with frequencies that are multiples of \(1/2\pi \), then the Fourier representation will have non-zero \(z_k \)'s only for the \(k \)'s corresponding to these frequencies. Then, the \(z_k \) series may be thought of as extracting the frequencies appearing in \(h(r) \).

3. Suppose \(h(r) \) is a square integrable real-valued function on the real line. For a large constant \(M \), apply the Fourier representation in the previous question to the function \(M \cdot h(Mr) \) for \(-\pi \leq r \leq \pi \) to obtain (18) and (19). Define a variable \(\omega = k/M \), or \(k = \omega M \), and a function \(H_M(\omega) \) on the real line by

\[
(20) \quad H_M(\omega) = \int_{-\pi M}^{+\pi M} e^{-i\omega s} h(s) ds \quad \text{or} \quad \int_{-\infty}^{+\infty} e^{-i\omega s} h(s) ds.
\]

Note that \(z_k = H(\omega) = \int_{-\pi M}^{+\pi M} e^{i\omega s} h(s) ds \), so that (19) can be written

\[
(21) \quad h(Mr) = \frac{1}{2\pi M} \cdot \sum_{k=-\infty}^{+\infty} e^{ikr} H_M(k/M).
\]

Letting \(s = Mr \) and \(\omega = k/M \), the limit of (21) as \(M \to \infty \), if it exists, becomes

\[
(22) \quad h(s) = \frac{1}{2\pi} \cdot \int_{-\infty}^{+\infty} e^{i\omega s} H(\omega) d\omega.
\]

The pair consisting of (22) and

\[
(23) \quad H(\omega) = \int_{-\infty}^{+\infty} e^{i\omega s} h(s) ds
\]

are *Fourier transforms*. This construction shows that Fourier transforms are obtained as limits of Fourier representations, and also shows that when the limits exist, the Fourier representations from Question 1 can be used to approximate the Fourier transforms. Show that if (22) and (23) are satisfied, then
\[(24) \quad \int_{-\infty}^{+\infty} h(s)^2 ds = \int_{-\infty}^{+\infty} H(\omega)H^*(\omega) d\omega. \]

4. For the Fourier transforms (22) and (23), verify the following conditions:
 (1) \(h \) even implies \(H \) real and even
 (2) \(h \) odd implies \(H \) imaginary and odd
 (3) [time scaling] for \(c > 0 \), \(h(cs) \) transforms to \(c^{-1}H(\omega/c) \)
 (4) [frequency scaling] for \(c > 0 \), \(H(c\omega) \) transforms to \(c^{-1}H(s/c) \)
 (5) [time shifting] \(h(s-\tau) \) transforms to \(H(\omega)e^{-j\omega\tau} \)
 (6) [convolution] if \(g \) and \(h \) are real functions and \(G \) and \(H \) are their transforms, and if
 \[(g*h)(s) = \int_{-\infty}^{+\infty} g(t)h(s-t)dt, \]
 then the transform of \(g*h \) is \(G(\omega)H(\omega) \).
 (7) [covariation] if \(g \) and \(h \) are real functions and \(\text{cov}(g,h) = \int_{-\infty}^{+\infty} g(s)h(s)ds \), then \(\text{cov}(g,h) \)
 \[= \int_{-\infty}^{+\infty} G(\omega)H^*(\omega)d\omega. \]
 (8) [Parseval's theorem] \[\int_{-\infty}^{+\infty} h(s)^2 ds = \int_{-\infty}^{+\infty} H(\omega)H^*(\omega) d\omega. \]