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Abstract

This paper is concerned with the econometric modelling of the demand be-
havior of a population with heterogeneous preferences under minimal assump-
tions. More speci…cally, we characterize the implications of the assumption
that the Slutsky matrix is negative semide…nite and symmetric across a het-
erogeneous population without assuming anything on the functional form of
individual preferences, and very little about their distribution. In the same
spirit, implications of a linear budget set are being considered.
Solutions for several sources of endogeneity, like measurement error and en-
dogeneous preference are considered. The consequences of functional form re-
strictions are also explored. First empirical results using new nonparametric
regression techniques establish that the Weak Axiom holds across the popula-
tion, while Utility maximization is somewhat less well accepted.

1 Introduction
Economic theory yields strong implications for the actual behavior of individuals.
This is particularly true for demand theory, where a couple of well-known restric-
tions like Slutsky symmetry arise. All restrictions imposed by rationality on demand
behavior are qualitative in nature, which means that they do not predict a speci…c
functional relationship among a set of variables. To test the implications of rational
behavior, by and large two strands of literature have emerged. The …rst uses revealed
preference theory, is nonparametric in nature and concentrates on violations of the
Strong Axiom in observable data. Key contributions are Afriat (1967) and Varian
(1982). More recently, a similar approach has been suggested by Blundell, Browning
and Crawford (2002).
The second strand of literature tests a couple of restrictions on demand behavior,
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using fully speci…ed parametric demand systems. This literature dates back to at
least the …fties (Stone (1954)), but has really peaked with the advent of fully ‡exible
functional form demand systems. More recent examples are the Translog, Jorgenson
et al. (1982), the AIDS, Deaton and Muellbauer (1980), Blundell et al (1993), or
the “exact QUAIDS”, Banks et al.(1997), see also Lewbel (1999) for a comprehensive
survey. Obviously, both approaches have its limitations: The …rst usually leads to
tests of low power, as price movements are dwarfed by movements in income, and
concentrates on one speci…c property only. The second su¤ers from the limitations
that demands take a certain functional form and that the introduction of preference
heterogeneity has not been solved very successfully (see, e.g. Brown and Walker,
1989).
Our aim in this paper is to lay the foundations for nonparametric demand systems,
ideally combining the advantages of both approaches: Being nonparametric in na-
ture, i.e. not specifying any functional form, and still able to judge the restrictions
imposed by rationality robustly as well as comprehensively. Additionally, we want to
allow for unobserved heterogeneity in preferences. Furthermore, we will include the
formation of preferences, an issue that has been rightfully emphasized recently, e.g.,
by McFadden (2001), or - particularly forcefully - by Manski (2000).
The structure of this paper will be as follows: in the next section we introduce the
main concepts, and derive the …rst major theoretical result that speci…es under what
conditions key elements of demand theory can be recovered from applied models,
provided we have a heterogeneous population with completely general heterogeneity
of unknown type. In particular, our interest centers on the key elements of individ-
ual rationality. For instance, we concentrate on the negative semide…niteness and
symmetry of the Slutsky matrix in a heterogeneous population, and we give a new
characterization of both in terms of observables. In the third section we consider
modi…cations of the benchmark scenario of the second section: Restricting mildly the
way in which parts of the unobserved heterogeneity enter, we show that we may then
recover in particular Slutsky symmetry in a new fashion. Other important extensions
of the basic model concern the use of additional information like exclusion restrictions
or other sources of data. While the latter allows us to determine the in‡uence of parts
of the unobserved heterogeneity, the former may be used to weaken some remaining
restrictive assumptions. Finally, we give an overview of preliminary results, and close
this paper with a brief summary.

2 The Demand Behavior of a Heterogeneous Pop-
ulation

As already mentioned in the introduction, our main aim in this paper is to model a
population heterogeneous in preferences without assuming anything on the functional
form of individual demands and still retain testable implications of Economic theory.
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To this end, we start by introducing a framework for modelling a heterogeneous
population.
Demand theory assumes that the demand of all individuals is the result of a well
behaved utility maximization problem, yielding a demand function

wi = Á(p; yi; ui) , (2.1)

where wi; p and yi are budget shares, log prices and log total expenditure, vectors
of length L;L and 1; respectively. Furthermore, ui = ui(¢) denotes the individual’s
utility function. Throughout, we restrict ourselves to continuously di¤erentiable de-
mand functions, which restricts preferences to be itself continuous, strictly convex and
locally nonsatiated, with utility function everywhere twice di¤erentiable. Also, the
use of total expenditure instead of income is justi…ed by the assumption of additive
separability of the preferences over time, a strong assumptions which nevertheless
underlies all of the applied demand literature(with rare exceptions, e.g. Browning
(1991), Hoderlein (2002a)). This assumption allows to abstract from all issues per-
taining to an uncertain future,and will be denoted by (Add).
The existence of the Á(¢) functional (from now on called theoretical microrelation)
can be derived from the argmax operator, i.e. a rule that relates these variables. The
theoretical properties of this functional are as follows: For …xed ui, say u0; Á(¢; ¢; u0)
behaves like a standard rational demand function, which obeys the usual conditions
of rational behavior, e.g. the compensated price derivatives form the negative semi-
de…nite and symmetric Slutsky matrix.
In order to avoid technical di¢culties arising with the di¤erentiation on function
spaces, we shall assume henceforth that ui may be completely described by a …nite
…xed vector vi = (v1i; : : : ; vMi) of parameters1 . Therefore we consider Á as a [0; 1]L

valued function de…ned on RL+£R+£RM ; continuously di¤erentiable in p and y: Also,
for simplicity of exposition, we consider p to be a positive nonrandom vector. This is
immaterial for our argumentation as the same arguments go through if prices depend
on time series randomness alone, while other variables exhibit cross-section variation,
see Hoderlein (2002a).
If we interpret each individual as a realization from an underlying population, we can
give the equivalent formulation to (2.1) in terms of random variables. We assume
that (Wi; Yi; Vi) and all other random variables to appear below, denoted as random
vector by Gi; are iid with (Wi; Yi; Vi; Gi) v (W;Y; V;G), where the latter denote the
population variables.

Assumption 2.1 Let all variables and functions be as de…ned above. Demand is
then given by

W = Á(p; Y; V ) (2.2)
1This does not mean that the concepts can not be de…ned more generally, see Hoderlein (2002a),

who uses Frechet-derivatives (see Luenberger (1997)). Little is, however, gained in terms of Economic
understanding.
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As our aim is to establish the link between the theoretical microrelation and its
empirical counterpart, we consider the conditional average. The conditioning here is
on observables, where the set of observables obviously depends on the information at
hand. In demand analysis this is cross-section data, in which case the conditioning
¾-…eld must consist of all the current observables.
To capture the endogeneity in preferences and clarify the importance of observables
and unobservables, we assume that every preference is endogenous in the following
sense: it depends on the individuals’ current observable and unobservable attributes,
denoted as random vectors by Z and A respectively. Here, Z denotes all observable
household attributes (like age, household size, etc.). The variable A in turn is meant
to capture individual speci…c unobservables. These could in principle be time-varying
as well as in…nite dimensional, however, for simplicity of exposition we desist from
this greater generality and consider only the case of a …nite (S£1) and time invariant
vector2. This leads to the following

Assumption 2.2 Let all variables be as de…ned below. Then

V = #(Z;A); (2.3)

where # is a …xed Borel-measurable RM -valued function de…ned on the set Z £ A of
possible values of (Z;A):

So far we have de…ned all main components of our framework. To state the next
assumption, which ensures that interchanging di¤erentiation and integration is well
de…ned, as well as for statement of the proposition, we need the following notation:
Let¹G be the distribution of a random variableG, and denote by ¹GjH the conditional
distribution of G given H:
Let m(p; y; z) = E[W jY = y; Z = z] = E[Á(p; Y; V )jY = y; Z = z] denote the
empirical regression function, and …nally let Dxf denote the derivative of a function
f with respect to x; whose dimension will be obvious from the context. Moreover,
whenever convenient we suppress the arguments of the respective functions.

Assumption 2.3: (Bounded Convergence) There exists a function g; such that
°°°°
µ
DyÁ(p; y; #(z; a))
DpÁ(p; y; #(z; a))

¶°°°° · g(a) ;with
Z
g(a)¹A(da) < 1;

uniformly in (p; y; z):3

Finally, we specify all dependence assumptions
2Both complications can be handled by the methods below.
3Among the primitive economic conditions that ensure that this assumption holds are: strict

convexitiy, local nonsatiation and continuity of the preferences generated by #, a linear budget
constraint and p >> 0:
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Assumption 2.4: ¹AjY;Z = ¹AjZ :

Basically, this assumption states that - conditional on Z - income and unobserved
heterogeneity are distributed independently. This is obviously a strong assumption,
needed in this strength due to the generality of the other assumptions. Under what
conditions this may be relaxed is one of topic of section 3.
Given these assumptions and notations, we are in the position to state the following
propositions on the relation of theoretical and empirical quantities, where we focus
on the following questions:

1. How are the empirically obtained derivatives (Dym; Dpm) with respect to
prices and income related to the theoretical ones (DyÁ; DpÁ)?

2. How and under what kind of assumptions do elements of observable behavior
allow inference on key elements of Economic theory. Especially, what does observable
behavior tell us about homogeneity, adding up as well as negative semide…niteness
and symmetry of the Slutsky-matrix

S(p; y; v) = DpÁ(p; y; v)+DyÁ(p; y; v)Á(p; y; v)0+Á(p; y; v)Á(p; y; v)0+diag fÁ(p; y; v)g

These concepts are commonly known as “rationality” in this scenario4, and shall
be subject of Proposition 2.2. We start with Proposition 2.1 which establishes the
relationship between the derivatives:

Proposition 2.1

Let all the variables and functions be as de…ned above. Let (Add) and (A2:1) - (A2:3)
be true. Then follows that (i)

Dpm(p; Y; Z) = E[DpÁ(p; Y; V )jY; Z]

If in addition (A2.4) holds, we have (ii)

Dym(p; Y; Z) = E[DyÁ(p; Y; V )jY; Z]

Moreover, if V is Z-measurable; then (iii)

Dym(p; Y; Z) =DyÁ(p; Y; V )and Dpm(p; Y; Z) =DpÁ(p; Y; V ).

Proof: Appendix.

Parts (i) and (ii) of this proposition state that each individual’s empirically obtained
marginal e¤ect is the best approximation (in the sense of minimizing distance with
respect to L2-norm) to the individual’s theoretical marginal e¤ect. For price deriva-
tives, this holds under virtually no conditions at all, for income derivatives we have

4We adopt this language. For other de…nitions of rationality, see Chiappori and Rochet (1987).

5



to invoke the additional assumption A2:4, because the individually varying income
e¤ects are not to be confounded with the individually varying preference heterogene-
ity. In this general scenario, this is as close as current observables allow us to get to
the true marginal e¤ects5.
Usually, the empirical coe¢cients will still be an average across individuals with the
same realization of Z, and the preference-induced heterogeneity will still be bigger
than the observed heterogeneity. However, the second part of the proposition gives a
condition on the information needed for both to coincide: all individual randomness
that a¤ects demand must be fully captured by current observables.
Regarding the average across a population or a subgroup, the following corollary
holds:

Corollary 2.2

Let all the variables and functions be as de…ned above. Let (Add) and (A2:1) -
(A2:4) be true. Then follows E[Dym(p; Y; Z)jF ] = E[DyÁ(p; Y; V )jF ] 8j; and for
any F µ ¾ fY; Zg : In particular E[Dym(p; Y; Z)] = E[DyÁ(p; Y; V )] 8j: A similar
condition holds for Dp under (Add), (A2:1) - (A2:3):

Proof: Appendix.

Thus, the average of the empirical marginal e¤ects over the whole population or over
a subgroup coincides almost surely with the true average marginal e¤ect across pop-
ulation or subpopulation.
Another trivial corollary concerns the standard practise of inferring something about
elasticities from the observed regression function. Again, we need some notations:
Let V [G;HjO] denote the conditional covariance (matrix) between G and H condi-
tional on O and V [H jO] be the conditional (co-)variance (matrix) of H: In both cases
the dimensionality should become clear from the context. Moreover, let ¼ij denote
the i-th price elasticity of good j, let ´j denote the income elasticity of good j, let
mlog(p; y; z) = E[log (W ) jY = y; Z = z] and ±ij be Kronecker’s delta

Corollary 2.3

For the price and income elasticities, the following holds: E [¼ijjY; Z] = Dpimlog;j¡±ij
and E

£
´jjY; Z

¤
= Dymlog;j +1;where mlog;jis the j-th element of mlog. In particular,

unless the condition V
h
DyÁj; 1

Áj
jY; Z

i
¡

E
£
DyÁjjY; Z

¤

E
£
ÁjjY; Z

¤ E
"

E
£
ÁjjY; Z

¤

Áj
¡ 1jY; Z

#
= 0

holds, E
£
´jjY; Z

¤
6= Dym(j)

m(j)
+ 1;where m(j) is the j-th element of m:

5Note that A2:4 could be relaxed to a local independence condition Dy¹AjY;Z(a; y; z) = 0; (y; z) 2
[y0; y1] £[z0; z1] for …xed y0, y1; z0, z1; if we were just interested in the marginal e¤ects of a subgroup
of the population.
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Proof: Appendix.

It is instructive to note that the elasticities have to be calculated from the log budget
share regressions (which is only possible provided W > 0). In particular, E

£
´jjT; Z

¤

equals Dym(j)

m(j)
+ 1 only if the aforementioned condition is ful…lled6 , for which there is

no a priori reason.
We turn now to the question which economic properties carry through to the observ-
able spaces. This problem bears some similarities with the literature on aggregation
over agents in demand theory, because taking conditional expectations can be seen as
an aggregation step, as long as the measurability condition of P2:1 (iii) is not met.
With the new notation, m2(p; y; z) = E[WW 0jY = y; Z = z] and diag fmg denoting
the matrix having the mj, j = 1; ::; L on the diagonal and zero o¤ the diagonal, we
are in the position to state the following

Proposition 2.4

Let all the variables and functions be as de…ned above, and (Add), (A2:1) - (A2:3) be
true.

(i) If Á ful…lls ¶0Á = 1 (a:s:) ) ¶0m = 1 (a:s:):

Let additionally (A2:4) hold as well. Then follows that

(ii) If Á ful…lls Á(p+ ¸; Y + ¸; V ) = Á(p; Y; V ) (a:s:) ) Dpm¶+Dym = 0
and m(p+ ¸; Y + ¸; Z) = m(p; Y; Z) (a:s:):

(iii) If S is negative semide…nite (nsd) (a.s.)
) Dpm+Dym2 + 2(m2 ¡ diag fmg) is nsd (a.s.), where Dpm = Dpm+Dpm0:

(iv) If S and V [DyÁ; Á0jY; Z] are symmetric (a:s:)
) Dpm+Dymm0 is symmetric (a.s.).

(v) Let V be Z measurable
, fS is symmetric and nsd i¤ Dpm+Dymm0 +m2 ¡ diag(m) is symmetric and

nsd}.
Moreover, if V is Z measurable, the converse holds in (i) and (ii) as well.

Proof: Appendix.

The importance of this proposition lies in the fact that it allows testing the key ele-
ments of rationality without having to specify the functional form of the individual

6 In this condition, the second term measures to a certain extent the degree of nonlinearity present
in Áj : If this were zero then (¤) would reduce to V

h
DyÁj ; 1

Áj
jY; Z

i
= 0:
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demand function. Suppose we see any of these conditions rejected in the observable
(generally nonparametric) regression at a position y; z; p: Recalling the interpretation
of the conditional expectation as average (over a “neighborbood”) this proposition
tells us that there exists a set of positive measure of the population (“some individu-
als in this neighborhood”) which does not conform with the postulates of rationality.
This is the case regardless of how rich our information about heterogeneity is: If our
information set is poorly, and we are nevertheless able to identify a local average
for which one of the conditions is violated, then it must be a fortiori violated if our
information set increases.
If we believe the information to be complete - see case (v) - then we may directly
identify these individuals, for then they are completely characterized by their observ-
ables. Moreover, the reverse implication is perhaps even more signi…cant. Statements
linking the observed modelDpm+Dymm0 to individual behavior7, namely the S; are
only true if V is Z measurable, i.e. if all individual heterogeneity has been cap-
tured by observables. This is a fortiori true for the parametric literature. Appending
“an additive error capturing unobserved heterogeneity” and proceeding as usual is
not a solution either. Note that we may always append an additive error, since
m = Á + (m ¡ Á) = Á + ": The crux is now that the error is generally a function
of y and p, as was already noted by Brown and Walker (1989). For instance, the
nonsymmetric part of the Slutsky matrix becomes

S = Dpm+Dymm0 +Dp" + (Dym) "0 + (Dy")m0 + (Dy") "0 ,

and the last four terms will not vanish under general speci…cation of Á. But even if
we restrict the way unobserved heterogeneity enters, as is done in the third section,
there will be an averaging interpretation. More importantly, as shown below, new
correction terms and expressions arise. Thus, the standard practise must be under-
stood as assuming that there be no unobserved preference heterogeneity.
Returning to Proposition 2.2., one should note a key di¤erence between negative
semide…niteness and symmetry. For the former we may provide an “if” characteriza-
tion without any assumptions other than the basic (see (iii)): To obtain something
equivalent for symmetry, we have to invoke the additional assumption about the con-
ditional covariance matrix. This matrix is unobservable - at least without any further
assumptions. Note that this assumption is (implicitly) implied in all of the literature,
since only then we can unambiguously check for symmetry using Dpm + Dymm0;
which is the standard practice.
Note further some parallels with the aggregation literature in economic theory: Only
adding up and homogeneity carry immediately through to the conditional average.
This result is similar in spirit to the Mantel-Sonnenschein theorem, where only these
two properties are inherited by aggregate demand. Furthermore, it is also well known
in this literature that the aggregation of negative semide…niteness (usually shown for

7For instance: “All individuals display a negative semide…nite Slutsky matrix, as is evident from
the empirical results”.
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the Weak Axiom) is more straightforward than that of symmetry. Finally, a matrix
similar to V [DyÁ; Á0] has been used in this literature (as “increasing dispersion”, see
Jerison (1984)).

Lewbel (1990, but especially 2001, Theorem 1) and Brown and Walker (1989) give
results in a similar spirit. While Brown and Walker concentrate on the consequences
for the error structure, this approach is more closely related to Lewbel’s. There are,
however, some key di¤erences: The result linking negative semide…niteness to observ-
ables, i.e. P 2:2 (iii) is new. Additionally, Lewbel characterizes symmetry through
V [DyÁ; Á0jY; Z] = 0, which is of course more restrictive as our result (iv). Finally, the
approximation and conditional averaging interpretation of the non-measurable case
is new.
As a last consequence we obtain a characterization of the functional forms of the
regression. In particular, Blundell et al. (2002), establish that regressions additive in
income and preference parameter, di¤erentiable in both variables, must have income
entering (log-)linearly. The same results is likely to carry through to the observable
regression. Too see this, suppose that there is “mixed” term of the form ´(Y; V ). But
for the observable regression to be additive, we must have that E [´(Y; V )jY; Z] = 0;
a strong assumption. Thus, as long as unobserved preference heterogeneity is condi-
tionally independent of income, which was a necessary assumption for identi…cation,
additive observable regressions must have been caused by additive models in the un-
observable world. This restricts the use of additive models severely. An alternative
model that retains theory consistency and is econometrically tractable, is the ex-
tended additive model of Hoderlein (2002a), and Christopeit and Hoderlein (2002)
This model is used in the application below.
Thus far we have established that the most commonly used assumptions may be
weakened dramatically, without loosing the ability to test the key elements of ratio-
nality. However, we still had to invoke some assumptions, out of which the assumed
conditional independence of preference heterogeneity and “income”, as well as the
covariance assumption in (iv) are arguably the most troubling. Given the generality
of our model (2.1) the strength of these requirements comes as no surprise. We now
turn to the question in which way we may weaken them.

3 Endogeneity
In this section we show how the framework introduced may be extended to tackle
some of the most common sources of endogeneity. It is a reoccurring theme in this
paper that emphasis is given to structural modeling, i.e. explicitly taking into ac-
count the various sources of endogeneity. First we shall focus on the implication of
measurement error in the income variable, and we establish that large parts of our
statements may be preserved, even in the presence of measurement error.
As was already emphasized in the second section, violations of the conditional inde-
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pendence of unobservables assumption may constitute an important source of endo-
geneity. Endogeneity related to the formation of preference is a good example. We
show how this issue can be modeled and that additional information may be used to
tackle the endogeneity coming from this particular source of unobserved heterogene-
ity, yielding yet another correction term.
But we also give a general treatment of endogeneity in this framework, related to
nonparametric IV. Finally, we show how the implications of functional form restric-
tions may be used. We want to emphasize that the order in which these issues are
being treated does not imply anything about their importance.

3.1 Measurement Error
Measurement errors are often cited as a cause for unsatisfactory empirical results.
The advantage of the projection-based approach is that the measurement error may
be treated as another element of the projection, implying that some of the properties
may hold even in the polluted data, or may at least be found after correction. Recall
our baseline model

W = Á(p; Y; V ).

It is often assumed that instead of the random scalar Y we only observe a mismea-
sured random scalar X, whereX = Y +Q: Here Q is another scalar random variable,
assumed to be independent of Y with mean zero and …nite variance. As above, in-
stead of DyÁ we may observe it’s closest approximation E [DyÁjX;Z] ; now of course
with the mismeasured variable in the conditioning set. To obtain this quantity is now
the goal, as is it the closest approximation (in the sense of minimizing a L2 distance)
given our information, and some or all of the economic properties may have testable
implications.
More speci…cally, we focus on the relationship between E [DyÁjX;Z] andDxE [ÁjX;Z],
which is of course the derivative of the nonparametric regression ofW on X; p and Z.
We discuss this is in the baseline scenario. To this end, we introduce the following
assumption

Assumption 3.1.5: assume that, conditional on Z; Y has a absolutely continuous
distribution with density fY jZ(y; z), such that
(i) limy!§1fY jZ(y; z) = 0 8z
(ii) Y jZ = z v N(¹(z); ¾2(z))

We shall also make use of the following notation: M(p; x; z) = E [Á(p; Y; V )jX = x; Z = z] :

The following proposition is a consequence:

Proposition 3.1.1 Let all the variables and functions be as de…ned above, and let
(Add) and (A2:1)-(A2:4) and (A3:1:5) (i) be true
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(i) Then follows that

DxE [Á(p; Y; V )jX = x; Z = z] = E [DyÁ(p; Y; V )jX = x; Z = z] + ·;

where

· = E
£
W

£
Dx log fX jZ (X;Z)¡Dy log fY jZ(Y ;Z)

¤
jX = x; Z = z

¤

(ii) If in addition (A3:1:5) (ii) holds, then

DxE [Á(p; Y; V )jX = x; Z = z] = (1 ¡ Ã(x; z))E [DyÁ(p; Y; V )jX = x; Z = z] + ´;

where
Ã(x; z) = V [Y jX = x; Z = z]

V [Y jZ = z]
;

and ´ contains higher order terms in y. Su¢cient for ´ = 0 is
Z

V
·D2
yÁ(p; yr; V )

2
(Y ¡ y0)2 ; Y jX = x; Z = z

¸
¹Y;V jX;Z(dy0; dv;x; z) = 0;

with yr = ¸y0 + (1¡ ¸)Y:

Proof: Appendix.

Remark 3.1: Although it appears to be su¢cient for · = 0 thatDx log fXjZ (x; z) =
Dy log fY jZ(y; z) 8y; x; z; this condition is completely implausible. To see this, take
any …xed z (so that we may skip the dependence on z) and note that Dx logfX (x) =
Dy log fY (y) can only be ful…lled if neither side depends on their respective argument,
i.e. Dy log fY (y) = Dx log fX (x) = h: Thus, fX (x) = exp [hx] + c; where h and c are
constants. Since x is log income, which ranges from +1 to ¡1, this is a violation of
assumption A3:1:5 (i); save for the case when h = 0; i.e. X is uniformly distributed,
which is empirically rejected. Since the correction expression is hard to simplify
further without any additional assumption, we invoke the much more plausible A3:1:5
(ii): It states that “true income” has a lognormal distribution. Since it is known that
the unconditional distribution of X is approximately lognormal, this may have been
caused by a proportionate measurement error on a true underlying lognormal Y .
Additionally, note that

Z
V

·
D2
yÁ(p; yr; V )

2
(Y ¡ y0)2 ; Y jX = x; Z = z

¸
¹Y;V jX;Z(dy0; dv;x; z) = 0;

is ful…lled if D2
yÁ = 0: This would be the case with most of the commonly used

functional forms, in particular the almost ideal type.
Remark 3.2: Note that

V [Y jZ = z] = E [V [Y jX = x; Z = z] jZ = z] + V [E [Y jX = x; Z = z] jZ = z]
¸ E [V [Y jX = x; Z = z] jZ = z] ;
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so that 0 < E [Ã(X;Z)jZ = z] · 1; and we have attenuation (on average over the
income range).

The implications for the economic properties, in particular for Slutsky negative semi-
de…niteness, are summarized in the following

Proposition 3.1.2 Let all the variables and functions be as de…ned above, and let
(Add) and (A2:1)-(A2:4) be true

(i) Then follows that adding up of Á is inherited by M.

If in addition (A3:1:5) holds, then

(ii) Homogeneity of Á implies that DpM¶ +DxM < 0 if DxM > 0; that DpM¶ +
DxM > 0 if DxM < 0 and that DpM¶ = 0 if DxM = 0:

(iii) Su¢cient for
S is nsd (a.s.) ) DpM +DxM2 + 2(M2 ¡ diag(M )) is nsd,
is that E [Dy [ÁÁ0] jX;Z] is positive semide…nite

(iv) If S is symmetric (a.s.), DxM = 0 and V [DyÁÁ0jX = x; Z = z] is symmetric
) DpM is symmetric (a.s.).

Proof: Appendix.

Remark 3.3: Note how unevenly the measurement error diminishes the strength
of the testable implications: Some implications remain largely unaltered: Besides
the trivial adding up restriction it is in particular negative semide…niteness that
proves robust. In particular, E [Dy [ÁÁ0] jX;Z] pds has to be assumed. This is of
course implied by Dy [ÁÁ0] psd, a property of, e.g., homothetic preferences, but the
aggregation literature has given some other examples that lead to an average (in our
case: conditional average) income e¤ect matrix that is psd, for instance increasing
dispersion (Jerison (1984)). In remarkable contrast, the already weak implications
of symmetry are now con…ned to the extreme case of a purely homothetic average
(DxM = 0). Also, homogeneity is weakened to a sign property.

3.2 Preference Formation
It is a common to assume stable preferences during the process of decision mak-
ing. However, it is also widely acknowledged that these “stable” preferences - be-
sides incorporating truly idiosyncratic elements - have also been formed by the social
environment. A prime candidate for such an environment would of course be the
upbringing in a family, but an individual’s preferences might also be in‡uenced by
becoming parent, by the colleagues at work, etc. To capture the endogeneity in pref-
erences and clarify the importance of observables and unobservables, we assume that
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every preference is endogenous in the following sense: it depends on the individu-
als’ past observable and unobservable attributes, denoted as random vectors by Z¡
and A respectively. Z¡ re‡ects the dependence of preferences on the past “social
environment” where preferences have been shaped8. It is debatable whether this set
might also contain past Economic choice variables, for then forward-looking individ-
uals could in‡uence future preferences by current decisions. This is a question of
myopia. To give Economic theory some predictive power we shall exclude this possi-
bility, so that Z¡ contains only past attributes and no choice variables, but we shall
pick up this point when discussing exclusion restrictions and instrumental variables.

Assumption 3.2.2 Let all variables be as de…ned below. Then

V = #(Z¡; A);

where # is a …xed Borel-measurable RM -valued function de…ned on the set Z¡£A of
possible values of (Z¡; A):

As a matter of fact, technically we may allow for Z being an argument of # as
well, so that V = #(Z;A) would be a nested case. However, our focus is really
on the preference formation in the past, so we retain the notation (2.3). The next
assumption is about the nature of the stochastic process generating Z

Assumption 3.2.3
Z = h(Z¡ + U)

where h is one to one and onto, and h = h ± g; g(x; y) = x + y; is a …xed,
Borel-measurable RG-valued function de…ned on the set Z¡£U of possible values
of (Z¡; U):

This assumption clari…es how past and present are linked. The leading proponent
would be a (Markovian) VAR, i.e. Zt = B(Zt¡1+Ut) = BZt¡1+Ct; where t denotes
time, and B is a nonrandom matrix, but A3:1:3 allows for more general structures
as well9. This assumption can be relaxed if we have additional information on the
stochastic process generating Z; see section 3.3. below.

Assumption 3.2.4: (Dominated Convergence) There exists a function g; such that
°°°°
µ
DyÁ(p; y; #(h¡1(z)¡ u; a))
DyÁ(p; y; #(h¡1(z)¡ u; a))

¶°°°° · g(a; u) ;with
Z
g(a; u)¹AU(da; du) < 1;

8“Past” in this sense may well include the immediate past. Moreover, allowing current attributes
to in‡uence demand actually simpli…es the analysis.

9For instance, the more distant past ( t ¡ ¿ , say) may a¤ect current Z: Furthermore, it could be
generalized to Z = h(g(Z¡) + g(U )). The role of the additivity assumption inside the h function is
to insure that the Jacobian determinant in a change-of-variable formula is unity:
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uniformly in (p; y; z): Here, h¡1 is the inverse function of h. A similar condition
holds for Dp:10

Thus far we have just modi…ed the above assumption to …t our new scenario. To
prevent this from being an exercise in pure modelling aesthetics, we have to intro-
duce some additional elements that may allow us to make use of the richer model
structure. It will come from the following observation:
In many countries, large panel-data sets have become available recently. These con-
tain a lot of information about the time-series evolution of the distribution of many
variables of interest to our discussion, in particular on the joint distribution of Y; Z; Z¡
and U , but usually lack information on the demand. This is, as in our benchmark
model of the second section, still contained in the cross section only. The question
becomes how to nevertheless pro…t from this additional source of information?
To see that this observation allows some loosening of assumption, consider the mod-
i…ed dependence assumptions

Assumption 3.2.5: The de…ned distributions obey the following restrictions:
(i) ¹AjY;Z;U = ¹AjZ;U,
(ii) assume that, conditional on Y and Z; U has a absolutely continuous distribu-

tion with density fU jY;Z: Moreover U has bounded support, with fU jY;Z bounded away
from 0 on the entire support, and that f UjY;Z is di¤erentiable with respect to y for any
y ; z ; u .¹U jY;Z = ¹UjZ :

Remark 3.4: Note that inA3:2:5 there are now two sources of potentially unobserved
heterogeneity. As in the benchmark scenario, the component A cannot be recovered.
Therefore we have to invoke an assumption of similar type as above. However,we will
be able to capture the in‡uence of the other source of unobserved heterogeneity from
the panel data. Thus, there is no need for a (potentially to strong) independence
assumption.

As in the general scenario of the second section, but now after a change of variables
discussed in the appendix, we have

m(p; y; z) =
Z

U

Z

A
Á(p; y; #(h¡1(z) ¡ u;a))¹AjY;Z;U(da; u; y; z)¹U jY;Z(du; y; z)

Taking the derivative with respect to y; using A3:3:5 ,and rearranging yields

n(p; y; z) =
Z

U

Z

A
DyÁ(p; y; #(h¡1(z)¡ u; a))¹AjZ;U (da; u; z)¹U jY;Z(du; y; z) +

Z

U

Z

A
Á(p; y; #(h¡1(z) ¡ u; a))DyfU jY;Z(u; y; z)¹AjZ;U (da; u; z)du

10Among the primitive economic conditions that ensure that this assumption holds are: strict
convexitiy, local nonsatiation and continuity of the preferences generated by #, a linear budget
constraint and p >> 0:
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As above the …rst rhs term is E [DyÁ(p;X; V )jY; Z] ; while the second becomes
Z

U

Z

A
Á(p; y; #(h¡1(z)¡ u; a))DyfU jY;Z(u; y; z)

fUjY;Z(u; y; z)
¹AjZ;U (da; u; z)¹U jY;Z(du; y; z);

which is E
£
WDy log

¡
fUjY;Z(U; Y; Z)

¢
jY = y; Z = z

¤
and shall be denoted as Cor(p; y; z):

Since y and z were chosen arbitrarily, we can summarize this argument in the follow-
ing lemma, which extends P2:1 to this scenario:

Lemma 3.2.1 Let all the variables and functions be as de…ned above, and let (Add)
and (A2:1),(A3:2:2)-(A3:2:5) be true. Then follows that E [DyÁ(p;X; V )jY; Z] =
Dym ¡ Cor and E [DpÁ(p;X; V )jY; Z] = Dpm. Moreover, if #(h¡1(Z) ¡ U;A) is
Z;U-measurable, then follows that DyÁ = Dym¡Cor (a:s:) and DpÁ = Dpm (a:s:).

Proof: Given in text.

Remark 3.5: This shows that we may use distributional information obtained from
panel data to circumvent the conditional independence assumption and obtain the
derivatives. Of course, in panels it is also possible to estimate an individual speci…c
…xed e¤ect, say ®: This ® may re‡ect the in‡uence of one or more elements of A:
The same argument as made above for U can be applied to this ®: As we saw in the
benchmark, we may allow for a higher dimensional A; and it is very likely that the
…xed e¤ect will not capture all individual-speci…c e¤ects contained in A.

The economic properties, in particular Slutsky negative semide…niteness, are summa-
rized in the following

Proposition 3.2.2 Let all the variables and functions be as de…ned above, and let
(Add) and (A2:1),(A3:2:2)-(A3:2:4) be true

(i) Then follows that adding up of Á is inherited by m.

If in addition (A3:2:5) holds, then

(ii) Homogeneity of Á implies that Dpm¶+Dym ¡Cor = 0:

(iii) If S is nsd (a.s.), Dpm+Dym2 ¡ Cor2 + 2(m2 ¡ diag(m)) is nsd.

(iv) If S is symmetric (a.s.) and additionally V [E [DyÁjY; Z; U ] ;E [Á0jY; Z; U ] jY; Z]
is symmetric ) Dpm+Dymm0 ¡ Corm0 is symmetric (a.s.).

(v) Finally, if #(h¡1(Z) ¡ U;A) is Z;U -measurable,
) S =Dpm+Dymm0 ¡Corm0 +m2 ¡ diag(m) (a:s:).

Proof: Appendix.
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Remark 3.6: These results illustrate that knowing parts of the distribution of U
may allow for signi…cant progress and how this progress takes place. Not only can
we relax or abolish the conditional independence assumptions. The conditions on
V [DyÁ; Á0jY; Z] for obtaining symmetry can also be relaxed signi…cantly. From totally
ignoring it in the most general model, to getting parts of it through specifying the
way A enters in a general fashion, and to obtaining it completely when also restricting
U to exert only …rst order e¤ects.

3.3 Exclusion Restrictions and Instrumental Variables
A general way of treating endogeneity is of course given by the instrumental variables
(IV) paradigm. In our framework we propose a solution using the key assumption
of the control function (CFIV) approach. CFIV can be seen as one possible general-
ization of linear IV to our more general setting, and has been formalized by Newey,
Powell and Vella (1999). The setting is straightforward: The problem comes from a
possible violation of A2:5, i.e. ¹AjY;Z 6= ¹AjY . Assume there exists a random variable
G (the “instruments”) with the following properties: Let X = Y ¡ E [Y jG] ; that is X
are the residuals from a projection of Y on theG-space. Then, ¹AjX;Y;Z = ¹AjX;Z holds
(from now on called Assumption 3.3.5). It is a consequence that all statements
of the second section remain true, with the augmented sigma algebra, ¾ fX;Y; Zg in
place of ¾ fY; Zg.11

3.4 Specifying the Functional Form
Specifying functional forms for Á is hazardous as we may exclude a lot of possible
preference speci…cations. Perhaps the most sensible way is to use the following obvious
consequence of the argumentation in the …rst section

W = E[W jY; Z] + (W ¡ E[W jY; Z])
= m(p; Y; Z) + "(p; Y; Z;A);

with E["(p; Y; Z;A)jY; Z] = 0. Note further that the error will not be homoscedastic
under general assumptions, as was shown by Brown and Walker (1989), and the
covariance matrix is singular, due to the budget identity. We adopt the common
practise of deleting one equation. The remaining equations (again L; for simplicity)
have a regular covariance matrix.
A su¢cient, but not necessary, condition for E["(p; Y; Z;A)jY; Z] = 0 to hold is:

Assumption 3.4.1: Let Á = m+ " as de…ned above and assume that there exist a
11 It is interesting to note that actually what is only needed is E

£
W Dy log fAjX;Y;Z jY; X; Z

¤
= 0,

i.e. the conditional orthogonality of two functions of A. However, without distributional assump-
tions, little gain can be made from this observation.
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RL £RK valued function § and a RK valued function ¸ de…ned on Y £ Z £ U and
A respectively, s.th.

"(p; Y; Z;A) = §(p; Y; Z)¸(A);

if it is combined with E [¸(A)jY; Z] = 0; which taken together, yields a complete
speci…cation of the model. However, it turns out useful to consider a more general
model where E [¸(A)jY; Z] = 0 is relaxed. Consider the following assumption:

Assumption 3.4.5: A2.5 (ii) holds. Instead of A2.5 (i), assume that for ¸ de…ned
above we have

(i) E [¸(A)jY; Z] = ³(Z) and (ii) V [¸(A)jY; Z] = ¤(Z);

where ³ and ¤ are a K vector and a K £K matrix valued function respectively.

Having allowed for the conditional …rst moments of ¸ to depend on all variables but Y ,
we may think ofA3:4:1 in a di¤erent way. Of course, it encompasses the conditionally
mean independent case. But it can also be seen as a K-th order Taylor expansion in an
one-dimensional single index, say b, or as a linear expansion in aK -dimensional vector
¸: Note the relaxation in the dependence compared to above, as now all functions of
A and Y may be correlated, save for those given in A3:4:5. Moreover, as illustrated
in Proposition 3.4.1 below, only A3:4:5 (i) is needed to obtain the best projection
of the marginal e¤ects. In contrast, for nsd and symmetry of the Slutsky matrix
we will need A3:4:5 (ii) as well. Analogously to the previous sections, symmetry is
the property most di¢cult to obtain, and while we may remove the assumption that
V [DyÁ; Á0jY; Z] is symmetric in P 2:2; we shall need some identi…cation assumptions.
They take the following form

Assumption 3.4.6 There exists a K £K matrix valued function P such that

(i) V [¸(A)jY = y; Z = z] = P (z)P (z)0;
(ii) ¹§(y; z) = §(y; z)P (z) is symmetricfor all (y; z):

The …rst part is merely a restatement of the second part of A3:4:5 as such a de-
composition of the covariance matrix exists naturally. In contrast, (ii) is a strong
assumption, but necessary because we have to solve a system of quadratic equations,
which has between 0 and 2K solutions in general. It may be Consider now the resid-
uals of the regression, namely ' = W ¡ E[W jY; Z] and ¡ = E[''0jY; Z]. With this
notation, part (ii) may be relaxed to: there exists a unique decomposition of ¡ such
that ¡ = ¹§¹§0. Since in applications it is necessary to choose a certain decomposition
(see below), we choose the stronger version. Note that in this case K < L is not
possible since then the covariance matrix would be singular. Thus, it is necessary to
have K ¸ L:

Lemma 3.4.1 Let (Add),(A3:4:1); (A2:2)-(A2:4),(A3:4:5) be true.
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Let ¡(y; z) = E [''0jY = y; Z = z] ; where ' = W ¡ E [W jY = y; Z = z] : Then
follows from A3.4.6 (i) that ¡(y; z) = ¹§(y; z)¹§(y; z)0; and from (i) and (ii) that
¹§(y; z) = ¡(y; z) 12 : Moreover, Dy¹§(y; z) =Dy

³
¡(y; z) 12

´
:

Proof:
Take (y; z) …xed, but arbitrary.
Since ¡(y; z) = E [''0jY = y; Z = z] = V ['jY = y; Z = z], it follows that ¡(y; z) is
pds and therefore there exists a unique decomposition ¡(y; z) = R(y; z)2; where R is
a square, symmetric matrix (actually, a matrix valued function at a …xed position).
Moreover, ¡(y; z) = §(y; z)V [¸(A)jY = y; Z = z] §(y; z)0 = ¹§(y; z)¹§(y; z)0;
due to A3:4:6. By the uniqueness of R follows that ¹§(y; z) = R(y; z) = ¡(y; z) 12 ;
and taking derivatives completes the proof.

This lemma shows the strength of the requirements needed to obtain ¹§(y; z) from
the conditional variance of the error term. Under A3:4:6 (i) we can only identify
¹§¹§0; and thusDy

¡¹§¹§0¢ =
¡
Dy¹§

¢ ¹§0+ ¹§
¡
Dy¹§

¢0. However, in order to say something
about the symmetry of the Slutsky-matrix we must be able to say something about
(Dy§)¤§0; which is impossible without invoking A3:6 (ii),(iii).
For the following proposition, let Á =m+§¸; n = E [W jY; Z] and n2 = E [WW 0jY; Z].

Proposition 3.4.2

Let all the variables and functions be as de…ned above, and let (Add) and (A3:4:1),(A2:2)-
(A2:4); (A3:4:5)(i) be true.

(i) The results of Proposition 2.1. continue to hold.

(ii) If Á ful…lls additionally ¶0Á = Y (a:s:) ) ¶0n = Y (a:s:):

(iii) If Á ful…lls Á(¸p; ¸Y; V ) = Á(p; Y; V ) (a:s:) ) n(¸p; ¸Y; Z) = n(p; Y; Z) (a:s:):

(iv) If S is nsd (a.s.) and (A3:4:5) (ii) holds additionally
) Dpn +Dyn2 is nsd (a.s.), where Dpn = Dpn +Dpn0:

(v) Let S be symmetric (a.s.).
Additionally, assume that (A3:4:5) (ii) and (A3:4:6) hold,
) Dpn +Dynn0 +

³
Dy¡

1
2

´
¡ 1

2 is symmetric (a.s.).

Proof: Appendix.

Remark 3.7: 1. In this scenario, the di¤erence between symmetry and semide…nite-
ness, i.e. between utility maximization and the weak axiom, is obvious. In particular,
we have to restrict the covariances in the symmetry case, while for nsd we do not
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have to invoke something similar as we can still use the (symmetric) second moment
regression. For the same reason, we do not have to invoke the “identi…cation of §”
assumption A3:6:
2. In comparison with P 2:2 (iv); note that we can relax V [DyÁ; Á0jY; Z] symmetric
now, reducing possible sources of bias in this model.
3. The remaining bit may be recovered from the covariance matrix.

By similar reasoning and with similar results, one may further extend the model de-
…ned by A3:1 to include second order e¤ects. Suppose that K = L and that the
model were given by Á = m + §¸ + ª¸2, where ¸2 is the L(L+1)

2 vector of squared
elements of ¸; i.e. ¸21; ¸1¸2;...and ª is a L£ L(L+1)

2 matrix containing all second order
derivatives (in a Taylor-expansion). Additionally, restrict all conditional moments up
to fourth order not to be functions of y: Thus, we may introduce more generality in
the functional form of the theoretical microrelation at the expense of restricting the
conditional distribution of unobservables further, arriving again at full generality and
full independence in the limit. We do not elaborate on this point further. Instead, we
look for alternative ways to increase the overall information available in the system.

4 Preliminary Empirical Results
In this section we state preliminary results for the general framework of section 2
only.

4.1 The Econometric Model
As is obvious from the discussion above, there is no such thing as a single model
for conducting the whole analysis. However, nonparametric regressions of various
quantities, in particular of E [WijYi; Zi] and E [WiW 0

i jYi;Zi] play a key role. Of course,
one can assume that all variables are jointly normal, so as to arrive at a linear model.
But why should we restrict ourselves from the outset? Therefore it seems natural to
apply regression methods more general than linear OLS. The leading proponent is
the well-known nonparametric regression model

Wi =m(Gi) + "i; i = 1; 2; : : : ; (4.1)

which models the dependence of the budget shares Wi on a d+1-dimensional random
vector Gi = (Yi; Z 0i; p0)0. The error term "i is assumed to be independent of Gi; with
E"i = 0 and E"2i = ¾2; and m is the mean regression function. For our purposes,
however, this model is infeasible due to the curse of dimensionality, i.e. the fact that
the precision of any estimator decreases exponentially with d. However, the most
popular alternative, namely additive models are at odds with economic theory, as we
saw above.
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As our interest centers on a particular set of variables, others, often household
observables like age of household head, are of less importance. The econometric
model we propose extends the additive model, but is consistent with theory and
allows exactly to model the impact of this set of particular variables in more detail.
The model is given by

Wil = kl(Yi; p) + ll(Zi) + gl(Yi; p)0¸(Zi) + "i; i = 1; 2; : : : ; l = 1; ::; L (4.2)

where ¸ : Rd ! RS is a known vector valued function; kl; ll; and g0l = (g1;l; : : : ; gS;l)
with gs;l(¢); s = 1; : : : ; S; are smooth, but otherwise unrestricted unknown functions.
Furthermore, subscript l denotes the demand for the l-th good. Details of an estimator
for this model based on local quasi-di¤erencing can be found in Hoderlein (2002a) and
Christopeit and Hoderlein (2002). Here it su¢ces to say that the estimator is optimal
by any criterion and easy to implement. In particular, the choice of bandwidth, a
parameter that governs the complexity of the model, can be done as suggested in the
second reference, largely analogous to local polynomial modelling.

4.2 The Data
We start by giving a brief overview of the data, of the methods of data clearance and
of the de…nitions of variables involved, and discuss the already mentioned issues of
the estimation process.

4.2.1 The Data: FES

Every year, the FES reports the income, expenditures, demographic composition
and other characteristics of about 7,000 households. The sample surveyed represents
about 0.05% of all households in the United Kingdom. The information is collected
partly by interview and partly by records. Records are kept by each household mem-
ber, and include an itemized list of expenditures during 14 consecutive days. The
periods of data collection are evenly spread out over the year. The information is
then compiled and provides a repeated series of yearly cross-sections.

4.2.2 Grouping of Goods, Income De…nition and Data Clearance

All the goods are grouped into …ve categories, namely food, housing, travel and
leisure, personal expenses, alcohol and tobacco. The category food consists of the
subcategories food bought and eating outside of home, which are self explanatory.
In contrast to this, housing is a more heterogeneous category; it consists of rent or
mortgage payments as well as household items like furniture, but also DIY and water
charges are subsumed here. Personal expenses consist mainly of clothing and personal
goods (such as chemistry, jewelry etc.) and of personal services. Travel and leisure is
again a rather mixed category, with travel including expenditures on car and public
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transport, while leisure covers audio-visual articles, toys and holidays.
Since alcohol and tobacco are known to su¤er from serious underreporting, they are
omitted. Additionally, personal expenses su¤er from infrequent purchases (recall
that the recording period is 14 days) and are thus underreported. We excluded those
persons with zero expenditure on personal expenses, and also those with the 0.5%
highest expenditure levels for each composite good, reducing the total population by
roughly 5%.
Income is constructed as in the de…nition of “household below average income study”
(HBAI). It is roughly de…ned as net income after taxes, but including state transfers.
This is done in both data sets to de…ne nominal income. Real income is then obtained
by dividing through the retail price indices.

4.3 Issues in Estimation
4.3.1 Stone-Lewbel Cross Section Prices

The problem with the estimation of price e¤ects is closely tied to the fact that price
nonstationary. As such a cointegration based analysis should be performed. However,
there is a possibility we may circumvent the di¢culties associated with this issue. It
comes from the fact that we are grouping goods to form composite goods, and that
we can control this grouping since we have expenditure data on each single good. The
standard practice of using a single price index amounts - as noted already by Stone
(1954) and more recently by Lewbel (1989, 1999) - to assuming that all individuals
consume all goods within a certain compostitum of goods in the same proportion,
meaning that they have identical “within group” Cobb-Douglas (CD) preferences.
This is an extremely unrealistic assumption that not only can, but actually should be
relaxed. Moreover, dispensing with this assumption can be done at no extra costs,
but with the extra bene…t of obtaining CS prices.
The alternative approach - and here we follow Lewbel (1989) - can be sketched as
follows: For each compostitum the price for an individual is obtained by weighting
the prices of good j by the individuals share of the expenditures of good j from total
expenditure for all goods in this compositum. For details we refer to Lewbel (1989),
where it is shown that this construction amounts to assuming that individuals have
di¤erent CD preferences for all goods within a group, while individuals are allowed
to have completely arbitrary preferences between various groups of goods.

4.3.2 The Issue of Dimensionality of the Vector of Characteristics

Recall that in our model we have neither restricted the Zi vector - that is the vec-
tor of characteristics - nor the functional form of the lt(¢) function, or all the other
conditional expectations involving Zi. Moreover, our econometric model is geared
for continuous data. Although we show in Hoderlein (2002a) that the curse of di-
mensionality does not a¤ect this model, we use principal components to reduce Zit
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to some three orthogonal components. This leads then to an implicit speci…cation
of lt(Zit) = lt(ÁT1tZit; ÁT2tZit; ÁT3tZit). We de…ne ZTit;new = (ÁT1tZit; ÁT2tZit; ÁT3tZit); This
has a couple of advantages: 1 It yields continuous covariates. 2. The small sample
performance is likely to be good. 3. Due to the orthogonality of the new regressors,
we may use a diagonal bandwidth matrix. Since we normalize the components, we
can further apply the same amount of smoothing in every direction. 4. collinearity
is excluded. The econometric model (4.2) has the additional advantage of including
the ¸-term, which may include the original Zit in full dimensionality, thus giving a
semi-parametric control for the process of dimensionality reduction. Indeed, in the
application, the remainder parts of the Zit yield only insigni…cant t and F-statistics,
with associated p-values close to one.

4.3.3 Choice of Bandwidth

…rst experiments with the bandwidth, a parameter that governs local model complex-
ity, suggest that theoretically optimal bandwidths, in the sense de…ned in Hoderlein
(2002a), results in somewhat undersmoothed estimates. We believe this however to be
somewhat problematic, since local rises and dips in income elasticities, for instance,
are hard to interpret and are most probably not a “feature” of reality. Thus, the
choice of bandwidth is guided largely by economic intuition on the images displayed.

4.3.4 Tests

Here we describe brie‡y two tests: The …rst is a test for negative semide…niteness
(nsd) of the Slutsky-matrix, the second a test for symmetry. Both tests are performed
at 300 “representative” positions in the population.

1. Testing for nsd uses the fact that a matrix is nsd i¤ all eigenvalues are smaller
than zero. Moreover, in our case all eigenvalues are real as the matrix appearing in
P2:2 (iii) is symmetric. Having estimated m; m2; Dpm as well as Dym2, we simply
bootstrap all eigenvalues by naive bootstrapping. Hence, if the empirical distribution
of the largest eigenvalue over 1000 bootstrap replications does not cover within its
2:5 and 97:5 percentile the 0 we conclude that the biggest eigenvalue is signi…cantly
negative. There are two potential pitfalls: The …rst is multiplicity of the eigenvalues.
Since the empirical distributions of all eigenvalues appear to have disjunct range
this issue seems not to be problematic. The other issue is that of a parameter on
the boundary of the parameter space (Andrews (1993)). We o¤er no solution to
this problem. However, we note that ”most of the time” the whole support of the
empirical distribution of the largest eigenvalue appears to be negative.

2. Testing for symmetry is a bit involved, as it involves cross section restrictions that
seem to be hardly compatible with the nonparametric approach taken. However,
it remains possible under mild assumptions. There are two distinct viewpoints one
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can adopt. The …rst is a ”pointwise” one: Since every …xed position represents an
average over a population, tests at …xed positions are warranted. Here we may use
the key observation that the derivative estimators form a “local SURE” system on
the transformed data. In our econometric model, setting bsjk(³) = bskj(³), at a …xed
position ³ = p; y; z, is

³
b̄j
k(³) + b̄j

x(³)b®k(³)
´

¡
³
b̄k
j (³) + b̄k

x(³)b®j(³)
´
= 0;

where b̄j
k(³) = \Dpkmj(³); b̄

j
x(³) = \Dymj(³) and b®j(³) = cmj(³); for all j = 1; :::; L¡1,

k = j + 1; :::; L, yielding L(L ¡ 1)=2 symmetry restrictions. While this restriction
looks nonlinear, after taking the di¤erences in speed of convergence into account its
asymptotics are as if it were a linear restriction. To see this, consider the following
t-statistic. For ease of notation, in the denominator we have already concentrated on
the variance parts belonging only to the two equations involved.

t¤sy(³; j) =
b̄j
k(³) + b̄j

x(³)b®k(³) ¡ b̄k
j(³)¡ b̄k

x(³)b®j(³)
n
rµĝ0§̂(³)rµ ĝ

o1
2

;

where rµĝ =
³

b̄j
x(³) 0:::0 1=h 0:::0 b®k(³)=h ¡b̄k

x(³) 0::0 ¡1(h 0::0 ¡b®j(³)=h
´0

and §̂(³) is a consistent estimator of the covariance matrix of the scaled coe¢cients
µ = (®; h¯):
Here the 1=h is due to the fact that the variances are de…ned on the h-scaled ¯,
and taking the di¤erences in speed of convergence into account. To understand the
asymptotic behaviour of this statistic, consider …rst the numerator

p
nhdh

h
b̄j
k(³) + b̄j

x(³)b®k(³)¡ b̄k
j (³) ¡ b̄k

x(³)b®j(³)
i

=
p
nhd+2

h
b̄j
k(³) + b̄j

x(³)®
k(³) ¡ b̄k

j(³) ¡ b̄k
x(³)®

j(³)
i

+h
h
b̄j
x(³)

p
nhd

³
b®k(³) ¡ ®k(³)

´i
¡ h

h
b̄k
x(³)

p
nhd

¡b®j(³) ¡ ®j(³)¢
i
;

so that the …rst expression on the rhs converges by a trivial extension of P 1 in dis-
tribution, while for the second and, for instance, for the third we have thatp
nhd

¡
b®j(³) ¡®j(³)

¢ d! N; b̄kx(³)
p! ¯kx(³); and thush

h
b̄k
x(³)

p
nhd

¡
b®j(³) ¡ ®j(³)

¢i p!
0: Hence, only the variance of the derivative estimators has to be taken into account,
so that, instead of rµĝ; we may use the following restriction in the denominator
°̂0µ§̂¡(³)°̂µ,
where °̂µ is de…ned as

¡
0 0:::0 1 0:::0 ®̂k(z) 0 0::0 ¡1 0::0 ¡®̂j(z)

¢
and

§̂¡(³) is just the covariance matrix of the derivatives.
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The second point of view is an ”overall” one. When it comes to the population, or
certain subpopulations, we may - instead of looking at a grid of positions - consider
a single statistic. In particular, sample counterparts to

X

j;k>j

Z ©
Djpkm(³) +Dymj(³)mk(³) ¡

¡
Dpjm

k(³) +Dymk(³)mj(³)
¢ª2 ¹Y Z(d³) = 0

may be considered. The most natural choice is

1
n

X

j;k>j

X

i

n³
b̄j
k(³i) + b̄j

x(³i)b®k(³i)
´

¡
³
b̄k
j (³i) + b̄k

x(³i)b®j(³i)
´o2
:

The distribution theory for this statistic is transferred to a companion paper, Haag
and Hoderlein (2003).

4.4 Preliminary Results
Using the model (4.2) in combination with the previously sketched tests, we obtain
the following result in t= 1985: for eleven cells we are not able to reject the null of
inde…niteness. We conclude, that the Weak Axiom appears to hold for roughly 97%
of the population. This result does not change signi…cantly for other time periods.
Symmetry in turn seems harder to obtain: Roughly speaking, it seems to hold only
for 60% of a population at a time. Thus we conclude that the Weak Axiom is almost
uniformly accepted across the population, while Utility maximization is less well
accepted.

5 Summary
In this paper we introduce a new framework which allows to model the demand be-
havior of a population with heterogeneous preferences of unknown type. Additionally,
we allow for these preferences to be formed in the past by social interactions. We
focus on the question what can be learned about this population from data, and how
this can be done. Speci…cally, we focus on the four properties usually considered in
demand system analysis: adding up, homogeneity of degree zero and negative semi-
de…niteness as well as symmetry of the Slutsky matrix. We establish that even in
the most general scenario, all these quantities can be identi…ed from nonparametric
regression analysis under a conditional independence assumption. Furthermore, we
give new characterizations for most of these objects in terms of observables.
We establish that the standard practise is a subcase with very restrictive assumptions,
e.g. all preference heterogeneity is covered by observables. Moreover, we show how
the main restrictive assumption, namely the conditional independence assumption,
may be relaxed, if one has, for instance, additional information.
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Preliminary results are indications for the strength of both economic theory and this
approach. The Weak Axiom, arguably the core property of rationality, appears to
hold uniformly across the population. Symmetry, of the Slutsky matrix is less well
accepted, but then it is one of the results of this paper that the identi…cation of
symmetry rests on stronger assumptions.
Finally, this approach may be extended to any applied economic …eld, where hetero-
geneity of agents is to be modelled empirically.

6 Appendix
Proof of Proposition 2.1:

Ad (i); (ii) First recall that, by de…nition, 0 < W < 1. Thus, the expectation exists
and E[jW j] · k < 1 (the same holds for the second moment). From this follows
that all conditional expectations exist as well, and are even bounded. Let now p; y; z
be …xed, but arbitrary. Then, inserting A2:1

Dym(p; y; z) =DyE[W jY = y; Z = z] = Dy
Z

A

Á(p; y; #(z; a))¹AjY;Z(da; y; z)

Under A2:4, the rhs equals Dy
R
A
Á(p; y; #(z; a))¹AjZ(da; z); and using the dominated

convergence assumption A2:3; we obtain
Z

A

DyÁ(p; y; #(z; a))¹AjZ (da; z) (A.1)

But due to A2:4 this is a version of E[DyÁjY = y; Z = z]: Upon inserting random
variables for the …xed z; y the statement follows. The proof is identical for Dp; save
for the fact that we do not need A2:4:

For the part (iii) of the proposition, simply note that if A is Z-measurable

E[DyÁ(p; Y; #(Z;A))jY = y; Z] = DyÁ(p; y; µ(Z))

for any y and some function µ: ¤

Proof of Corollary 2.2:

By iterated expectations and P2:1,

E[DyÁ(p; Y; V )jF ] = E[E[DyÁ(p; Y; V )jY; ZjF ]
= E[DyE[Á(p; Y; V )jY; ZjF ]
= E[Dym(p; Y; Z)jF ]

25



for any F µ ¾ fY; Zg : The same holds of course for the trivial sigma algebra f;;g :

Proof of Corollary 2.3:

Consider E [¼jjjT; Z] …rst. Note that

Dpjmlog;j =DpjE [log (Wj) jY; Z] = E
£
Dpj log (Wj) jY; Z

¤
;

Since Dpj log (Wj) = Dpj log (Qj=Y ) + 1; the statement follows. E [¼ijjY; Z] and
E

£
´jjY; Z

¤
by similar reasoning. Note further that

Dym(j)

m(j)
=
DyE

£
ÁjjY; Z

¤

E
£
ÁjjY; Z

¤ =
E

£
DyÁjjY; Z

¤

E
£
ÁjjY; Z

¤ ;

but the rhs equals

E
£
DyÁjjY; Z

¤

E
£
ÁjjY; Z

¤ = E
·DyÁj
Áj

jY; Z
¸
+

E
£
DyÁjjY; Z

¤

E
£
ÁjjY; Z

¤ E
"

E
£
ÁjjY; Z

¤

Áj
¡ 1jY; Z

#
¡V

·
DyÁj;

1
Áj

jY; Z
¸
:

Thus, only if the last two terms cancel, Dym(j)

m(j)
¡ 1 = E

£
´jjT; Z

¤
:

Proof of Proposition 2.4:

Ad (i) Assume adding up ¶0Á = 1 (a:s). Taking conditional expectations produces
¶0m = E [¶0ÁjY; Z] = 1 (a:s:); by which ¶0m = 1 (a:s:) is obvious.

Ad (ii) Assume homogeneity holds across the population, i.e.Á(p + ¸; y + ¸; V ) =
Á(p; y; V ) (a:s:) for all p; y: Thus

m(p; y; z) =
Z

A

Á(p; y; #(a; z))¹AjY;Z(da; y; z)

=
Z

A

Á(p + ¸; y + ¸; #(a; z))¹AjY;Z(da; y; z)

But since ¹AjY;Z = ¹AjZ; we have that ¹AjY;Z(da; y; z) = ¹AjZ(da; z) = ¹AjY;Z(da; y +
¸; z): Thus,
Z

A

Á(p+¸; y+¸; #(a; z))¹AjY;Z (da; y; z) =
Z

A

Á(p+¸; y+¸; v)¹AjY;Z(da; y+¸; z) =m(p+¸; y+¸; z)

Ad (iii); Note that for any random matrix A(!) we have if p0A(!)p · 0 for all !; it
follows that upon taking expectations w.r.t. an arbitrary probability measure12 ¹

Z
p0A(!)p¹(d!) · 0 , p0

Z
A(!)¹(d!)p · 0; for all p 2 RL:

12For conditional probability measures this works similarly in the spaces under consideration.
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From this S nsd (a:s:) ) E [SjY; Z] nsd (a:s:) is immediate. Let E [SjY; Z] = B;
and note that since the de…nition of negative semide…niteness of a square matrix B
of dim L involves the quadratic form, p0Bp · 0; we see that if we put ¹B = B + B 0;
we have

p0 ¹Bp = p0Bp for all p 2 RL;
and ¹B symmetric, implying that B is negative semide…nite if and only if ¹B is negative
semide…nite. From

B = E [SjY; Z]
= E [DpÁjY; Z] + E [DyÁÁ0jY; Z] + E [ÁÁ0jY; Z] + E [diag(Á)jY; Z]
= B1 +B2 + B3+ B4

follows that ¹B = B+B 0 = B1+B2+B3+B4+B 01+B 02+B03+B 04 = ¹B1+ ¹B2+2(B3 + B4) ;
since B3 and B4 are symmetric. Thus we have that

S nsd (a:s:) ) ¹B1 + ¹B2+ 2 (B3+ B4) nsd (a:s:)

From P 2:1 it is apparent that ¹B1 = Dpm+Dpm0. To see that ¹B2 = Dym2(p; y; z);
…rst note that due to the boundedness of W the second moments and conditional
moments exist, so that

Dym2(p; y; z) =DyE[WW 0jY = y; Z = z] =

Dy
Z

A

Á(p; y; #(z; a))Á0(p; y; #(z; a))¹AjY;Z(da; y; z)

Finally, by a modi…cation of A2:3, we have

Dy
Z

A

Á(p; y; #(z; a))Á0(p; y; #(z; a))¹AjY;Z(da; y; z) = E[Dy(ÁÁ0)jY = y; Z = z];

but the rhs equals E[DyÁÁ0+ÁDyÁ0jY = y; Z = z] which is ¹B2: B3 and B4 are trivial.
Upon inserting random variables, the statement follows.

Ad (iv) First note that S symmetric implies that K = DpÁ + DyÁÁ0 is symmetric,
which implies that E [KjY; Z] is symmetric since

Aij = E [KijjY; Z] = E [KjijY; Z] = Aji:

This implies in turn that

E [K jY; Z] = E [DpÁjY; Z] + E [DyÁÁ0jY; Z]
= E [DpÁjY; Z] + E [DyÁjY; Z]E [Á0jY; Z] + V [DyÁ; Á0jY; Z]
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is symmetric, from which E [DpÁjY; Z] + E [DyÁjY; Z]E [Á0jY; Z] is symmetric since
V [DyÁ; Á0jY; Z] is assumed to be symmetric.
By Proposition 2.1. this equals Dpm+Dymm0.

Ad (v) Consider …rst the case the implication of V is Z measurable:
The ‘if’ part follows from (iv) and the observation that under measurable V;
V [DyÁ; Á0jY; Z] = 0; and thus symmetric, by which K = Dpm+Dymm0:
For the ‘only if’ we argue by contradiction: Assume Kij 6= Kji:We have to show now
that Aij 6= Aji: But A = K under measurable V; so that the result is obvious. This
shows also why the converse does not hold under V [DyÁ; Á0jY; Z] = 0 alone,
because then Kij 6=Kji does not necessarily imply E [AijjY; Z] 6= E [AjijY; Z] :

Consider now the reverse case, i.e. that
{S is symmetric and nsd i¤ Dpm +Dymm0 is symmetric and nsd} implies V is Z
measurable:
This is equivalent to:
If V is not Z measurable )

either {S is symmetric, nsd does not imply Dpm+Dymm0 is symmetric, nsd}

or {Dpm+Dymm0 is symmetric and nsd does not imply S is symmetric and nsd}.

The …rst statement can be true which is implied by P2:4 (iv) for z = V [DyÁ; Á0jY; Z]
not symmetric. Also the second may be true. To give an example where under non-
measurability of V Dpm+Dymm0 is symmetric but S is not, consider a two goods
example, with two possible realizations, where the superscript l = 1; 2 denote these
two realizations. Assume that ¼1 = ¼2 = 1

2: Assume further that DyÁ = 0 and that

S1 =
µ

¡1 1
2 ¡1

¶
; S2 =

µ
¡1 2
1 ¡1

¶

Note that E [SjY; Z] =
µ ¡1 1:5

1:5 ¡1

¶
which is symmetric although the “individual”

Slutsky matrices have not been so. ¤
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Proof of Proposition 3.1.1 Start by noting that

E [DyÁ(p; Y; V )jX = x; Z = z] = ¡
Z

A£Y

Á(p; y; #(a; z))DyfA;Y jX;Z(a; y;x; z)dady;

by integration by parts, and that

DxE [Á(p; Y; V )jX = x; Z = z] =
Z

A£Y

Á(p; y; #(a; z))DxfA;Y jX;Z(a; y;x; z)dady,

by dominated convergence. Rewriting this into one expression,

E [DyÁ(p; Y; V )jX = x; Z = z]
= DxE [Á(p; Y; V )jX = x; Z = z]

+ (E [DyÁ(p; Y; V )jX = x; Z = z] ¡DxE [Á(p; Y; V )jX = x; Z = z])
= DxE [Á(p; Y; V )jX = x; Z = z]

¡
Z

A£Y

Á(p; y; #(a;z))DyfA;Y jX;Z(a; y;x; z)dady

¡
Z

A£Y

Á(p; y; #(a;z))DxfA;Y jX;Z(a; y;x; z)dady

= DxE [Á(p; Y; V )jX = x; Z = z]

¡
Z

A£Y

Á(p; y; #(a;z))
£
DyfA;Y jX;Z(a; y;x; z) +DxfA;Y jX;Z(a; y;x; z)

¤
dady

Rewrite the correction term using

fY;X jZ(y; x; z) = fY;QjZ(y; x¡ y; z) = fY jZ(y; z)fQ(x¡ y) ,

fXjZ(x; z) =
Z
fY jZ(s; z)fQ(x¡ s)ds ,

DyfY;X jZ(y; x; z) = DyfY jZ(y; z)fQ(x¡ y) ¡ fY jZ(y; z)DqfQ(x ¡ y) ,
DxfY;X jZ(y; x; z) = fY jZ (y; z)DqfQ(x ¡ y) ,

DxfXjZ(x; z) =
Z
fY jZ(s; z)DqfQ(x¡ s)ds,
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we obtain

¡
Z

A£Y

Á(p; y; #(a; z))
£
DyfA;Y jX;Z (a; y;x; z) +DxfA;Y jX;Z(a; y ;x; z)

¤
dady

= ¡
Z

A£Y

Á(p; y; #(a; z))
£
DyfY jX;Z(y;x; z) +DxfY jX;Z(y;x; z)

¤
fAjZdady

= ¡
Z

A£Y

Á(p; y; #(a; z)) 1
fXjZ

£
DyfY;XjZ +DxfY;XjZ ¡DxfXjZfY jX;Z

¤
fAjZdady

= ¡
Z

A£Y

Á(p; y; #(a; z))
fQ(x¡ y)¡
fXjZ(x; z)

¢2
£
DyfY jZfXjZ ¡DxfXjZfY jZ

¤
fAjZdady

=
Z

A£Y

Á(p; y; #(a; z))
fQ(x¡ y)fY jZ
fXjZ(x; z)

£
Dx log fXjZ ¡Dy logfY jZ

¤
fAjZdady;

where we suppressed the arguments whenever obvious. But since

fQ(x¡ y)fY jZ(y; z)
fXjZ(x; z)

fAjZ(a; z) = fA;Y jX;Z(a; y;x; z);

the last rhs equals

E
£
W

£
Dx log fX jZ (X;Z)¡Dy log fY jZ(Y ;Z)

¤
jX = x; Z = z

¤

= Dx log fXjZ (x; z)E [WjX = x; Z = z]
¡E

£
WDy log fY jZ(Y ;Z)jX = x; Z = z

¤
:

Using the fact that

E
£
WDy logfY jZ(Y ;Z)jX = x; Z = z

¤

= E
£
Dy logfY jZ(Y ;Z)jX = x; Z = z

¤
E [W jX = x; Z = z]

+V
£
W;Dy log fY jZ(Y ;Z)jX = x; Z = z

¤
;

an that Integration by parts yields

E
£
Dy logfY jZ(Y ;Z)jX = x; Z = z

¤

=
1

fX jZ(x; z)

Z

A£Y

DyfY jZ(y; z)fQ(x¡ y)fAjZ(a; z)dady

=
1

fX jZ(x; z)

Z

A£Y

fY jZ (y; z)DqfQ(x ¡ y)fAjZ(a; z)dady

=
1

fX jZ(x; z)

Z

A£Y

DxfY;XjZ(y;x; z)fAjZ(a; z)dady

= Dx log fXjZ(x; z);
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we obtain

DxE [Á(p; Y; V )jX = x; Z = z] = E [DyÁ(p; Y; V )jX = x; Z = z] + »;

where
» = V

£
Á(p; Y; V ); Dy logfY jZ(Y ;Z)jX = x; Z = z

¤

But since Y jZ v N (¹(z); ¾2(z)) ;

Dy log fY jZ(y; z) = ¡y ¡ E [Y jZ = z]
V [Y jZ = z]

we have

V
£
Á(p; Y; V ); Dy logfY jZ(Y ;Z)jX = x; Z = z

¤
=

¡V [Á(p; Y; V ); Y jX = x; Z = z]
V [Y jZ = z]

:

By a partial second order Taylor-expansion

V [Á(p; Y; V ); Y jX = x; Z = z] = DyÁ(p; y0; V )V [Y ¡ y0; Y jX = x; Z = z]

+V
·
DyÁ(p; yr; V )

2 (Y ¡ y0)2 ; Y jX = x; Z = z
¸
;

and using
Z

V
·D2
yÁ(p; yr; V )

2
(Y ¡ y0)2 ; Y jX = x; Z = z

¸
¹Y;V jX;Z(dy0; dv;x; z) = 0

we obtain

V
£
Á(p; Y; V ); Dy log fY jZ(Y ;Z)jX = x; Z = z

¤

=
Z
DyÁ(p; y0; v)V

£
Y;Dy log fY jZ(Y ;Z)jX = x; Z = z

¤
¹Y;V jX;Z(dy0; dv;x; z) + 0

= ¡E [DyÁ(p; Y; V )jX = x; Z = z]V [Y jX = x; Z = z] :

Hence,

DxE [Á(p; Y; V )jX = x; Z = z] = (1¡ Ã)E [DyÁ(p; Y; V )jX = x; Z = z] ;

where
Ã =

V [Y jX = x; Z = z]
V [Y jZ = z]

:

Proof of Proposition 3.1.2

Ad (i) Taking conditional expectations as above.
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Ad (ii) Note from P3:1:1 that DxM = (1 ¡ Ã)E [DyÁjX;Z] < E [DyÁjX;Z] ; with
Ã > 0. Since homogeneity implies E [DpÁjX;Z] ¶ + E [DyÁjX;Z] = 0; we have three
cases: If DyÁ < 0; which implies that E [DyÁjX;Z] < 0; we have 0 = DpM¶ +
E [DyÁjX;Z] > DpM¶ +DxM: Second, if DyÁ > 0 the argument may be reversed.
Third, if DyÁ = 0; E [DyÁjX;Z] = 0 and DxM = 0:

Ad (iii) As in P 2:4; S nsd implies E
£¹SjX;Z

¤
nsd or

E
£
DpÁjX;Z

¤
+ E [Dy [ÁÁ0] jX;Z] + 2 (E [ÁÁ0jX;Z]¡ diag (E [ÁjX;Z])) · 0

in a matrix sense. As above E
£
DpÁjX;Z

¤
= DpM; E [ÁÁ0jX;Z] =M2 and diag (E [ÁjX;Z]) =

diag (M ), so that it is only the second term that needs closer inspection. By the same
argument as in P3:1:1, DxM2 = (1¡ Ã)E [Dy [ÁÁ0] jX;Z], since only the function
changes from Á to ÁÁ0. Thus

DpM +DxM2 +ÃE [Dy [ÁÁ0] jX;Z] + 2 (M2 ¡ diag (M )) · 0:

Moreover, Ã is a scalar with Ã(X;Z) =
V [Y jX;Z]

V [Y jZ] > 0; so that ÃE [Dy [ÁÁ0] jX;Z] ¸
0 in a matrix sense. Thus

DpM +DxM2 + 2(M2 ¡ diag (M))
· DpM +DxM2 + ÃE [Dy [ÁÁ0] jX;Z] + 2 (M2 ¡ diag (M )) · 0;

which shows the statement.

Ad (iv) If DxM = 0 and V [DyÁ; Á0jX = x; Z = z] the only nonsymmetric term in

E [DpÁjX;Z] +E [Dy [ÁÁ0] jX;Z] + 2 (E [ÁÁ0jX;Z] ¡ diag (E [ÁjX;Z]))

is E [DpÁjX;Z] ; which implies DpM symmetric.
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Proof of Proposition 3.2.1:

Let p; y; z be …xed, but arbitrary. Then, as above

Dym(p; y; z) = DyE[W jY = y; Z = z] =

Dy
Z

Z¡£A

Á(p; y; #(z¡; a))¹Z¡AjY;Z (dz
¡; da; y; z)

Note that by the change of variable lemma (with h¡1(z) the inverse function of h
evaluated at z) and using the fact that the Jacobian determinant of the transformation
of (A;Z¡) to (A; h¡1(z) ¡U ) equals unity - this term becomes

Dy
Z

U£A

Á(p; y; #(h¡1(z) ¡ u; a))¹A;U jY;Z(da; du; y; z) =

Dy
Z

U

Z

A

Á(p; y; #(h¡1(z)¡ u; a))¹AjU;Z(da; z;u)¹U jZ(du; z) .

The rest is in the text.

Proof of Proposition 3.2.2:

Ad (i) As in P2:4.

Ad (ii) Assume homogeneity holds across the population, i.e.Á(¸p; ¸y; V ) = Á(p; y; V )
(a:s:) for all p; y: Thus

m(p; y; z) =
Z

V

Á(p; y; v)¹V jY;Z(dv; y; z)

=
Z

V

Á(¸p; ¸y; v)¹V jY;Z(dv; y; z)

But since ¹V jY;Z = ¹V jZ; we have that ¹V jY;Z(dv; y; z) = ¹V jZ(dv; z) = ¹V jY;Z(dv; ¸y; z):
Thus,

Z

V

Á(¸p; ¸y; v)¹V jY;Z(dv; y; z) =
Z

V

Á(¸p; ¸y; v)¹V jY;Z(dv; ¸y; z) =m(¸p; ¸y; z)
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Ad (iii) As in P2:4 (iii), with the exception that ¹B2 = Dym2(p; y; z) ¡ Cor2: To see
this, note that

E [DyÁÁ0 + ÁDyÁ0jY = y; Z = z]
= E[Dy(ÁÁ0)jY = y; Z = z]
= Dym2(p; y; z)

¡
Z

U

Z

A

Á(p; y; #(h¡1(z)¡ u; a))Á(p; y; #(h¡1(z) ¡ u; a))0DyfU jY;Z(u; z; y)du¹AjZ(du; z)

= Dym2(p; y; z) ¡ E[WW 0DyfUjY;Z(u; z; y)jY = y; Z = z];

Denoting E[WW 0DyfUjY;Z(u; z; y)jY = y; Z = z] = Cor2(p; y; z), yields the state-
ment.

Ad (iv) As previously-
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Proof of Lemma 3.4.

Start by noting that

V [E [DyÁjY; Z; U ] ;E [Á0jY; Z; U ] jY; Z]
= V [DyE [ÁjY; Z; U ] ;E [Á0jY; Z; U ] jY; Z]
= V [Dy (E [ÁjY; Z; U ]¡ E [ÁjY; Z]) ;E [Á0jY; Z; U ]¡ E [Á0jY; Z] jY; Z]
= V [Dy¥U;U 0¥0jY; Z]
=Dy¥¢¥0

Proof of Proposition 3.4

The model is given by
Á = m(p;y; z; u) + §(p; y; z; u)¸(a); s.th. E [¸jY; Z; U ] = ³(Z;U ) and V [¸jY; Z; U ] =
¤(Z;U):

Ad (i) Assume p0Á = Y (a:s:): Then follows p0E [ÁjY; Z] = Y and
p0E [E [ÁjY; Z; U ] jY; Z] = Y: But this is p0E [mjY; Z] + E [§jY; Z] ³ = Y and
p0n = Y is immediate.

Ad (ii) Similar argument as in P2:2: (ii):

Ad (iii) By the same argument as in P2:2 (iii) follows that if S is nsd than so is

E [SjY; Z] = E [DpÁjY; Z] + E [Dy fÁÁ0g jY; Z]
2

;

where W denotes the symmetrized version of the matrix W: Since

1
2
E [Dy fÁÁ0g jY; Z] =

1
2
E [DyÁÁ0 + ÁDyÁ0jY; Z] (A.3)

=
1
2
Dynn0 ¡Dyfnn0 +

1
2
V [DyÁ; Á0jY; Z]

and

1
2
Dyn2 =

1
2
DyE [ÁÁ0jY; Z]

=
1
2
Dynn0 +

1
2
DyV [ÁjY; Z]

follows that

Dyn2 ¡ E [DyÁÁ0jY; Z] = DyV [ÁjY; Z] + 2Dyfnn0 ¡ V [DyÁ; Á0jY; Z]: (A.4)

The …rst term on the rhs equals
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DyE [E [ÁjY; Z; U ]E [Á0jY; Z; U ] jY; Z]¡Dy (E [ÁjY; Z]E [Á0jY; Z])+DyE [V [ÁjY; Z; U ] jY; Z] :

By the measurability assumption E [V [ÁjY; Z; U ] jY; Z] = §L§0. Moreover,
Dy (E [ÁjY; Z]E [Á0jY; Z]) =Dynn0:
Turning to the last term in (A:4), note that this equals

E [E [DyÁjY; Z; U ]E [Á0jY; Z; U ] jY; Z]¡E [DyÁjY; Z]E [Á0jY; Z]+E [V [DyÁ; Á0jY; Z; U ] jY; Z]

The third term is Dy§L§0 and the second Dynn0: Due to L not a function of y;

Dy (§¤§0)¡Dy§¤§0 = 0;

and since
E [DyÁjY; Z]E [Á0jY; Z] = Dynn0 ¡ 2Dyfnn0

E [DyÁjY; Z]E [Á0jY; Z] ¡Dy (E [ÁjY; Z]E [Á0jY; Z]) = ¡2Dyfnn0

so that the di¤erence in (A:4) reduces to

DyE [E [ÁjY; Z; U ]E [Á0jY; Z; U ] jY; Z] ¡ E [E [DyÁjY; Z; U ]E [Á0jY; Z; U ] jY; Z]: (A.5)

Consider the second term. By A3:4:4, A3:4:5

E [E [DyÁjY; Z; U ]E [Á0jY; Z; U ] jY; Z] = E [Dy fE [ÁjY; Z; U ]E [Á0jY; Z; U ]g jY; Z] :

and

E [Dy fE [ÁjY; Z; U ]E [Á0jY; Z; U ]g jY; Z] = DyE [E [ÁjY; Z; U ]E [Á0jY; Z; U ] jY; Z] ¡
DyfE [E [ÁjY; Z; U ]E [Á0jY; Z; U ] jY; Z] :

Consequently, (A:5) reduces to
DyfE [E [ÁjY; Z; U ]E [Á0jY; Z; U ] jY; Z] : But this equals,

Dyf (E [E [ÁÁ0jY; Z; U ] jY; Z] + E [V [Á; Á0jY; Z; U ] jY; Z])
= Dyf (n2+ §L§0) ;

and 1
2E [SjY; Z] = Dpn+Dyn2 +Dyf (n2+ ¡)

2
follows.

Ad (iv) From

E [SjY; Z] = E [DpÁjY; Z] + E [DyÁÁ0jY; Z]
= Dpn + E [DyÁjY; Z]E [Á0jY; Z] +V [DyÁ; Á0jY; Z] (A.6)
= Dpn + E [DyÁjY; Z]E [Á0jY; Z] +E [V [DyÁ; Á0jY; Z; U ] jY; Z] +

V [E [DyÁjY; Z; U ] ;E [Á0jY; Z; U ] jY; Z]
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The second to last term is symmetric by assumption. The second term is obvious by
Lemma 3:2; and only the third term needs to be simpli…ed. But this equals

E [Dy§V [¸jY; Z; U ] §0jY; Z] = Dy§L(Z)§0 =Dy ¹§¹§0

Since, by Lemma 3.1, ¡ = E [''0jY; Z] = R2 and thus ¡1
2 = ¹§, the result follows.

Ad (v) Under A3:9; by Lemma 3.3 V [E [DyÁjY; Z; U ] ;E [Á0jY; Z; U ] jY; Z] = Dy¥¢¥0:
Inserting into (A.6) produces the result.

Ad (vi) As in P2:2 (v):
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