Existence of Walrasian Equilibrium

Theorem (Grandmont-McFadden, 1972)

Define the closed unit simplex \(U^* = \{ p \in \mathbb{R}^m \mid p \geq 0 \text{ and } 1 \cdot p = 1 \} \) and the open unit simplex \(U^0 = \{ p \in U^* \mid p \gg 0 \} \). Suppose there exists a set \(U \) with \(U^0 \subset U \subset U^* \) and an excess demand correspondence \(\zeta \) that maps \(U \) into non-empty subsets of \(\mathbb{R}^m \) and satisfies

(a) \(\zeta \) is bounded below; i.e., there exists \(b \in \mathbb{R}^m \) such that \(b \leq x \) for all \(x \in \zeta(p), p \in U \);

(b) For each \(p \in U \), \(\zeta(p) \) is a convex set, and \(p \cdot x \leq 0 \) for all \(x \in \zeta(p) \);

(c) \(\zeta \) is upper hemicontinuous on \(U \); i.e., the graph \(\{(p,x) \in U \times \mathbb{R}^m \mid x \in \zeta(p)\} \) is a closed subset of \(\mathbb{R}^m \times \mathbb{R}^m \).

Then there exists a \(p^* \in U \) and a \(x^* \in \zeta(p^*) \) such that \(x^* \leq 0 \).

Proof: Let \(U^k = \{ p \in U^0 \mid p \geq (1/mk,\ldots,1/mk) \} \); then the \(U^k \) are convex and compact and their union is \(U^0 \). Let \(X^k \) denote the closed convex hull of \(\{ \zeta(p) \mid p \in U^k \} \). Property (a), property (b) that \(p \cdot x \leq 0 \) for all \(x \in \zeta(p) \), and the definition of \(U^k \) imply that \(X^k \) is bounded, and hence compact. For \((x,p) \in X^k \times U^k \), define a mapping \(\eta \) into non-empty subsets of \(X^k \times U^k \) by

\[
\eta(x,p) = \{(x',p') \in X^k \times U^k \mid x' \in \zeta(p) \text{ and } p' \cdot x \geq p'' \cdot x \text{ for all } p'' \in U^k\}.
\]

The maximands of a linear function \(p'' \cdot x \) on the compact convex set \(U^k \) form an upper hemicontinuous, convex valued correspondence. Together with properties (b) and (c) of \(\zeta \), this implies that \(\eta \) is an upper hemicontinuous, convex valued correspondence on \(X^k \times U^k \).

A fixed point theorem of Kakutani (1941) then guarantees that there exists \((x^k,p^k) \) such that \((x^k,p^k) \in \eta(x^k,p^k) \). Then \(x^k \in \zeta(p^k) \) and \(0 \geq p^k \cdot x^k \geq p \cdot x^k \) for all \(p \in U^k \). Consider the sequence \((x^k,p^k), k = 1,2,\ldots \). Property (a) and \(p^1 \cdot x^k \leq 0 \) imply that this sequence is bounded. Hence, it has a subsequence converging to a limit point \((x^0,p^0) \). Property (c) implies \(x^0 \in \zeta(p^0) \), while the property \(0 \geq p^k \cdot x^k \) for all \(p \in U^k \) implies \(0 \geq p^0 \cdot x^0 \) for \(p \in U^0 \), since each \(p \in U^0 \) is contained in \(U^k \) for \(k \) sufficiently large. This in turn implies \(0 \geq x^0 \). \(\square \)