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CONVEX ANALYSIS

DANIEL McFADDEN
University of California, Berkeley

1. Introduction

This appendix lists mathematical properties of convex sets and
convex conjugate functions used in developing the theory of cost and
profit functions. Familiarity with the basic concepts of analysis (e.g.,
open and closed sets in Euclidean space, interior and closure of sets,
compactness, continuity of real-valued functions) is assumed at the level
of Rosenlicht (1968) or Bartle (1964). Brief introductions to the theory of
convex sets can be found in Karlin (1959) or Mangasarian (1969). More
advanced surveys are in Busemann (1958), Fan (1959), Fenchel (1953),
Grunbaum (1967), Klee (1963, 1969), and Valentine (1964). The definitive
reference work on the topic is Rockafellar (1970).

2. Notation

The results in this appendix will be stated for sets and functions in an
N-dimensional Euclidean space EV. Subsets of EN are denoted by
boldface Roman caps (e.g., W, X, Y, Z), and points in EVY by lower case,
boldface Roman letters (e.g., w, X, y, z). Real numbers are denoted by
lower case Greek letters (e.g., a, B, o, 0). Real-valued functions on EY
are denoted by Roman caps (e.g., F, G, H). The interior and closure of a
set Y are denoted by intY and Y, respectively. The algebraic sum of
non-empty sets Y, Z is defined by Y+ Z ={y+ zly €Y,z € Z}. The set of
points in Y, but not in Z, is denoted by Y\Z.
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3. Hyperplanes

A real-valued linear function P on E™ can be represented by a
vector p € EY, with the value of P at u€ E" given by the inner product
P(u)=p-u. A hyperplane is a set H(p,a) = {vEE"|p-v=a}, where pE
E" is non-zero. Note that a hyperplane is a level set of a non-identically
zero real-valued linear functional. The sets H (p,a)={vE EN|p-v= a}
and H'(p,a)={vEE"|p-v=a} are termed the closed half-spaces
determined by the hyperplane H(p,a), and p is termed the normal to
H(p,a). A hyperplane H(p,a) is a barrier to a non-empty set Y if Y is
contained in a closed half-space determined by H(p,a), and H(p,x)
supports Y if it is a barrier to Y and intersects Y.

4. Convex Sets

A set Y is convex if u,ve€Y,0<0<1 implies fu+(1-0)v€EY.
The (closed) convex hull of a set X is the intersection of all the (closed)
convex sets containing X. The convex hull of X is denoted by [X]. The
closed convex hull of X equals the closure of the convex hull of X, and

is denoted by ff]

5. Affine Subspaces

A set F is a flat (or affine subspace) if uv€EF implies Gu+
(1—8)v EF for all real 8. Note that EV itself is a flat; that points, lines,
and hyperplanes in EV are flats; that an arbitrary intersection of flats is a
flat; that all flats are closed and convex; and that a non-empty flat is a
translation of a linear subspace of EN. The affine hull of a set X is the
intersection of all flats containing X, and is denoted by aff X. The relative
interior of X, denoted by intr X, is the interior of X in the relative
topology of X as a subset of aff X; i.e., the set of points in X which are
not in the closure of (aff X)\ X.

6. Separation of Sets

Non-empty sets Y,Z have the separation property if there exists a
hyperplane H(p,a) such that Y C H (p,a) and Z C H*(p,e). They have the
strong separation property if there exist parallel hyperplanes H(p.a) and

H(p,8) such that a <8, YCH (p,a),ZC H*(p.B).

7. Cones

A set K is a cone with vertex at the origin if vEK and 6 >0 imply
0v € K. K is a cone with vertex at v if K— {v} is a cone with vertex at the
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origin. Hereafter, all cones are defined with vertex at the origin unless
specified otherwise. The (closed) cone with vertex v spanned by a set Y
is defined as the intersection of all (closed) cones with vertex v which
contain Y, and denoted by K.Y (for the closed cone, K, Y). If v is the
origin, the subscript is omitted. The asymptotic cone (recession cone) of
a set Y, denoted by AY, is defined as follows: v € AY if and only if there
exist a sequence v¥ €Y and a sequence of positive real numbers 6; such
that 6, —0 and 6,v* —>v. A cone K is pointed if v €K, i =1,....m, for
finite m and >~ v =0 implies v'=0, i=1,..m. A set Y is semi-
bounded if AY is pointed.

8. Polar and Normal Cones

The polar cone of a set Y is the set PY={pEE"|p-v=0 for all
v EY). The normal cone at v of a set Y is the set of all pEEN, p#0,
such that Y € H (p.p-v), and is denoted by N(Y,v). The normal cone of Y is
the union of N(y,v) for all vEE", and is denoted by NY. Clearly, pENY

if and only if sup{p'yly € Y} < +c=.

9. Convex Functions

A non-empty set X and real-valued function F with domain X are
denoted by (F,X). We say (F,X) is convex if X is convex, and u, v€ X,
0< 6 <1 implies F(6u+(1—8)v)=6F (u)+ (1 —0)F (v). We say (F.X) is
positively linear homogeneous if X is a cone and vEX, 6 >0 implies
F(0v) = 8F (v). We say {F.X) is closed if the following conditions hold:
(1) veX\X implies limyexyvinf F(u)=+x; and (2) vEX implies
lim yex ey inf F () = F(v).! The support function (GYNY) of a non-
empty set Y is a real-valued function defined by GY(p) = sup{p-yly € Y}
for pe NY.

10. Properties of Convex Sets

A list of well-known properties of non-empty sets Y,Z follows.
For completeness, references to proofs, or abbreviated or shortened

proofs, are given for the non-trivial results.
10.1 YCI[Y]ICIYICIY]

'The notation lim ey —. inf F(w) = F(v) is defined as follows: Given € >0, there exists an
open ball N about v with radius at most € such that

€ >|F(v)-“é2£x Fu)l.

uEY
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10.2

10.3
10.4

10.5
10.6
10.7
10.8

10.9

10.10

10.11

10.12

10.13

10.14

10.15
10.16

Daniel McFadden

Y convex implies intr Y # @ and the following sets convex:
intY, intr Y, Y, AY, K,Y for any v€ E".

Proof: Fenchel (1953, Ch. II, Results 11, 15, 17, 22),
Rockafellar (1970, Thm 6.2).

Y bounded implies [Y] bounded and AY = {0}.

Y compact implies [Y] compact.

Proof: Grunbaum (1967, 2.3.5).

Y,Z convex implies YNZ and Y +Z convex.

Y a convex cone implies Y=Y+ Y.

0€Y,Z implies KY C K(Y+Z)C KY + KZ.

0€ Y,Z and Y,Z convex implies K(Y + Z) = KY + KZ.

Proof: Use 10.6 and 10.7.

Y closed and convex implies Y=Y + AY.

Proof: Winter (forthcoming), Rockafellar (1970, Thm. 8.3). If
vEY + AY, then there existu €Y, w € AY withv=u+ w. Then
there exist w* €Y, 6, =0 with 8,w* > w and 8, — 0, implying
(1—-6)u+6w* €Y for k large, and (1 -6 )u+ e&w" ->veEY.
Every v€&[Y] is expressible in the form v=2,_6;v' with
9,20, 2.6 =1,and v EY.

Convex sets Y,Z have the separation property if and only if one
or both of the following are true: (1) (intr Y) N(intr Z) = ¢, or (2)
Y UZ lies in a hyperplane.

Proof: Klee (1969, Thm. 2.1), Grunbaum (1967, 2.2.2),
Rockafellar (1970, Thm. 11.3).

For Y convex, Y and {z} have the separation property if and only
if z & int Y. There exists a hyperplane H(p,a) withz&€ H(p,a),
Y CH (p,a), and (intr Y) NH(p,a) = @ if and only if z€ intr Y.
Proof: Klee (1969, Thm. 1.1), Rockafellar (1970, Thm. 11.3).
Y.Z convex and disjoint, Y closed, Z compact implies Y,Z have
the strong separation property.

Proof: Grunbaum (1967, 2.2.1), Rockafellar (1970, Corol.
11.4.2).

Y convex, Z a non-empty flat, ZNintrY =@ implies the
existence of a hyperplane H(p,a) such that YC H (p,a),
Z C H(p,a), and H(p,a) Nintr Y = 6.

Proof: Rockafellar (1970, Thm. 11.2).

Y C H (p,a) implies p ENY.

int P(AY) C NY C P(AY).

Proof: Rockafellar (1970, Corol. 14.2.1). If p € P(AY), then
p-v >0 for some v € AY. There exist v/ €Y, 6; =0 such that
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|v/|-> + and ;v > v, implying p-v' > + =, and hence p £ NY.
If p & NY, then there exist v €Y with p-v' = + . Then, v//v/|
has a subsequence converging to vE AY with p-v= 0. Then,
(p + €v)-v>0 for all e >0, implying p+ €v # P(AY) and hence
p & int P(AY).

10.17 Y C Z implies PZ C PY.

10.18 PY is closed and convex, and NY is convex.

10.19 Y C P(PY) = [KY].

10.20 0 € Y,Z implies P(Y + Z) = (PY) N(PZ).

10.21 Y NPY C {0}.

10.22 AY = AY = AY and NY = NY.

11. Semi-Bounded Sets

The next series of results give properties of semibounded sets.
Most of these properties can be obtained as consequences of theorems
of Fenchel (1953), Grunbaum (1967), or Rockafellar (1970); however, we
shall give direct proofs which are somewhat simpler.

11.1. Lemma. If Y is a closed pointed cone, then (1) there exists a
positive scalar u such that for any finite set of points v €Y,
i=1,..,m, it follows that |v/|=u|Z",v'|; and (2) [Y] is a closed
pointed cone.

Proof: Rockafellar (1970, Corol. 9.1.2). We first establish the existence
of a u depending in general on m for which (1) is valid. Suppose, for fixed
m, no u with the required property exists. Then, there exist v/ €Y such
that 21, vi =u' with Ju/|=1 and A; = {/max;|[v’|—>0. Hence, there is a
subsequence of j (retain notation) such that AVIsw EY fori=1,..m
and 2™, w' =0. Since 1=2,Av/[=m, at least one w'# 0. This
contradicts the hypothesis that Y is pointed.

We next prove that [Y] is closed. If v/ €[Y], v v, then there exist
vieY,j=0,..,N, such that v' = S o vi. By the result just proved, the v/
are bounded, and hence there is a subsequence of i (retain notation) such
that vi >uw €Y. Then, v= Efio v’ €[Y], and [Y] is closed.

If [Y] were not pointed, then there would exist non-zero v' € [Y] with

m v = 0 (since [Y]is closed). Since each v/ = 2, v¥ for some v/ €Y, the
implication /2o Z /Lo v? =0 would be obtained, contradicting the hypo-
thesis that Y is pointed. Hence, (2) is verified.

By (2), the condition (1) proved for fixed m can be applied to [Y],
establishing u such that [v'| = n|=:, vi| for v € [Y). But the sum of any
finite sequence w €[Y] can be written as 2, w =u*+w with w=
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3wt €[Y), implying ju*|= u|27_u| for k =1,...,m. This verifies
(1). Q.E.D.

11.2. Lemma. IfY is non-empty and semi-bounded, then (1) given a
positive scalar A, there exists a positive scalar u such that for any finite
set of points v € Y,and scalars 6, = 0,i = 1,...,m, with |2 ., 6;v/| = A, it
follows that [6;v'] = u; (2) A[Y] = [AY]; (3) [Y] is semi-bounded; and
(4) if Y is closed, then [Y]+ A[Y]=[Y].

Proof: The argument parallels that of 11.1. If (1) is violated for fixed
m, there exist v/ € Y and 8; =0 such that 2, 8, v’ = v’ with [v/|=A and
A; = 1/max;|@;v’| >0, implying the existence of limit points w' € AY of
the A;0;v" such that -, w' = 0 and Z_, |w'| = 1, contradicting the hypo-
thesis that Y is semi-bounded.

We next show A[Y]C[AY]. If vEA[Y]Nthere exist w € [Y] 0; _0
v/ €Y, A; Z0 such that 6,0, 9,0 —>v, pOR 0A;j=1,and v = p _0/\,,v
By 11.2(1) for fixed m, 6A;v’ is bounded in j, and hence there is
a subsequence of j (retain notation) such that @A;v/—v' EAY.
Then,v = 2,-'10 v €E[AY]. By 10.2,A[Y]isconvex. Then, AY C A[Y]implies

[AY]C A[Y]. Hence, (2) is verified.

Y semi-bounded implies AY pointed, which implies [AY] pointed by
11.1(2), which implies in turn A[Y] pointed by 11.2(1). Hence, [Y] is
semi-bounded, proving (3). Applying 11.2(1) for fixed m to the set [Y],
we obtain for given A a scalar p such that v' €[Y], 6;: =0, and |6,v' +
6.v}|=A implies |6;v'|=pu. For any finite set of v'E[Y] and 6; =0,
i=1,..,m with [Zi, 8;v'] = A, define @ = 2, ;. 8;. Without loss, assume
a >0 and define u=a ' 2 ;. 6:;v' €[Y]. Then, X, 6iv' = 6v* + au,
implying |8,v*| = w. This verifies 11.2(1) for all m.

We next prove (4). By 10.2 and 10.5, [Y] + A['_llis convex and contains
[Y], and by 10.9 and 10.22, [Y]+A[Y]C[Y]+A[Y]=[Y]. Hence,
it is sufficient to show [Y] + A[Y] closed. Since [Y] is semi bounded by (3),
[Y]+ A[Y] is semi-bounded. Suppose v/ € [Y] + AlY], Vo Then there
exist u’ = [Y] w € A[Y], v/ EY 6; = 0 such that v' = v+ w, E, 08 =1,
andu' =2 i=o 85 u%. By (1), w/ and 6;u” are bounded Hence there ex1sts a
subsequence of j (retain notation) such that w' - w € A[Y], 8;u’ > x’, and
8;— 6; with =, 6, = 1. Let I denote the set of i indices with 8, >0, and J
denote the set of remaining indices, and let y' = x'/8; for i € 1. Then,y' €Y,
i€l andy =20,y €[Y).Fori € J,x' € AY.Hence,u =w+ 2, x' € A[Y],
implying v=y+u &€ [Y] + A[Y]. This verifies (4). Q.E.D.

11.3. Lemma. 1If Y is a closed cone, then the following conditions



A.3: Convex Analysis 389

are equivalent: (1) Y is pointed; (2) [Y1N{- Y] = {0}; (3) int PY # #;
and p €intPY, vEY, v # 0 implies p-v<0; (4) there exists pE EX
such that vE Y, v # 0, implies p-v<0.

Proof: (9)—=(3). If vEY, [v|=1, then p-v=—a <0. For gEE", |q| =
a/2, (p+q)v=—a+|qv]=—af2, implying p+qEPY, and pE int PY.
The second part of (3) is a trivial consequence of the first part.

(3)=(2). vE[YIN[-Y] implies q-v=0 for all g €PY. If pEintPY,
then p+ av € PY for a small positive, implying v-v = 0,orv=20.

(2)—>(1). If Y is not pointed there exist v' €Y such that v'# 0 and
Sm, v =0, implying —v°= 2., v €[Y] and contradicting (2).

(1)->(4). Define the set Z={vEY|{v|=1}. Then, Z is closed and
AZ =Y, implying Z semi-bounded. By 11.2 (4) and 10.9, [Z] + AL:Z] = [Z]
is closed. If 0 € [Z], then there exist v €Z, 6; =0 such that 2= 6; = 1
and Eio g,v' = 0, contradicting (1). Hence, 0 [Z] and by 10.13 there
exists p and a >0 such that p-v=—a for all vE& [Z]. Then, p satisfies
4. Q.E.D.

11.4. Lemma. For Y,Z non-empty, the following conditions hold:
(1) AYCA(YUZ)= (AY) U(AZ) CA(Y+ 2Z); (2) Y,Z convex implies
AY + AZ C A(Y + Z);(3) Y UZ semi-bounded implies A(Y+Z)C AY +
AZCA[YUZ]

Proof: (1) vE AY implies there exist v' €Y, 6; =0 such that 6 >0,
6.vi>v. Take any wEZ. Then v+w&Y+Z, and o(V +w)>VvE
A(Y + Z). The remaining conditions are immediate.

(2) Using (1) and 10.6, AY+AZCA(Y+Z)+AY+2Z)= A +2Z).

(3) If vE€ A(Y+Z), then there exist ' €Y, w €EZ, §;Z0 such that
8, -0 and 6;(w +w')—v. By 11.2(1), 6,v’ and 6;w’ are bounded, and there
exists a subsequence (retain notation) with 6u >u €AY and W > wE
AZ, implying v=u+w€&AY + AZ. Finally, v=utw, u€ AY, wEAZ
imply v € A[Y UZ] immediately if u=0 or w=0, and if u, w# 0, imply
the existence of W €Y, w €Z, 6,4, 20 such that guw —>u, ,w >w,
9, =0, A;—>0. Then, v = (§; + A;)) '(6;0' + \;w') E[YUZ] for j large, and
(6; + A )V >VE A[YUZ]. Q.E.D.

11.5. Lemma. Y,Z non-empty and closed, and Y UZ semi-bounded
implies Y + Z closed and semi-bounded.

Proof: Y+Z is semi-bounded by 11.4(3). If v EY+Z, vl v, then
there exist u' €Y, w' €Z such that v/ =u'+w'. By 11.2(1), u',w are
bounded, and there exists a subsequence (retain notation) with u' >u €
Y,w >weEZ, implyingv=u+weY+Z. Q.E.D.
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11.6. Lemma. If Y is non-empty, convex, and semi-bounded, then
# # int AY if and only if NY is pointed.

Proof: Since AY = P(NY), 11.3 implies the result. Q.E.D.

12. Properties of Convex Functions

The next series of results give properties of convex functions,
particularly support functions. General treatments of this topic can be
found in Fenchel (1953, Ch. III), Karlin (1959, 7.5), and Rockafellar
(1970, Sects. 10, 13, 25).

12.1. Lemma. If (FX) is convex, then (1) F is continuous on
intr X, and is uniformly Lipschitzian on any compact subset Y of
intr X (i.e., given Y, there exists u such that [F(x)— F(y){ = u|x—y]|
forallx,yeY.

(2) If int X > @, then F possesses a first and second differential in
a set YCint X, with (int X)\Y a set of Lebesgue measure zero. The
vector of first-order partial derivatives of F, denoted by F' and
termed the gradient, is continuous in Y. At each point in Y, the
matrix of second-order partial derivatives of F, denoted by F’ and
termed the Hessian, is symmetric (i.e., derivatives are independent
of the order of differentiation) and the quadratic form Q(v,F") of
any vector v and the matrix F” is non-negative (i.e., F” is a non-
negative definite matrix). Further, F(z)= F(x)+F(x)(z—~x)+
3Qz—x.F'(x)+i(Jz—x) for x€Y, z€intX, where i(a) is a
term satisfying lim,.¢+ i(a)/a = 0.

Proof: For (1) see Fenchel (1953, Ch. III, Results 21, 23, 34), Popoviciu
(1945), or Rockafellar (1970, Thms. 10.1 and 10.4). For (2) see Reide-
meister (1921), Alexandrov (1939), Rockafellar (1970, Thm. 25.5), and
Busemann and Feller (1935-36). Q.E.D.

12.2. Definition. If (F,X) is convex and closed, define (H,Y) by
yEY if and only if supsex{yx—FX)}<+w, and H(y)=
supsex{y-x — F (x)} for y €Y. (H)Y) is termed the conjugate dual of
(F,X), and will be denoted by {(H)Y)=D(FX). The following
theorem is due to Fenchel, and is proved in Karlin (1959, 7.5.2 and
7.5.3), or Rockafellar (1970, Thm. 12.2).

12.3. Theorem. If (F,X) is convex and closed, then the conjugate
dual (H,Y)= D(FX) has Y# @ and is convex and closed. Further,

D(H)Y)=(FX).
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12.4. Lemma. If Y is non-empty, closed, and semi-bounded, then
the support function (GY_,ﬁY) is convex, closed, and positively
linear homogeneous, and [Y]={y € E¥lp-y = G"(p) for all pENY}.

Proof: Rockafellar (1970, Thm. 13.2). Define (F,X) with X =[Y] and
F (x) =0 for x €X. Then, {G,V) = D(F.X) is defined for p € V if and only
if SUpxex p'X = SUPyey Py < +%, and G(p) = supPyey Py for pE€ V. Hence,
V = NY and G = GY. By 12.3, (G¥,NY) is convex and closed. Since NY is
a cone, the positive linear homogeneity of (GY,NY) is a consequence of
the definition of GY. Finally, by 12.3, D{GY,NY)=(FX) and x€X if
and only if suppeny{p-x— G¥(p)} < +o. Using the positive linear homo-
geneity, x € X if and only if p-x= G"(p) for all pENY. Q.E.D.

12.5. Lemma. If (F,X) is convex, closed, and positively linear
homogeneous, and intX#@, then Y={y€ E¥|p-y= F(p) for all
p €X} is non-empty, convex, closed, and semi-bounded, and (F,X)
is the support function of Y.

Proof: By 12.3 and the homogeneity argument used in the proof of
12.4, the conjugate dual of {F.X) is (G,Y), with Y the set given in the
statement of this lemma, and G(y)=0 for y €Y. Hence, by 12.3, Y is
non-empty and convex. The closedness of Y is immediate from its
definition. Since p € X implies p-y = F(p) forally€Y, X CNYCPAY),
implying AY C PX. Since int X # @, PX is pointed by 11.3 (3), and hence
Y is semi-bounded. By the argument of 12.4, (GY,NY) = D(G,Y), imply-
ing (GY,NY) =(FX) by 12.3. Q.E.D.

12.6. Definition. A set X is a polytope if it is the convex hull of a
finite set of points. X is boundedly polyhedral if its intersection with
any polytope is a polytope.

12.7. Lemma. If (F,X) is convex and closed, and X is boundedly
polyhedral, then (F,X) is continuous; ie., VvEX implies
Iimnex.u—'v F(u) = F(V)

Proof: Gale, Klee, and Rockafellar (1968, Thm. 2) establish
lim gex eov SUp F(u) = F(v). Since (F.X) is closed, the result follows.

Q.E.D.
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13. Properties of Maximand Correspondences

We now establish properties of maximands of p-y for y in a closed,
semi-bounded set Y. In this and succeeding sections, we shall deal with
pairs of Euclidean spaces EN and EY. The spaces in which sets lie will
be clear from the context.

13.1. Definition. A mapping ® from a non-empty set ZC E¥ into
subsets of EY (i.e., ®z) CE" for each zE€ Z) is termed a set-valued
function and denoted by (®,Z). If ®(z) is non-empty for all z€ Z,
then (®,Z) is termed a correspondence. We say a set-valued
function or correspondence (@®,Z) is convex-valued (or closed-,
compact-, or semi-bounded-valued) if @(z) is convex (or closed,
compact, or semi-bounded) for each z€ Z. If U,z ®(z) is bounded
(or semi-bounded), we say (®,Z) has bounded range (or semi-
bounded range).

13.2. Definition. A correspondence {(®,Z), ZC EM, ®(z)CE", is
upper hemicontinuous if 7 €2, 7 »z€Z,y €E®(), y >y implies
y € ®(z). (®,Z) is lower hemicontinuous if Z€Z,7>21EZ, yE D(z)
implies there exist y' € ®(z') with y —»y. (®,Z) is strongly upper
hemicontinuous if it is upper hemicontinuous and Z €Z, 2 »z€ Z,
y € ®(Z), 9,20, §;~0, 6,y >y implies y € AD(z). (®,Z) is (strong-
ly) continuous if it is lower hemicontinuous and (strongly) upper
hemicontinuous.

13.3 Lemma. A correspondence (®.Z) has the following proper-
ties: (1) if it is upper hemicontinuous, then it is closed-valued; (2) if
it is continuous and convex-valued, then it is strongly continuous;
(3) suppose it is lower hemicontinuous and convex-valued, with
int ®(z) # @ for z € Z. Then for any sequence z* €Z, z* >2°€Z and
any compact set RC int ®(2°), there exists k, such that RC int P(z")

for k = k.

Proof: The first proposition is an immediate consequence of the
definition of upper hemicontinuity. To show the second, suppose z’' € Z,
Z—>z€Z, yy ed), 6,=0 such that §;-0 and 6y >y. Take any
v € ®(2). By lower hemicontinuity, there exist v € ®(z'), v/ - v. For any
A>0, 0=6a <1 for j large, and Ay +(1— A )W € B(z)) with GAy +
(1— @A) > Ay+ v E ®(z), by upper hemicontinuity. Hence, y € AdP(2).

To prove (3), first consider a sequence z“ € Z, z* -z’ € Z, and a vector
y* € int @(z°). Let ¢ denote the jth unit vector in E, and e}y denote a
vector of ones in EN. For a positive scalar 8, define y°=y* — 8eX and
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y = y*+ 8¢/, j = 1,....N. For & sufficiently small, y € int ®(z%, j = 0,....N,
and y* = (2o ¥)/(N + 1). By the lower hemicontinuity of @, there exist
v Eint B(z*) with y* >y, j =0,..,N. Treating the y vectors as column
vectors, form (N + 1)-dimensional matrices A; and A, and (N +1)-
dimensional column vectors a and @ satisfying

0k 1k Nk 0 H N
Ay Y] _py ey ]
LR S U P B Ao (1771 17)

&[]

Then, A, is non-singular, and A¢@ =a has a unique solution @y =
(N + 17" eX+1. Since Ay— Ay, it follows that A, is non-singular for k
large, and Ax'—>Ag'. Define 6, = Ai'a. Then, 6~ 6, implying 8, non-
negative for all sufficiently large k. Then, for all sufficiently large k, the
polytope with vertices y*—(8/2)ex and y*+ (8/2)¢ for j=1,..,N,
contains y* in its interior and is contained in ®(z"). Therefore, for each
y* € int ®(z"), there exists an open neighborhood N, of y* and an index
ky such that Ny Cint ®(z") for k=0 and k= k,-. If R is a compact
subset of int ®(z%), then the neighborhoods N,. for y* €R cover R,
implying the existence of a finite subcovering of R. Then, for k = k- for
each y* in the finite subcovering, RC int ®(z"). Q.E.D.

13.4. Definition. For a non-empty, closed, semi-bounded set Y C
EN. define p¥={p € NY|G¥(p) =p-y for some y€EY} and d¥(p) =
[y € Y|G¥(p)=p-y} for pEPY. We term (®Y,PY) the maximand
correspondence of Y.

13.5. Lemma. If YCE" is non-empty, closed, and semi-bounded,
then (1) Q=int NY CP¥; (2) (®YPY) is closed-valued and upper
hemicontinuous: (3) (®¥,Q) is compac:-valued; (4) for any compact
non-empty set RC Q, (®Y,R) has bounded range; and (5) if ¥ is
convex, then (®@¥,P¥) is convex-valued, and if pE€Q. y € ®¥(p),
y & intr ®@¥(p), then there exists (y;p')—>(y.p) with y € ®¥(p’) and
p’' € Q not proportional to p.

Proof: We first show that for any non-empty compact set RCQ,
U,cg ®(2) is non-empty and bounded. Taking R = {p}, this will verify (1).
Suppose there exist RC Q, R# @, R compact, p' ER, ¥y €Y such that
ly/|>+= and p-y'— G'(p')—>0. By the compactness of R and the
continuity of G¥, we can assume p'—>p€R and p-y' > GY(p). Then,
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there exists a subsequence of j (retain notation) such that yily|=y€
AY,y#0, and p-y = 0, contradicting p € Q by 11.3(3). Hence, forpeR,
an optimizing sequence y' €Y with p-y' > G¥(p) is bounded, and has
a subsequence converging to yEY with py= GY¥(p). This proves
U ,cg ®(z) non-empty and bounded, verifying (1) and (4). If p EPY,
p>pEP, yEd¥(p'), ¥y, then p'y zp''w for wEY, implying
in the limit p-y=p-w for w €Y, and hence y € ®¥(p). Hence, (®*,P")
is upper hemicontinuous, and therefore closed-valued. This verifies (2). By
(2) and (4), (P¥,Q) is compact-valued, verifying (3).

Suppose in (5) that Y is convex. Then, y,z€ ®"(p) implies p-(8y +
(1—6)z)=pw for weY, 0< 6 <1, and hence ®¥(p) convex. Suppose
pEQ, yE ®(p), y € intr ®¥(p). We first show y&intr Y. If dp) =Y,
this result is immediate. Alternately, there exists w €Y, w & ®*(p), and
hence p-y>p-w. If yEintrY, then for small §>0, (1+08)y—0wE Y,
implying the contradictory inequality p-y=p-w. Two cases will be
distinguished:

Case 1. ®¥(p) N(intr Y) # @. By 10.12, there exists q # 0 such that
Y C H (q.q-y) and (intr Y) N H(q,q-y) = ¢. This implies q not proportional
to p. Defining p' = (1—j ")p+j'q and y' =y, the sequence y.p) = (y.p)
satisfies (5).

Case 2. ®*(p) Nintr Y = @. Since y & intr ®*(p), there exists a sequence
Z in the flat spanned by ®¥(p) such that z'& ®(p) and z' >y. Then, in
particular, z’ is in the flat spanned by Y and is in the hyperplane
H(p,p-y). Choose w E intr Y. Then, there exists 6, 0< @ <1, such that
y =0z +(1-6)weEY and yZintr Y. If a subsequence had §,—~6 <1,
then y—>0y+(1—@)wEintr Y, contradicting the closedness of
Y\ (intr Y). Hence, 8; > 1 and y' - y. By 10.12, for each y' there exists p’
such that |p/| = 1 and p’-y’ = p’-w for all w €Y. Since y'& ®*(p), p' is not
proportional to p. Take a subsequence of j with p’ converging to a
vector q. If q is a positive multiple of p, then after the p’ are rescaled by
dividing by this quantity, (y’,p’)— (y,p) is the required sequence. Ifqisa
negative multiple of p, then Y C H(p,p-y), contradicting this case. If qis
not proportional to p, then y =y and p'=(1-j )p+ j”'q gives the
required sequence. This verifies (5). Q.E.D.

13.6. Remark. The interior of the set P¥ on which the support
function GY achieves a maximum is a non-empty convex set when
Y is closed and semi-bounded, and its closure is also convex; i.e.,
we have the string of inclusions

§  int P(AY) C PY C NY C P(AY),
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with P(AY) closed and convex. Nevertheless, PY itself, need not be
convex. One example has been given by Winter (forthcoming); a
second follows: define the set

Y={EE ynys= 0,9, = (y2+ y3) ' <0}

This set is closed and convex. For p'=(0,0,1), a maximum of py
for y €Y is attained at y = (—1,—1,0). For p’ = (0,1,0), a maximum is
attained at y =(—1,0,—1). But for p=p'+ p>=(0,1,1), the supre-
mum of p-y for yE Y, equal to zero, is approached by y>+ y3 = yi
and y, -, but is not achieved.

13.7. Definition. For a convex, closed, positively linear homo-
geneous real-valued function (FX), define a set-valued function
(T, intr X), T(x) CE", by y € T'(x) if and only if for all zE X,

(z—x)y= 3‘351 inf(F((1 — 8)x + 6z) — F(x))/6.

(T, intr X) is termed the sub-differential of (F.X). Note that if Fis
differentiable at x€intX, then limgo(F((1-8)x+6z)— F(x))/6
exists for all zEEY, and y is unique and equals the gradient (i.e.,
the vector of partial derivatives of F).

13.8. Lemma. If (FX) is convex, closed, and positively linear
homogeneous, then (1) the sub-differential (I, intr X) is a convex-
valued upper hemicontinuous correspondence, with yEI'(x), xE
intr X, if and only if F(x)=yx and F(z)=y-z for all z€X; (2) if
intX #@, (T,intX) is compact-valued; (3) F is differentiable at
x€intX with a vector of partial derivatives y if and only if
I'x)={y}; and @) if x€intX#Pand Y={wE EV|x-w = F(x) for all
x € X}, then y € F(x) if and only if yE Y and x-y Zx-w forallwey.

Proof: See also Rockafellar (1970, Sect. 23). (a) Consider the set
A ={(x,£) EEN*Ix€X, £= F(x)}. One can easily show that A is convex
and closed, and that for any x € intr X, (x,F(x)) € intr A. By 10.12, there
exists (y,—n)EEN“, (y,~m)#0, such that y'x—nF(x)=yz—né for all
(z,6) € A, with the inequality strict for (z,£) € intr A. Taking z=x and
¢ > F(x) yields (z,£)€intr A and implies 7 > 0. Normalize n = 1. For
2E€X, 0< 0 < 1, the inequality yields y-(6z+ (1— 8)x) ~yx = 0y-(z— X)=
F(6z+(1- 0)x)— F(x). Letting 60", this implies y €T'(x). Hence,
(T, intr X) is a correspondence.

(b) We next show that (F(8z+(1-8)x)—F (x))/8 is a non-decreasing
function of positive 8 for z€ X, x € intr X. Suppose 0<6,<6; and let
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a=6,/0,, By the convexity of F, F(a(6z+(1-6)x)+(1~a)x)=
F(8z+ (1~ 0)x)= aF(8:;z+ (1 - 0)x)+ (1 — a)F(x), or (F(8z +
(1-6)x)— F(x))/8, = (F(8,z + (1 - 82)x) — F(x))/6..

(c) Suppose x€intrX, yEI'(x). For any vEE" with z=x+vEX,
paragraph (b) and the definition of I imply v-y= F(v+x)— F(x). Taking
v = —x/2, homogeneity implies x-y = F(x). Taking vEX, convexity im-
plies v-y= F(v). Hence, we have established y€I'(x) if and only if
x-y = F(x) and z-y= F(z) for all z€ X. Since F is continuous on intr X
by 12.1, the results that (T, intr X) is convex-valued and upper hemicon-
tinuous follow immediately from this characterization, verifying (1).

(d) In (2), (3), (4), int X # ¢ is assumed. Then, by 12.5, Y defined in (4)
is non-empty, convex, closed, and semi-bounded, and (FX) is the
support function of Y. From the characterization of (T, intr X}
established in (c), (4) holds and I'(x)=®Y(x) for x€intX. By 13.5,
(T, int X) is compact-valued, verifying (2). We noted previously that if
is differentiable at x € int X, then the definition of I" implies the “only if”
implication in (3). The converse implication in (3) is a consequence of
the definition of differentiability -a detailed argument is given by
Fenchel (1953, Ch. 3, result 32) or Rockafellar (1970, Thm. 25.1). Q.E.D.

13.9. Corollary. If Y is non-empty, closed, and semi-bounded,
(GYNY) is the support function of Y, (T,intNY) is the sub-
differential of GY, and {®", int NY) is the maximand correspondence
of Y, then I'(p) = [®*(p)] for p Eint NY.

Proof: pEintNY and yE ®¥(p) > pyZpwioral wEYS py=Zpw
for all we[Y]=>y € ®™(p). Alternately, y € ®M(p)=> [by 11.2(4)] y =
u+v with u € [Y], vE A[Y]. But v#0=>p-v<0 for pEintNY. Hence,
v=0 and yE[YI2y=2"0y" with yEY, 6,20, 27,6,=1, and
py=pw for all we&I[Y>y €®¥p)=>ye< [@(p). Hence, [®¥(p)]=
®™(p) = T(p) by 12.4 and 13.8. Q.E.D.

14. Exposed Sets

The next series of results establish relationships between a closed
semi-bounded set and the set of all its maximands.

14.1. Lemma. If Y is non-empty, convex, closed, and semi-boun-
ded, Z is non-empty, convex, and compact, and YNZ =@, then
there exists an open set W C int NY and scalars «,8 such that wy =
a<pB=wzforall weW,y€Y, z€Z. In particular, w € W may
be chosen so that w-y is maximized over y €Y at a unique point.



A.3: Convex Analysis 397

Proof: By 10.13, there exist p, a1, B such that py=a,— 1<
a,+ B =pz for yEY, 2zEZ. Since Z is compact, intNY #6, and
(G¥NY) is closed and convex, we can choose q€intNY such that
lg— p| < Bi/2(1 + maxzlz)) and GY(@) - G¥(p)<By/2, implying qy=
a—-pi<a+pBi=qz for yeY, zE€EZ, B>= B1/2. Then, a small open
neighborhood W of q is contained in int NY, and by the continuity of G¥
and the compactness of Z can be taken so that the strict separation is
preserved. Since GY is differentiable almost everywhere in int NY
(Lemma 12.1) and w-y achieves a unique maximum on Y if GY is
differentiable at w, the last conclusion is immediate. Q.E.D.

14.2. Definition. X is an exposed set of a non-empty, closed,
semi-bounded set Y if X is the intersection of Y and a supporting
hyperplane, i.e., ®¥(p) = X for some p € NY. If X ={y}, y is termed
an exposed point. Let Y* denote the set of exposed points of Y.

14.3. Lemma. If Y is non-empty, convex, closed, and semi-boun-
ded, then Y = [Y*] + AY.

Proof: By 109, Z= [Y*]+AYCY, implying AZ =AY, and hence
P(AZ)=P(AY). If yEY, y€ Z, then by 14.1 there exists an open set
W C int NZ = int NY such that pz=a<B=py for all z€Z, pEW.
Choose p € W such that G¥(p) is differentiable. Then, there exists a
unique vEY such that G¥(p)=p-v=py. But then vE& Y*C1Z,
contradicting the inequality p-z= «. Hence, Z=Y. Q.E.D.

15. Conjugate Correspondences

Thus far, we have investigated properties of the support function
of a single set Y. We now list properties of a family of support functions
corresponding to a parametric family of sets Y. This topic does not seem
to have been investigated in the mathematical literature, although the
work of Rockafellar (1970) on perturbations is closely related. Through-
out this section, we shall consider a non-empty set of parameters
VCEM and a mapping from vEYV into non-empty subsets Y(v) C EV.
Then, (Y,V) is a correspondence.

15.1. Definition. For a correspondence (Y,V) mapping vEV C EM
into Y{(v)C EY which has Y(v) closed and semi-bounded for each

vE V, let AY(v) and NY(v) denote the asymptotic cone and normal
cone of Y(v), respectively. Then, (AY,V) and (NY,V) are cor-

respondences. Define the sets



398 Daniel McFadden

D ={(v,p) EEMN|yEV,pENY(v)},
D’ = {(v,p) EEM*N|vy € V,pEint NY(v)}.

On the domain D, define the support function G by
G(v,p) = sup{p-y|y € Y(v)}.

On the domain D°, let I'(v,p) denote the sub-differential of G, and let
D(v,p)={y EY(V)|p-y = p-w for all wE€ Y(v)}

denote the maximand correspondence. The abbreviated notation
{G,D)(T",C%, (®,D° will also be used for these mappings.

15.2. Lemma. If (Y,V) is a strongly continuous semi-bounded-
valued correspondence, then (1) (AY,V) is a upper hemicontinuous
correspondence; (2) (NY,V) is a lower hemicontinuous correspon-
dence: and (3) if v €V, v/ >vEV, RCint NY(v) is non-empty and
compact, then there exists j, such that

RCint NY(V) for j=j,

and
Zz= | ®+p
jZip pER
is bounded.

Proof: f vVEV, visveEV, y¥ EAY(V), y >y, then there exist w €
Y(v') and 6;= 0 such that §,<j' and |6;w' —y'| < ', implying 6;w' >y.
Then, y € AY(v) by strong continuity. This verifies (1).

Consider v €V, vV > vE V, RCint NY(v), R non-empty and compact.
Suppose for an infinite subsequence of j, there exists p’ €R with
p'Z int NY(v'), implying p’-y’ = 0 for some y’ € AY(v') with |y’| = 1. Then,
there exists a subsequence of (p’y’) converging to (p,y) with pER,
y € AY(v) by (1), and p-y =0, contradicting the definition of R. Hence,
there exists jo, such that RC int NY(v') for j = j,. Next suppose there
exists p' ER, y' € ®(v',p’) for j = j, with y’ unbounded. Then there exists
a subsequence of j with y/|y'| converging to u& AY(v) by strong
continuity and p’ converging to p€E€ R. But for any w€ Y(v), by lower
hemicontinuity there exists w' € Y(v') with w' —>w, and p’-y' = G(v,p)) =
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p'-w/ > p-w, implying p’-y/|y’|> p-u=0 and contradicting the definition
of R. This verifies (3).

Finally, suppose (v,p)ED, v/ €V, v/ > v. There exist p’' € int NY(v),
p'>p. {p.p’} is a compact subset of intNY(v), and thus by (3) there
exists jo such that p' € NY(v""), verifying (2). Q.E.D.

15.3. Lemma. If (Y,V) is a strongly continuous semi-bounded-
valued correspondence, then (1) for fixed vEYV, the support
function (G,NY(v)) is a convex, closed, positively linear homo-
geneous function of pENY(v); (2) {G,D" is continuous [i.e., G(v,p)
is continuous jointly in v and p at each (v,p) € D%]; (3) (G,D) is lower
hemicontinuous; i.e., if (v,p)ED, v'EV, v > v, then

G(v,p) = lim inf G(v/,p’);
PENY(¥)
—p
4) If }(v",pf)ED, (v,p')>(v,p) with vEV, pZNY(v), then
lim; G(v,p') = +=.

Proof: Result 12.4 implies (1). We next establish an inequality used to
prove (3) and (4). Suppose (v.,p’) ED is a sequence converging to (v,p),
vEV, for which the limit of G(v,p'), possibly infinite, exists. Take
y' € Y(v) with p-y' = G(v,p). By the lower hemicontinuity of Y, there
exists a subsequence j; and points w' € Y(v#) such that |w' —y'| <i™' and
lp*-w' — p-y'| < i'. Then,

G(v'iph)zp'-w,
and

G(v.p) = limp-y' = lim G(v',p).
i i

If p&€NY(v), then G(v,p)=+x, and (4) holds. If pENY(v), then

G(V,P) = Iim inf (vipHeD G(Vj’Pj)-
g y-tv.p) o o .
Next suppose (v,p’) €D, (v',p')— (v,p) ED". For some jo, the set Z =

{p.p®.p**',...} is a compact subset of intNY(v). By 15.2(3) and 13.5,
Z Cint NY(v') and there exists a bounded sequence y’' € ®(v',p’) for j
large. Then, there exists a subsequence of j with y converging to
y € Y(v) by upper hemicontinuity. Then, retaining the same notation for
this subsequence, lim; G(v.,p’) =lim;p’y' =p'y=G(v,p). Since the
opposite inequality was shown to hold above, this verifies (2).
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Finally, suppose v' EV, v/ >vEYV, pE NY(v). By the closedness and
convexity of G in p for fixed v, there exists a sequence p' € int NY(v)
such that p' - p and G(v,p) = lim; G(v,p'). By (2) proved above, for each
i there exists j such that p' € NY(v)) and |G(v,p')— G(v',p")|<i™" for
j=j. Take @' =p' for j;=j<jis1. Then, lim; G(v',q’) = G(v,p), and (3)
holds. Q.E.D.

15.4. Lemma. I (Y,V) is a strongly continuous, semi-bounded-
valued correspondence, then the maximand correspondence (®,D%

is upper hemicontinuous.

Proof: Suppose (v,p') ED°, (v.,p') = (v.p) € D°, y € ®(v',p'), y >y. For
any wE Y(v), by lower hemicontinuity there exist w EY(V), w-ow.
Then, p/-w’ < p'-y/, implying in the limit that p-w < py. Since y € Y(v) by
upper hemicontinuity, this implies y € ®(v,p). Q.E.D.

15.5. Lemma. Suppose VCEM is non-empty, (K,V) is a lower
hemicontinuous correspondence mapping v E V into K(v) C EV, with
K(v) a pointed convex cone and int K(v) # @ for each vE€ V. Define

D= {(v.p) EE¥N|vEVpEKW)
D° = {(v,p) € Djp € int K(v)},

and suppose (F,D) is a closed real-valued function with (F.D°)
continuous (for definitions, see 15.3) such that for each fixed v€ 'V,
(F,K(v)) is convex, closed, and positively linear homogeneous (as a
function of p). Then, the correspondence (Y,V) defined by Y(v) =
(Y EE¥[p-y = F(v,p) for all p€K(v)} is strongly continuous, con-
vex-valued, semi-bounded-valued, with int AY(v) # #.

Proof: By 12.5, Y(v) is non-empty, closed, convex, and semi-bounded.
By 11.6 and 10.9, int Y(v) ##. Suppose VEV, VovEV, ¥ EY(Y),
y/ > y. If p € int K(v), then by lower hemicontinuity there exist p EK(W)
with p' > p, implying p'-y’ = F(v’,p’). Taking the limit, p-y = F(v,p) by the
continuity of (F,D%. For any p € K(v), there exist p' € int K(v), p —p,
and F(v,p’)— F(v,p) by the closedness of (F.D). Hence, p'y = F(v,p")
implies in the limit p-y = F(v,p). Therefore, y € Y(v), implying (Y.V)
upper hemicontinuous.

Next suppose v €V, v/ > v E V, y € int Y(v). Then, there exists a >0
‘such that y + ap € Y(v) for all p€ E" with p-p=1. Hence, p-(y + ap) =
F(v,p), or p-y = F(v,p) — a, for all pE€ K(v) withp-p=1. Suppose that for
an infinite subsequence of j, y & Y(v'). Then, there exists p’ € int K(v)
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such that p/-p' =1 and p/-y> F(v.p'). Extract a subsequence (retain
notation) with p' = p. Then, the closedness of (F.D) implies in the limit
the inequality p-y= F(v,p). This condition also implies p € K(v). But
then the inequality p-y=F(vp)—a Iis contradicted. Therefore, y €
int Y(v) implies y € Y (v)) for j large. Finally, for any y € Y(v), there exist
y' €int Y(v), y' > y. Then, there exists a subsequence ji of j such that
y EY(v). Hence, (Y,V) is lower hemicontinuous, and therefore
continuous. By 13.3, it is strongly continuous. Q.E.D.

15.6. Lemma. If (Y,V) is a lower hemicontinuous convex-valued
correspondence, then there exists a continuous function y*:V—>E"
such that y*(v) € intr Y(v) for each vE V.

Proof: (Y,V) lower hemicontinuous and convex implies (intr Y,V)
lower hemicontinuous. Then a theorem of Michael [see Parthasarathy
(1971, Thm. 1.1)] establishes the existence of a continuous function y*

with y*(v) €Y(v). Q.E.D.

16. Differential Properties

In this section, we examine the relation between the curvature of
the surface of a closed convex set Y and the curvature of its support

function.

16.1. Definition. Consider a non-empty, closed, convex, semi-
bounded set YCE" and assume without loss (by translation, if
necessary) 0 €Y. Let TY denote the cone spanned by Y, and let
SY = NY. Define the real-valued function (H YTV by HY(y) =
inf{A > 0j(1/A)y € Y} for yE TV, (HY,TY) is termed the gauge
function of Y.

16.2. Lemma. If YCEY is non-empty, convex, closed, and semi-
bounded, and 0 €Y, then (1) (H Y TY) is convex, closed, and posi-
tively linear homogeneous; (2) for yETY, A= H¥y)>0 implies
y/IA €Y, H¥(y)> A >0 implies y/AZY, and HY¥(y)=0 implies y €
AY CY; (3) the sub-differential (AY, intr T¥) of (H¥,TY) is an upper
hemicontinuous correspondence; and (4) if 0€intrY, then TV =
intr TY is linear subspace.

Proof: It is an immediate consequence of the definition of (HY,TY)
that this function exists, is non-negative and positively linear homo-
geneous, and satisfies (2). For y, z €TV, consider any A,u > 0 such that
yA€Yzlu €Y, and let 0 =A/(A +p). Then O(y/A)+(1—0)z/p) =
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(y + 2)/(A + n) EY by convexity, implying HY(y +z)= A + p. Taking A -
HY¥(y), p > H¥(z) establishes convexity of HY. The following argument
establishes HY closed. Suppose y' € TY, y' >y # 0. For any € > 0, there
exist A; such that either y' €AY and A; =0, or y'€AY and y/LEY,
yl(A;+€) €Y. If liminf A, = A is finite, then y/(A+€)EY, implying
H¥y)=A+e=e+liminf HY(y). If y € TY, then +o =lim inf A;, imply-
ing liminf HY(y')= +%. At y=0, HY(0)=0= H"(y'). Hence, HY is
closed, and (1) holds. Result (3) follows from 13.8, and (4) from the
definition of the relative interior of a set. Q.E.D.

16.3. Lemma. The gauge function (HY,TY) and the support
function (GY,SY) of a non-empty, closed, convex, semi-bounded set
Y CE" with 0€intr Y are related by: (1) p-y = G¥(p)H¥(y) for all
pESY, yeTY If p€intrS' and yEintr TY, then for GY(p)>0,
equality holds if and only if p/G¥(p) € A¥(y), and for H¥(y)>0,
equality holds if and only if y/HY®ET¥(p). 2 G'(p)=
inf{A > Op-y = AHY(y) for all yeT¥} for peS’. (3) H¥(y)=
inf{A > Olp-y = AGY(p) for all p€ S"} for ye T*. (4) For pEintr §¥,
yEintr TY, p€ A¥(y) if and only if HY(y) =p-y and G¥*(p) =1, and
yE¥(p) if and only if G¥(p)=p-'y and H¥(y)= 1.

Remark: (HY,TY) and (G¥,S¥) are termed polar reciprocal functions,
and the sets Y = {y € TY|H¥(y) = 1} and P = {p €S¥|G"(p) = 1} are termed
polar reciprocal sets.

Proof: If peS*, {A>0py=AHYy) for all y€eET}=
{A>0lp-(y/HY(¥)) = A for all yET* with H¥(y)>0}={A >0|p-y= A for
all y € Y}, where the first equality follows from 16.2 (2) and the second
equality follows from the definition of HY and AY =PS*. Hence, (2)
holds. Letting A - G¥(p) in the condition p-y = AH¥(y) in (2) verifies the
inequality in (1). To show (3), note that HY(y)<1 implies yEY =
{ve T¥p-v= G¥(p) for all p € S*}, and hence inf{r > Olp-y = AG"(p) for
all pe S} =1, and that H¥(y)> 1 implies p-y > G"(p) for some p €S,
and hence inf{A > O|p-y = AG¥(p) for all p € §*}> 1. Then, homogeneity
implies (3). Next, the ‘“‘if and only if”” conditions in (1) will be verified.

(a) Assume G¥(p)>0. If p € G¥(p)A¥(y), then p/G*(p) € A¥(y) implies
p-y/G¥(p) = H¥(y) by 13.8 (1). Conversely, if p-y=GY(p)H*(y), then
yp/G¥(p)= H¥(y) and z-p/G¥(p)=HY(z) for all z€TY, implying
p/G¥(p) EA¥(y) by 13.8 (1). (b) Assume H¥(y)>0. By an argument
symmetric to that in (a), y/H¥(y) € I'¥(p) if and only if p-y = G*(p)H *(y).

Result (4) follows from (1) and 13.8. Q.E.D.
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16.4. Definition. A convex, closed, positively linear homogeneous
function (F.X) is exposed at x€ intr X if (x,F(x)) is a point in an
exposed ray in the set A={(x.£&)EE""xEX, £ZF(x)} or,
equivalently, there exists y €I'(x), where (T,intr X) is the sub-
differential of (F,X), such that F(z) - F(x)>y-(z—x) forallz€X, z
not proportional to x. (FX) is strictly quasiconvex at xEintr X if
FOx+(1—0)2)<8F(x)+{(1-8)F(z) for 0<6<1 and z€ X, z not
proportional to x. When intX #@, (FX) is strictly differentially
quasiconvex at x € int X if (FX) has a first and second differential at
x and the quadratic form Q(v.,F’(x)) in the Hessian matrix F'(x) is
positive for v not proportional to x (i.e., F'(x) is non-negative
definite and of rank N —1).

16.5. Lemma. Consider a convex, closed, positively linear homo-
geneous function (F.X) with sub-differential ([.intr X}. (1) For x&
intr X, F(z)— F(x)>y-(z—x) for all yEintr I'(x), z€ X, z not pro-
portional to x, if and only if (F.X) is exposed at x. (2) For x € intr X,
F(z)— F(x)>y(z—x) forallyeT'(x),z€E€ X, z not proportional to x,
if and only if {F,X) is strictly quasiconvex at x. For x€ intr X, (F.X)
strictly quasiconvex at x implies (F,X) exposed at x. (3) If intX # §
and (FX) is strictly differentially quasiconvex at x€E€intX, then
(FX) is strictly quasiconvex at x. (4) If int X # #, (FX) possesses
continuous first and second differentials in a neighborhood of x €
int X, and (F.X) is strictly quasiconvex at x, then for any neighbor-
hood Z of x, there exists a neighborhood W contained in Z such that
(FX) is strictly differentially quasiconvex on W.

Proof: (1) The “only if” condition follows from the definition of {F.X)
exposed at x. To show the “‘if” condition, suppose (F.X) exposed at x.
Then, F(z)— F(x) > y-(z—x) for z€X, z not proportional to x, and some
y € [(x). Suppose that for some v € intr I'(x) and z€ X, z not propor-
tional to x, F(z) — F(x) = v-(z—x). Then, (1+ 8)v— 68y EI'(x) for 6 small
positive, implying F(z) — F(x) <((1+ 8)v— 8y)-(z—x) and contradicting
the definition of I'.

(2) If (FX) is strictly quasiconvex at x, but there existsyeI'(x),z€ X,
z not proportional to x such that F(z)— F(x)=y-(z—x), then F((z+
x)/2) — F(x) < (F(z)— F(x)}/2 = y-((z—x)/2), contradicting the definition
of T. Hence, the “if”” implication in (2) holds, and (1) then implies the
last result in (2). Next, the “‘only if” implication will be established.
Suppose (F,X) is not strictly quasiconvex at x € intr X. Then, there exists
z€ X,z not proportional to x, a €(0,1) such that F(az+ (1-a)x)=
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aF(z)+ (1 - «)F(x). From the proof of 13.8, paragraph (b), we have
(F(8u+ (1— 8)v) — F(v))/@ non-decreasing in § >0 for u,vEX. For y €
0,1), F(yz+(1—vy)x)= yF(z)+ (1—v)F(x) by convexity. If e <y <1
and 6 = y/a > 1, then

Flblaz+(1 =)0+ 1=00-F&) . gy (- a)x) - Fx)
: =

= a[F(z) - F(x)],

or
F(yz+(1-v)x) = yF(z) + (1 - y)F(x).

If0<vy<aand 8§ =(1-v)/(1-a), then

F((az+(1 —a)x0)+(1 — 0D -F@) . prtal — @)= F(x)

=(1—-a)[F(x) - F(2)],

or
F(yz+(1—-y)x)= yF(z)+ (1 - y)F(x).

Hence,
F(yz+(1—y)x)= yF@)+ (1 - y)F(x),

for v € (0,1).

Set A={x&)€EEVN'xEX,£{£=F(x)} and the flat B=
{(8z+ (1 — 0)x, 8F(z) + (1 — 8)F(x))|é real}. Then, A is convex and BN
intr A = @, implying by 10.14 the existence of a hyperplane H((y,— n),a)
with B C H((y,— 1),a), AC H ((y,— 1),«), and intr A NH((y,— n),a)=§.
Using the argument of paragraph (a) of the proof of 13.8, we can
normalize » =1 and obtain the implication y € I'(x). But (z,F(z)) €EB
implies F(z) ~ F(x) = y-(z— x), contradicting the hypothesis in (2).

(3) As in the proof of (2), if {(F.X) is not strictly quasiconvex,
then there exists z€ X, z not proportional to x, such that F(6z+
(1-0)x)=08F(z)+(1—-80)F(x) for all 8 €(0,1). Letting v=0z+ (1 - 8)x,
F has a second-order expansion given in 12.1, F(v)=
Fx)+y-(v—x)+30°Q@—x.F'(x)) + i(8%z—x|), where y=F(x) and
I'x)={y}. For >0 small, $6°Q(z~ x,F'(x)) + i(8%z—x/*) > 0, implying
F(v) - F(x) > y-(v—x). But this contradicts the supposition, and (F.X) is
strictly quasiconvex at x.

(4) Consider any neighborhood U of x,UC X, in which F is twice
continuously differentiable. Define X = (x,,...,xny—;) and F(#) = F@#,xn)
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for 7€ EN! such that (Z,xy) € U. Since F is strictly quasiconvex at X,
FE+9)—-F®-Fxy>0 for (x+y,xv)EU, §#0. By continuity, there
exists a neighborhood U of & and a >0 such that |[§y|= e« and z€U
implies (z+¥,xy) €U and Fa+¥) - F@) —-F (7§ >0 for y#0. Then, F
is strictly convex on U, and a theorem of Bernstein and Toupin (1962)
establishes that the hessian F” is positive definite on an open dense
subset of U. Let Wc U be a neighborhood on which F” is positive
definite, and define W = {(§,yn) € U|(xn/ynN)¥ € W}. The hessian matrix of
F on Wis

[ xn =n [ XN - AN £ [ XN = --1
me) |G
N )’Ny A )’Ny y

XN o (XN = XN ~iw (XN 2\ =
—_ IF” (___ ) i IF” (__ )
L Ey YN y : ;{!_y YN y)¥

By construction, this matrix is of rank N —-1. Q.E.D.

16.6. Definition. Suppose Y C EVY is closed, convex, and semi-
bounded, with 0 €int Y, and define Y* = {y EE" |y € ®(p) for some
p €S}, where S = int NY and (®.S) is the maximand correspondence
of Y. Note that 0 € intY implies p-y = G(p)>0 for p€S, y€ ®(p),
and hence, by 16.3 (1), H(y)= 1.

16.7. Lemma. Suppose Y CEN is closed, convex, and semi-boun-
ded, with 0 €int Y. Let {(GNY) denote the support function of Y,
and (T'.S) denote its sub-differential. Let (HEV) denote the gauge
function of Y, and (A,EV) denote its sub-differential. Then, the
following conditions hold: (1) If y €E", then A(y) CNY. If yEY*,
then intr A(y)C S. If y € Y* and (H.E") is strictly quasiconvex at y,
then A(y)C S. (2) If pES, then I'(p)C Y*. (3) (H.E") differentiable
at yEY* implies (G,NY) exposed at pEA(Y)CS. (4) (GNY)
differentiable at p € S implies (H,EV) exposed at y € I'(p)- (5) (HEM)
exposed at y € Y* implies {G,NY) differentiable at p € intr A(y). (6)
(GNY) exposed at pES implies (HE") differentiable at y€&
intr I'(p). (7) (HEV) strictly quasiconvex at y € Y* implies (G.NY)
differentiable at p € A(y). (8) (G,NY) strictly quasiconvex at pES
implies (H,E") differentiable at y € I'(p). (9) (H.EV) differentiable at
all yeI'(p) for some pES implies (G,NY) strictly quasiconvex at p.
(10) {(G,NY) differentiable at all p € A(y) for some y € Y* implies
(HE") strictly quasiconvex at y. (11) If (HE") possesses a
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continuous first and second differential in a neighborhood of y € Y*,
and is strictly differentially quasiconvex at y, then (G,NY) possesses
a continuous first and second differential in a neighborhood of
pE A(y), and is strictly differentially quasiconvex at p. (12) If
(G,NY) possesses a continuous first and second differential in a
neighborhood of p&S, and is strictly differentially quasiconvex at
p, then (H.EY) possesses a continuous first and second differential
in a neighborhood of y €I'(p), and is strictly differentialiy quasi-
convex at y.

Proof: (1) By 13.8, p € A(y) implies p-y = H(y) and p-z= H(z) for all
z€EY. Hence, G(p) =sup{pzlz€Y}=1 and pENY. If yEY*, then
yET(q) for some q€ S by 13.9. Since H(y) = 1, we can scale q so that
qy=G(g) =1, and hence q€ A(y), by 16.3 (1). If there exists pE
intr A(y), p£€S, then there exists z€ AY, z# 0, such that p-z=0.
Further, (1+ 8)p— 6q € A(y) for 8 small positive and ((1+ &)p— 0q)z>
0, contradicting A(y) C NY. Hence, intr A(y) CS. If H is strictly quasi-
convex at y € Y*, then by 16.5 (2), H(z)— H(y)>p-(z—y) for z€E", z
not proportional to y, p € A(y). Taking z=y+ v with v€E AY, V # 0 im-
plies z€Y by 10.9. For some q€E€S, q'y=G(y)>0, implying v, and
hence z, not proportional to y. Therefore, 0= H(z) - H(y) > p-v. But
p-v<0 for all vE AY, v # 0, implies pE S.

(2) If p€ S, then F(p) =P(p)C Y* by 13.9.

(3) (H.EV) differentiable at y € Y* implies intr A(y) = A(y) = {p} CS.
For q €8, q not proportional to p, 16.3(1) implies q-y < G(q)H (y), and
hence (q - p)-y/H(y) < G(q) — G(p). But this is the condition for (G,NY)
to be exposed at p.

(4) (G,NY) differentiable at p€ S implies I'(p) ={y}C Y* and pz<
G(p)H (z) for z€E", z not proportional to y. Hence, (z—y)-p/G(p) <
H(z)— H(y), and {H,E") is exposed at y.

(5) (HE") exposed at y € Y* implies that for p € intr A(y), H(z)—
H(y)>p-(z—y) for z not proportional to y. Then, p.y=H(y)=1 and
pz<l1 for z€EY, z#y, implying I'(p) = ®(p) = {y}. Hence, (G,NY) is
differentiable at p. '

(6) (G,NY) exposed at p€ S implies that G(q) — G{(p)>y-(q—p) for
q €ENY, q not proportional to p, y € intrI'(p), and hence y€ Y* and
G(q)>y-q. If qEA(y), then H(z)- H(y)= q-(z—y), implying G(q)=
q'y=q-z for all z€Y. Then, q must be proportional to p, and since
H(y)=q'y, q=p/G(p). Hence, A(y) = {p/G(p)} and (H.EV) is differenti-
able at y.
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(7) {(H,EV) strictly quasiconvex at y € Y* implies, by 16.5(2) and (1)
above, that A(y) C S and the proof of (5) above holds for every p € A(y).

(8) By 16.5 (2), the proof of (6) above holds for every y € I'(p).

(9) (H.EV) differentiable at y€I'(p), p €S implies, by 16.3(4), that
intr A(y) = A(y) = {p/G(p)} C S. Then, g €S, q not proportional to p, and
y € I'(p) implies H(y) =1 and q-y < G(q). Hence, (q—p)y < G(q)— G(p)
for all y ET(p), and by 16.5(2), (G,NY) is strictly quasiconvex at p.

(10) The proof is the same as that for (9), with the appropriate
interchange in notation.

(11) If A(y)={p}, then G(p)=py=1=Max{pzlH(z)=1}. Since
H(0)=0<1, the Kuhn-Tucker theorem [Karlin (1959, Thm. 7.1.1)] can
be applied to establish the existence of A =0 such that pz+
A(1— H(z)) = p-y for all z€ E". Using differentiability, this implies p =
AH'(y) and 1=p-y = Ay-H'(y) = A. Hence the system of N + 1 equations
q = AH'(z) and 1 = H(z) has a solution at ¢ = p, A = 1, z=y. Further, the
Jacobian matrix of this system exists in a neighborhood of (q,A.z) =
(p.1,y), and has the form

[AH'(2) | H'(2)]
(@@ | o I

where the transpose of any column vector v is denoted by v, By
hypothesis, Q(v,H"(y)) is positive for v not proportional to y, and hence
is positive for non-zero v satisfying v-H'(y) =0. Therefore, J(1.y) is
non-singular (Appendix A.l, Lemma 4). Hence, by continuity of the first
and second differentials of H, J(A,z) is non-singular in a neighborhood of
(1,y). The implicit function theorem [Bartle (1964, 21.11)] establishes the
existence of a neighborhood of p and continuously differentiabie
functions A = L(q), z=Z(q) defined on this neighborhood such that
q= L(QH'(Z(q)), 1 = H(Z(q)), and L(p) =1, Z(p) =y. The Kuhn-Tucker
theorem then implies G(q) = Max{q-z|H(z) = 1}=q'Z(q) on the given
neighborhood of p. From the identity 1= H(Z(q)), the implication 0=
Z'(qQ)H'(Z(q)), where Z'(q) is the N X N matrix of partial derivatives of
Z(q), is obtained by differentiation. Hence, G'(q)=Z(q)+Z'(q)q=
Z(q) + L(q)Z'(@)H'(Z(q)) = Z(q) exists and 1s continuously differentiable,
implying that the first and second differentials of G exist and are
continuous in the given neighborhood of p. Finally, G"(q) = Z'(q) satisfies
Z'(q)q = 0 and the matrix equation

J(AZ) =

J(L(q)vZ(q”['(i;Z";'(E;g)%"“] N [It;ﬂ]
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where Iyxn is the N-dimensional tdentity matrix, Onx; is the N-dimen-
sional column vector of zeros. Since the right-hand side of this equation
is of rank N, the matrix

must be of rank N, and hence Z'(q) must be at least of rank N — 1. Since
G is convex, Z'(q) is non-negative definite, implying the quadratic form
Q(r,Z'(q)) positive for r not proportional to q. This establishes (G,NY)
strictly differentially quasiconvex on a neighborhood of p.

(12) Without loss, assume G(p)=1. If ['(p)= {y}, then from 16.3,
H(y)=1=inf{A > 0|q'y= AG(q) for all g€ S}=Max{q-ylqES, G(q)=
1} =p-y. As in the proof of (11), the Kuhn-Tucker theorem can be
applied to establish the existence of A such that y =AG'(p) and 1 =p-y =
Ap-G'(p) = A. The result then follows by an argument completely sym-
metric with the proof of (11). Q.E.D.



