References

Allouche, J., 1972, Approach to probability distribution of value of walking time and pedestrian circulation models, Highway Research Record 392, 121–133.

Amemiya, T., 1974, Bivariate probit analysis: Minimum chi-square methods, Report no. 76, unpublished (Institute for Mathematical Studies in the Social Sciences, Stanford University, Stanford, Calif.).

Amemiya, T. and M. Boskin, 1972, Regression analysis when the dependent variable is truncated lognormal, with an application to the determinants of the duration of welfare dependency, Report no. 75, unpublished (Institute for Mathematical Studies in the Social Sciences, Stanford University, Stanford, Calif.).

American Transit Association, 1967a, Urban bus design objectives, revised, Washington, D.C.

Antle, C., L. Klimko and W. Harkness, 1970, Confidence intervals for the parameters of the logistic distribution, Biometrika 57, 397.
Ashford, J.R. and R.R. Sowden, 1970, Multi-variate probit analysis
Biometrics 26, 535–546.
Atkinson, A., 1972, A test of the linear logistic and Bradley–Terry models,
Biometrika 8, 37–42.
to work survey 1964 (Planning Department of Greater London
Bartlett, M.S., 1935, Contingency table interactions, Supplement to the
Bauer, H.J., 1970, A case study of a demand-responsive system, mimeo
(General Motors Corporation, Warren, Michigan).
Ben-Akiva, M., 1972, Structure of travel demand models (Transportation
Systems Division, Department of Civil Engineering, MIT, Cambridge).
Benshoof, J.A., 1970, Characteristics of drivers' route selection behavior,
Traffic Engineering and Control 11, 64–607.
Berkson, J., 1944, Application of the logistic function to bioassay,
Berkson, J., 1953, A statistically precise and relatively simple method of
estimating the bioassay with quantal response, based on the logistic
Berkson, J., 1955, Maximum likelihood and minimum χ^2 estimates of
the logistic function, Journal of the American Statistical Association
50, 130–161.
Blackburn, A., 1969a, A behavioral approach to impedance, Studies in
travel demand, vol. 4 (U.S. Department of Transportation, Washing-
ton, D.C.).
Blackburn, A., 1969b, Estimation of the behavioral model, Studies in
travel demand, vol. 5 (U.S. Department of Transportation, Washing-
ton, D.C.).
Bloch, D. and G. Watson, 1967, A Bayesian study of the multinomial
Block, H. and J. Marschak, 1960, Random orderings and stochastic
theories of response, in: I. Olkin, ed., Contributions to probability
and statistics (Stanford University Press, Stanford, Calif.).
Bock, R.D., 1970, Estimating multinomial response relations, in:

Boskin, M., 1972, A conditional logit model of occupational choice, unpublished (Department of Economics, Stanford University, Stanford, Calif.).

Brand, D., 1972a, The state of the art of travel demand forecasting: A critical review (Graduate School of Design, Harvard University, Cambridge).

Brooklyn Polytechnic Institute, 1966, Urban mass transit planning, A short course developed by the institute.

Brunner, B.A. et al., 1966, User determined attributes of ideal transportation systems – An empirical study (University of Maryland, College Park, Md.).

Cottingham, P., 1966, Measurement of non-user benefits, unpublished
(Center for Planning and Development Research, University of California, Berkeley).

References

Friedman, J., 1974, Housing location and the supply of local public services, Ph.D. dissertation (Department of Economics, University of California, Berkeley).

Griliches, Z., 1973, Errors in variables and other unobservables, un-
published (Department of Economics, Harvard University, Cambridge).
Grizzle, J., 1962, Asymptotic power of tests of linear hypotheses using
the probit and logit transformations, Journal of the American Sta-
tistical Association 57, 877–894.
Grizzle, J., C. Starmer and G. Koch, 1969, Analysis of categorical data
by linear models, Biometrika 25, 498–504.
Gumbel, E.J., 1961, Bivariate logistic distributions, Journal of the
American Statistical Association 56, 335–349.
Gupta, S., A. Qureishi and B. Shah, 1967, Best linear unbiased estimators
of the parameters of the logistic distribution using order statistics,
Technometrics 9, 43–56.
Gurland, J., I. Lee and P. Doland, 1960, Polychotomous quantal response
in biological assay, Biometrics 16, 382–398.
Haldane, J., 1955, The estimation and significance of the logarithm of a
Hall, R., 1973, On the statistical theory of unobserved components,
unpublished (Department of Economics, MIT, Cambridge).
Hall, R., 1974, Annotated bibliography on inhomogeneous markoff
models and applications to social mobility, Paper for the NSF–NBER
Conference on Decision Rules and Uncertainty, March 22–23,
University of California, Berkeley.
Haney, D.G., 1967a, Future urban transportation systems: Desired
characteristics (U.S. Department of Urban Development, Stanford
Research Institute, Menlo Park, Calif.).
Haney, D.G., 1967b, The value of time for passenger cars: A theoretical
analysis and description of preliminary experiments (U.S. Bureau of
Public Roads, Stanford Research Institute, Menlo Park, Calif.).
Louis Harris and Associates, 1969, How urban Americans view their
transportation system (U.S. Department of Transportation, Washing-
ton, D.C.).
Harter, J. and A. Moore, 1967, Maximum likelihood estimation, from
censored samples, of the parameters of a logistic distribution, Journal
Hartgen, D., 1970, Mode choice and attitudes: A literature review (New
York State Department of Transportation, Albany, N.Y.).
Hartgen, D. and G. Tanner, 1970a, Behavioral model of mode choice,
preliminary report (New York State Department of Transportation, Albany, N.Y.).

Hill, D.M. and N.A. Irwin, 1966, Application of a modal split model for transit planning in cities and large metropolitan areas, Paper presented to the Cleveland Seven County Transportation Land Use Study.

Institut d'Aménagement et d'Urbanisme de la Région Parisienne, 1963, Etude de divers facteurs influant sur la choix entre autobus et métropolitain par les usagers des lignes SNCF de banlieu, also published in Transports Urbains 1, no. 5.

References

Lave, C., 1968, Modal choice in urban transportation: A behavioral approach, unpublished Ph.D. dissertation (Department of Economics, Stanford University, Stanford, Calif.).
Lewis, B.N., 1962, On the analysis of interaction in multidimensional
References

Lisco, T., 1967, The value of commuters' travel time: A study in urban transportation, unpublished Ph. D. dissertation (Department of Economics, University of Chicago, Chicago, Ill.).

Lisco, T., 1968, Northwest Chicago corridor modal split project, Project statement for Chicago Area Transportation Study.

McCaffrey, R., 1968, Analysis of a freeway bus transit system, Proceedings of the American Society of Civil Engineers 94.

McFadden, D., 1972, Probabilities on preferences and demand correspondences, unpublished (Department of Economics, University of California, Berkeley).

McFadden, D., 1973c, The consistency of individual behavior models with data on population behavior, unpublished (University of California, Berkeley).

McFadden, D. and F. Reid, 1974, Aggregate travel demand forecasting from disaggregated behavioral models, Working paper no. 228 (University of California, Berkeley).

McGillivray, R.G. 1967, Binary choice of transport modes in the San Francisco Bay Area, Ph.D. dissertation (Department of Economics, University of California, Berkeley).

Joseph Napolitan Associates, 1964, A survey to determine factors which influence the public's choice of mode of transportation, Supplement no. 4 to Mass transportation in Massachusetts (JNA, Boston).
National Analysts, 1963a, The preference for rapid transit among national capital region commuters to downtown D.C., Volume I of A survey of commuter attitudes toward rapid transit systems.
National Analysts, 1963b, Characteristics of proposed new rapid transit systems which will maximize riders, Volume II of A survey of commuter attitudes toward rapid transit systems.

Quandt, R., 1970, The demand for travel (Heath, Lexington, Ky.).

Rosingher, G., K.F. Connell and J.R. Stock, 1967, Design of urban transportation for the user, HUD new systems study (Battelle Memorial Institute, Columbus, Ohio).
Wibur Smith and Associates, 1968, Patterns of car ownership, trip generation and trip sharing in urbanized areas, unpublished.
Stopher, P.R. 1968, Predicting travel mode choice for the work journey, Traffic Engineering and Control 9, 436–439.
Stopher, P.R., 1969a, A multinomial extension of the binary logit model for choice of mode of travel, unpublished (Northwestern University, Evanston, Ill.).
Stopher, P.R., 1969b, A probability model of travel mode choice for the work journey, Highway Research Record 283, 57–65.
Suderth, W., 1971, On a theorem of de Finetti, oddsmaking, and game theory, unpublished (University of Minnesota, Minneapolis).
Taaffe, E.J., B.J. Garner and M.H. Yeates, 1963, The peripheral journey to work – A geographic consideration (Northwestern University Press, Evanston, Ill.).
Talvitie, A., 1972, Comparison of probabilistic modal-choice models:
Estimation methods and system inputs, Highway Research Record 392, 111–120.

Talvitie, A., 1973, Aggregate travel demand analysis with disaggregate or aggregate travel demand models, unpublished (University of Oklahoma, Norman).

Transportation Research Institute, 1968, Study in new systems of urban transportation: Final report (Carnegie–Mellon University, Pittsburgh).

University of Maryland, Department of Business Administration, 1966, User determined attributes of ideal transportation systems: An empirical study, unpublished.
Vitt, J.E. et al., 1970, Determining the importance of user-related attributes for a demand-responsive transportation system, Highway Research Record 318, 50–65.
Wachs, M., 1967, Relationship between drivers' attitudes toward alternate routes and driver and route characteristics, Highway Research Record 197, 70–87.
Wachs, M., 1970, Basic approaches to the measurement of commodity values, Highway Research Record 305, 88–98.

Webster, F.V., 1968, A theoretical estimate of the effect of London car commuters transferring to bus travel (Road Research Laboratory, Crowthorne, England).

Worrall, R.D., undated, A longitudinal analysis of household travel, Prepared as part of the National Cooperative Highway Research Program Project 2–8, unpublished.

Zeckhauser, R., 1968, Optimal mechanisms for income transfers (RAND Corporation, Santa Monica, Calif.).

Index

Accessibility 77, 156; and destination, 172; mode combinations, 7; and shopping, 175
Additivity 45
Aggregation 81; data, 11; defined, 47; demand elasticities, 106, 182; speed and delay studies, 136; trip tables, 92
Alternatives: and destination, 171; mode choice, 161; treatment in mode, 117
Analysis: French study of variable combinations, 25; multinomial logit, 120; multivariate normal model, 67; work-trip mode choice, 165
Arctan probability model 56
Attributes, generic 54
Automobiles: availability and transit parameters, 160; capital costs, 151; impedance, 19; mode specific variables, 118; ownership, 9, 87; transit line-haul, 162

Barnett, C.A. and Sallmans, P.D. 24
Beesley, M.E. 24
Ben-Akiva, M. 27, 93
Berkson, J. 108, 109; estimator, 112
Binary choice model 101
Binary logit probability model 57
Brand, D. 18, 27, 93
Bus: patronage 95

Calibration: methodology, 101; parameter vector, 93
CATS (Chicago Area Transportation Study) 132
Cauchy distributions 56, 60, 68
Choice: definition of multinomial, 26; destination and modeling, 171; formulations and alternatives, 69; mode and McFadden, 161; multiple and probabilities, 65; probabilities, 47; rational, 34; theory, 53; transit modal, 7

Classification 124
Cognitive behavior theory 31
Complements 36
Consumption: activity, 36; behavior theory, 33; mode choice, 161; pattern, 146; surplus measure, 95; utility function, 73
Corridors 139
Costs: associated with autos, 151; benefit analysis, 94; benefit and index of social welfare, 98; inclusive, 75; off-peak travel, 169; price mechanism, 6; variable calculation in model, 179; variables and fares, 163
Cox, D.R. 102; heteroskedasticity, 109
CRA 18
Cumulative distribution function 60

Dantzig–Cottle algorithms 105
Data: attitudinal studies, 30; headways, 149; line-haul time, 142; network for Pittsburgh, 134; occupation and race, 163; preparation effort, 128; reliability for income, 180; socioeconomic, 153; sources, 12
Davidon 121
Decision-making: calculation of destination, 171; consumers, 87; locational distribution, 177; logit model, 61; multiple-choice linear probability model, 119; and multiple-choice models, 78; parameters, 162; process models, 157; travel demand, 6; tree structure, 37, 42; trip time/frequency, 180
Demand: aggregate and individual margin, 50; commodity analysis and substitutes, 37; elasticity and mode choice, 181; forecast and minimum data, 10; function: function division, 18; linear probability model, 108; market elasticities, 83; model and data preparation, 38, 128;
modeling approach, 17; travel modeling concepts, 22
Destination: alternatives, 145; and demand analysis, 2; role of, 8
Diamond, P. and McFadden, D. 94
Disaggregation 156
Discriminate analysis 24
Distribution 19
Districts: land use and density 148

Elasticity: and demand market 84
Equilibration 13, 21, 87
Estimation: heteroskedasticity, 120; non-linear response function, 108; ordinary least squares, 102–104; regression analysis, 164; transit line-haul times, 144; travel time variations, 138

Fertal, M. 20, et al., 18
Fleet, C.R. and Robertson, S. 12
Forecasting 86; goodness of fit, 124

Gart, J. 109
Goldberger, A.S. 103
Gilbert, E. 109
Goodness of fit 122
Gurland, J., Lee, I. and Doland, T. 80

Hartgen, D. and Tanner, G. 18, 32
Headways 150
Hessian matrix 121
Heteroskedasticity 109
Holman and Marley 69
Home Interview Survey 131, 132

Institute d’amanagement et d’urbanisme 25

Kiss-ride 133

Land use 9; links analysis, 143; low density, 148
Lave, C. 27
Least squares regression analysis 101
Life style: decision-making and travel mode 91
Linear probability: function, 55; model consistency, 65
Lisco, T. 23
Log likelihood function 111

Luce, R.D. 53, 69; strict utility model, 79; and Suppes, 69

McFadden, D. choice of weights, 120, 161; finite quadratic programming algorithms, 111; formulation of logit model, 80; Monte Carlo studies, 110; multinomial logit analysis, 27; parameter estimation, 102; result bias, 79; selection probabilities, 123; and Weibull distribution, 63, 69; and Reid, F.; aggregation, 12

McGillivray, R.G. 26
Manheim, M. 78
Manski, C. 125
Marschak, J. 69

Marshallian consumers surplus 95, 97
Maxwell, A.E. 102

Methodology: area selection, 129; attitudinal measures, 10; attributes of alternatives, 40; binary choice logit models, 159; computation for time of day, 168; cumulative joint distribution function, 52; data sets, 9; definition of behavioral model, 89; destination selection, 174; discrete alternatives, 50; linear probability function, 56; log likelihood function, 56; marginal trip tables, 90; maximum likelihood procedure, 120; mean square error, 113; measure of wait times, 149; probability distributions, 56, 66, skim tree trip tables, 93; variable analysis, 142

Meyer, J.R., Kain, J.F. and Wohl, M. 17
Model: abstract mode, 28; binary probit probability, 56; calibration and trip table, 89; criteria, 3; direct demand, 27; disaggregation, 12; linear probability, 102, 168; logit, 165; logit, analysis of type/function, 58; modal choice, 157; multiple-choice, 117; multiple-choice linear probability, 119; multivariate normal, 67; strict utility probability, 77; and work choice, 177; work modal split, 155; work trip, 158

Modes: substitutability 72
Monte Carlo studies 108
Moses, L. 27; and Williamson, 132
Multicollinearity 156; and modeling, 159

Newton–Raphson iteration 122
Oi, W.Y. and Shuldiner, P.W. 17

Parameters: calibration, 86; location and Weibull distribution, 65; and mode choice, 161; transit wait and transit time, 166; variables and yields, 169

Parking: data profile, 146; park-ride, 133

PAT: system 138

Pittsburgh: profile 130, 141

Policy: and aggregate demand measure, 83; data and methodology, 182; locational distribution, 177; and models in formulation, 5; public transit, 3; and trip tables, 92; variables and model analysis, 155

Population: demand, 81; margin, 35

Prediction: simulation, 3; success table, 164, 170

Probability functions: for binary choice 53

Property demand estimation 75

Psychometric proximity 60

Public transit 2

Quandt, R. 53, 68

Quarmby, D.A. 24

Rassam, P., Ellis, R. and Bennet, J. 25, 80

Reichman, S. and Stopher, P. 27

Route assignment 20

Separability of decisions 72

Social welfare 95; defined, 97

Socioeconomic characteristics 40; in model, 49; race and occupation, 163

Speed: priority, 145; time and delay studies, 135; variances, 143

SPRPC: data source 135–139

Stopher, P.R. and Lisco, T. 18

Substitutes 36

Theil, H. 80, 120; information theory, 123

Theory: development 33

Thurstone, L. 53

Timetables 143

Travel: mileage 150

Trip: attributes and index of desirability, 42; frequency model, 174–176; frequency/time, 181; marginal tables, 87; mixed and off-peak, 144; shopping frequency, 173; shopping and mode choice, 165; strict utility probability model, 117; tables, 47; tables by mode, 158; time of day, concept of, 7, 167; transit cost, 152; value of time, 23; variable analysis, 142; work and data base, 127

Truncated linear probability model 58

Urban transportation: definition of theory 2

Utility function: option desirability, 51; profile, 41; stochastic, 52

Variables: and alternative models, 176; convolution property, 82; interaction and frequency, 173; mode-specific, 28, 70; selection probabilities, 114; socioeconomic, 152, 176; unobserved characteristics, 48; weather, 167

Walker, F. 138

Walking: access 147

Wallace, J.P. 30

Warner, S.L. 25, 26, 132

Watson, P. 27

Weibull distribution: characterization, 61; and multinomial logit model, 74

Weiner, E. 18, 20

Wigner, M. 27