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a b s t r a c t

We suggest improved tests for cointegration rank in the vector autoregressive (VAR) model and develop
asymptotic distribution theory and local power results. The tests are (quasi-)likelihood ratio tests based on
a Gaussian likelihood, but as usual the asymptotic results do not require normally distributed innovations.
Our tests differ from existing tests in two respects. First, instead of basing our tests on the conditional
(with respect to the initial observations) likelihood, we follow the recent unit root literature and base our
tests on the full likelihood as in, e.g., Elliott et al. (1996). Second, our tests incorporate a ‘‘sign’’ restriction
which generalizes the one-sided unit root test. We show that the asymptotic local power of the proposed
tests dominates that of existing cointegration rank tests.
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1. Introduction

The cointegrated vector autoregressive (VAR) model has been
and continues to be of great importance in time series economet-
rics. Driven equally by theoretical interest and the needs of ap-
plied work, the seminal work of Johansen (1988, 1991) developed
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cointegration rank tests within the VAR model.1 Related methods
have been proposed by, among others, Phillips and Durlauf (1986),
Stock andWatson (1988), Fountis and Dickey (1989), and Ahn and
Reinsel (1990).

Subsequent contributions have generalized and refined this
work in a variety of ways, notably by proposing tests with (asymp-
totic local) power properties superior to those of Johansen (e.g.,
Xiao and Phillips, 1999, Hubrich et al., 2001, Perron and Rodriguez,
2012, and the references therein). The purpose of this paper is to
propose cointegration rank tests that sharewith the Johansen tests
the feature that they are of (quasi-)likelihood ratio type, yet enjoy
the additional attraction that they dominate existing tests (includ-
ing those of Johansen) in terms of asymptotic local power.

In the related unit root testing literature, it has long been recog-
nized that in models with an unknown mean and/or linear trend,
the class of nearly efficient unit root tests does not contain the
Dickey and Fuller (1979; 1981, henceforth Dickey–Fuller) tests.2
The Dickey–Fuller tests can be derived from a conditional (with

1 For a synthesis of the work by Johansen, see Johansen (1995).
2 For a review focusing on power, see Haldrup and Jansson (2006).
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respect to the initial observation) likelihood similar to the Johansen
cointegration rank tests. It was pointed out by Elliott et al. (1996)
that the initial observation is very informative about the parame-
ters governing the deterministic component, and, indeed, Jansson
andNielsen (2012) showed that a likelihood ratio test derived from
the full likelihood implied by an Elliott–Rothenberg–Stock-type
model has superior power properties to those of the Dickey–Fuller
tests in models with deterministic components.

Like the Dickey–Fuller tests for unit roots, the cointegration
rank tests due to Johansen (1991) are derived from a conditional
likelihood. In this paper we suggest improved tests for cointegra-
tion rank in the VAR model, which are based on the full likelihood
similar to the unit root tests of Elliott et al. (1996) and Jansson
and Nielsen (2012). We show that their qualitative findings about
the relative merits of likelihood ratio tests derived from condi-
tional and full likelihoods extend to tests of cointegration rank.
In addition, our tests are capable of incorporating a ‘‘sign’’ re-
striction which makes the tests interpretable as generalizations of
one-sided unit root tests. We develop the asymptotic distribution
theory and show that the asymptotic local power of the proposed
tests dominates that of existing cointegration rank tests.

The remainder of the paper is laid out as follows. Section 2
contains our results on the likelihood ratio tests for cointegration
rank, which are derived in several steps with each subsection
adding an additional layer of complexity. Section 3 evaluates
the asymptotic null distributions and local power functions of
the newly proposed tests, and Section 4 presents a Monte Carlo
simulation study of the finite sample properties of the tests. Some
additional discussion is given in Section 5. The proofs of our
theorems are provided in the Appendix.

2. Likelihood ratio statistics

Our development proceeds in four steps, culminating in the
derivation of statistics designed to test reduced rank hypotheses
about the matrix Π ∈ Rp×p in a VAR (k + 1) model of the form

yt = µ′dt + vt , [Γ (L) (1 − L) − ΠL] vt = εt , (1)

where dt = 1 or dt = (1, t)′ , µ is an unknown parameter, εt is
an innovation sequence, and Γ (L) = Ip − Γ1L − · · · − ΓkLk is
an unknown matrix lag polynomial satisfying the condition (e.g.,
Johansen, 1995, Assumption 1) that if the determinant ofΓ (z) (1−
z) − Πz is zero, then either |z| > 1 or z = 1.

As mentioned in the introduction, the test statistics proposed
in this paper differ from existing tests in two respects, namely by
(possibly) imposing ‘‘sign’’ restrictions on Π and by handling de-
terministic components (i.e., eliminating the nuisance parameter
µ) in a way that turns out to be superior from the point of view of
asymptotic local power. The main goal in Section 2.1 is to present
the ‘‘sign’’ restriction. Accordingly, that section considers a very
special case in which Π is the only unknown parameter of the
model andwhere the null hypothesis isΠ = 0 (i.e., thatΠ has rank
zero). Section 2.2 then introduces deterministics and describes our
approach to elimination of µ when testing Π = 0.

Although very simple, the testing problems considered in
Section 2.2 turn out to be ‘‘canonical’’ in the sense that from
an asymptotic perspective the problem of testing reduced rank
hypotheses about Π in the general model (1) can be reduced to
a problem of the form considered in Section 2.2. The reduction is
achieved by combining two distinct insights and it seems natural
to proceed in amannerwhich reflects this. Accordingly, Section 2.3
explains how to test general reduced rank hypotheses about Π
within the modeling framework of Section 2.2, while Section 2.4
considers the general model (1) and demonstrates that (the
variance of εt and) the nuisance parameters Γ1, . . . , Γk governing
short-run dynamics can be treated ‘‘as if’’ they are known when
basing inference about Π on a Gaussian quasi-likelihood.
2.1. Multivariate unit root testing in the zero-mean VAR(1) model

We initially consider the simplest special case, namely likeli-
hood ratio tests of the multivariate unit root hypothesis Π = 0 in
the p-dimensional zero-mean Gaussian VAR (1) model,

1yt = Πyt−1 + εt , (2)

where y0 = 0, εt ∼ i.i.d. N

0, Ip


, and Π ∈ Rp×p is an unknown

parameter of interest.
In our investigation of the large-sample properties of test

statistics, we will follow much of the recent literature on unit root
and cointegration testing and use ‘‘local-to-unity’’ asymptotics in
order to obtain asymptotic local power results. When testing the
multivariate unit root hypothesis Π = 0 in the model (2), this
amounts to employing the reparameterization

Π = ΠT (C) = T−1C (3)

and holding C ∈ Rp×p fixed as T → ∞.
The statistics we consider are of the form

LRT (C) = sup
C̄∈C

LT

C̄

− LT (0) , (4)

where

LT (C) = −
1
2

T
t=1

∥1yt − ΠT (C) yt−1∥
2

is the log-likelihood function (modulo an unimportant constant),
∥·∥ is the Euclidean norm, and C is some subset of Rp×p. As the
notation suggests, the statistic LRT (C) is a likelihood ratio statistic.
Specifically, LRT (C) is a likelihood ratio statistic associated with
the problem of testing the null hypothesis C = 0 against the
alternative C ∈ C \ {0}.3 Equivalently, LRT (C) is a likelihood ratio
statistic associated with the problem of testing the null hypothesis
Π = 0 against the alternative Π ∈ ΠT (C) \ {0}, where ΠT (C) =

{ΠT (C) : C ∈ C}.
To give examples of statistics that can be represented as in (4),

let Mp (r) denote the set of elements of Rp×p with rank no greater
than r . For r = 1, . . . , p, it can be shown that

LRT

Mp (r)


=

1
2

r
j=1

λj,

where λ1 ≥ · · · ≥ λp ≥ 0 are the eigenvalues of the matrix
T

t=2

yt−11y′

t

′  T
t=2

yt−1y′

t−1

−1  T
t=2

yt−11y′

t


.

The choices C = Mp (1) and C = Mp (p) are therefore seen to
give rise to ‘‘known variance’’ versions of the so-called maximum
eigenvalue and trace statistics, respectively, e.g., Johansen (1995).4

Setting C equal to a set of the form Mp (r) is computationally
and analytically convenient insofar as it gives rise to a statistic
LRT (C) admitting a closed form solution. However, the fact
that C implicitly characterizes the maintained hypothesis of the
testing problem suggests that improvements in power against
cointegrating alternatives might be achieved by choosing C in a

3 The statistic is defined here as the log-likelihood ratio, without the usual
multiplication factor 2.
4 The maximum eigenvalue and trace statistics have been derived by Johansen

(1995) for the model with unknown error covariance matrix, but they would
reduce to the statistics mentioned here if the covariance matrix is treated as
known. Under the assumptions of Theorem 1, the maximum eigenvalue and
trace statistics of Johansen (1995) are asymptotically equivalent to their ‘‘known
variance’’ counterparts LRT


Mp (1)


and LRT


Mp (p)


.



H.P. Boswijk et al. / Journal of Econometrics 184 (2015) 97–110 99
manner that reflects restrictions implied by cointegration. To be
specific, consider the univariate case; that is, suppose p = 1. In
this case, the (maximum eigenvalue and trace) statistic LRT (R)
corresponds to a squared Dickey–Fuller-type t-statistic (i.e., an F-
statistic), while the more conventional, and more powerful, one-
sided Dickey–Fuller t-test can be interpreted as being based on
the statistic LRT (R−), where R− = (−∞, 0] is the non-positive
half-line. In other words, incorporation of the natural restriction
C ≤ 0, or Π ≤ 0, is well known to be advantageous from the
point of view of power in the univariate case. On the other hand,
we are not aware of any multivariate unit root tests incorporating
such ‘‘sign’’ restrictions, so it seems worthwhile to develop
(possibly) multivariate tests which incorporate ‘‘sign’’ restrictions
and explore whether power gains can be achieved by employing
such tests. Doing so is one of the purposes of this paper.

To describe our proposed ‘‘sign’’ restriction, let M−
p (r) denote

the subset of Mp (r) whose members have eigenvalues with non-
positive real parts.When p = 1, M−

p (p) is simply the non-positive
half-line and the test based on LRT


M−

p (p)

therefore reduces to

the one-sided Dickey–Fuller t-test. For any p, imposing the restric-
tion C ∈ M−

p (p) is equivalent to imposing a nonpositivity restric-
tion on the real parts of the eigenvalues of Π . Doing so also when
p > 1 can be motivated as follows. On the one hand, if the char-
acteristic polynomial A (z) = Ip (1 − z) − Πz satisfies the well
known condition (e.g., Johansen, 1995, Assumption 1) that |z| > 1
or z = 1 whenever the determinant of A (z) is zero, then the non-
zero eigenvalues of Π have non-positive real part. On the other
hand, and partially conversely, the set of matrices Π satisfying As-
sumption 1 of Johansen (1995) is approximated (in the sense of
Chernoff, 1954, Definition 2) by the closed cone M−

p (p) consist-
ing of those elements ofRp×p whose eigenvalues have non-positive
real parts.5 The latter approximation property implies that under
(3), imposing Assumption 1 of Johansen (1995) is (asymptotically)
equivalent to imposing C ∈ M−

p (p). In particular, we can obtain
‘‘sign-restricted’’ versions of the maximum eigenvalue and trace
statistics by setting C equal to M−

p (1) and C = M−
p (p), respec-

tively.
As in Horvath andWatson (1995) another restriction that could

be imposed on C is that some cointegration vectors are prespec-
ified. For specificity, suppose it is known that the vector β ∈ Rp

is in the cointegration space (under the alternative). When com-
bined with rank restrictions, this knowledge is useful as it imposes
a restriction on the coimage of the members of C. If the mem-
bers of C have rank no greater than r < p, then this rank re-
striction can be combined with the knowledge that β is in the
cointegration space by setting C equal to either Mp (r; β) =
aβ ′

+ a1β ′

1 : a ∈ Rp, a1 ∈ Rp×(r−1), β1 ∈ Rp×(r−1)

or M−

p (r; β)

= Mp (r; β) ∩ M−
p (r) depending on whether the ‘‘sign’’ restric-

tion discussed above is also imposed.
The following result, which can be thought of as multivariate

unit root analogue of Chernoff’s theorem (e.g., Theorem 2.6 of
Drton, 2009), characterizes the large sample properties of LRT (C)
under the assumption that C is a closed cone. As demonstrated
by the examples just given, the assumption that C is a (closed)
cone is without loss of relevance in the sense that the cases of
main interest satisfy this restriction. Moreover, the assumption
thatC is a cone seems natural insofar as it ensures that the implied
maintained hypothesis Π ∈ ΠT (C) on Π is T -invariant in the
sense that ΠT (C) does not depend on T .6

5 In other words, M−
p (p) is the tangent cone (e.g., Drton, 2009, Definition 2.3)

at the point Π = 0 of the set of matrices Π satisfying Assumption 1 of Johansen
(1995).
6 Proceeding as in the proof of Theorem 1 it can be shown that if C is a set whose

closure, cl (C), contains zero, then LRT (C) equals maxC̄∈cl(C) LT

C̄


− LT (0) and
Theorem 1. Suppose {yt} is generated by (2) and (3), with C held
fixed as T → ∞. If C ⊆Rp×p is a closed cone, then LRT (C) →d
maxC̄∈C Λp,C


C̄

, where

Λp,C

C̄


= tr

C̄
 1

0
WC (u) dWC (u)′

−
1
2
C̄ ′C̄

 1

0
WC (u)WC (u)′ du


,

WC (u) =
 u
0 exp (C (u − s)) dW (s), and W (·) is a p-dimensional

Wiener process.

An explicit characterization of the limiting distribution of
LRT (C) is available in some special cases. In particular, for r =

1, . . . , p, we have

max
C̄∈Mp(r)

Λp,C

C̄


=
1
2

r
j=1

ξj,

where ξ1 ≥ · · · ≥ ξp ≥ 0 are the eigenvalues of the matrix 1

0
WC (u) dWC (u)′

′  1

0
WC (u)WC (u)′ du

−1

×

 1

0
WC (u) dWC (u)′


.

On the other hand, unlike the univariate (i.e., p = 1) situation
investigated by Jansson and Nielsen (2012) the more general
multivariate (i.e., p > 1) situation covered here is one where
the ‘‘sign-restricted’’ versions of the maximum eigenvalue and
trace statistics do not seem to have asymptotic representations
expressible in closed form.

2.2. Deterministic terms

As an initial generalization of the model (2), suppose

yt = µ′dt + vt , 1vt = Πvt−1 + εt , (5)

where dt = 1 or dt = (1, t)′ , µ is an unknown parameter (of con-
formable dimension), v0 = 0, and εt ∼ i.i.d. N


0, Ip


. This model

differs from (2) only by accommodating deterministic terms. Un-
der (3), the model gives rise to a log-likelihood function that can
be expressed in terms of C and µ as

LdT (C, µ) = −
1
2

T
t=1

∥YTt (C) − DTt (C) vec (µ)∥2 ,

where, setting y0 = 0 and d0 = 0, YTt (C) = 1yt − ΠT (C) yt−1
and DTt (C) = Ip ⊗ 1d′

t − ΠT (C) ⊗ d′

t−1.
7

In the presence of the nuisance parameter µ, a likelihood
ratio statistic for testing the null hypothesis C = 0 against the
alternative C ∈ C \ {0} is given by

LRd
T (C) = sup

C̄∈C,µ

LdT

C̄, µ


− max

µ
LdT (0, µ) .

This statistic can be expressed in semi-closed form as

LRd
T (C) = sup

C̄∈C

Ld
T


C̄

− Ld

T (0) ,

has an asymptotic representation of the form maxC̄∈cl(C) Λp,C

C̄

. Therefore, the

properties of LRT (C) depend on C only through its closure and no generality is lost
by assuming that C is closed.
7 The observed data are (y1, . . . , yT ); setting y0 = 0 and d0 = 0 is a notational

convention that allows the first likelihood contribution −
1
2

y1 − µ′d1
2 to be

expressed in the same way as the other terms in the summation.
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where the profile log-likelihood Ld
T (C) = maxµ LdT (C, µ) is given

by

Ld
T (C) = −

1
2
QYY ,T (C)

+
1
2
QDY ,T (C)′ QDD,T (C)−1 QDY ,T (C) ,

with

QYY ,T (C) =

T
t=1

YTt (C)′ YTt (C) ,

QDY ,T (C) =

T
t=1

DTt (C)′ YTt (C) ,

QDD,T (C) =

T
t=1

DTt (C)′ DTt (C) .

Unlike the zero-mean case considered in Section 2.1, the
statistic LRd

T (C) does not admit a closed form expression even
whenC is of the formMp (r). Because this computational nuisance
can be avoided by dropping the ‘‘t = 1’’ contribution from the
sum defining LdT (C, µ), it is perhaps tempting to do so. However, it
is by now well understood that likelihood ratio tests constructed
from the resulting conditional (on y1) likelihood function have
unnecessarily low power in models with deterministics (e.g.,
Xiao and Phillips, 1999, Hubrich et al., 2001, and the references
therein).8 The formulation adopted here, which retains the ‘‘t =

1’’ contribution in the sumdefining LdT (C, µ), is inspired by Jansson
andNielsen (2012), where an analogous formulationwas shown to
provide an ‘‘automatic’’ way of avoiding the aforementionedpower
loss in the scalar case (i.e., when p = 1).

As discussed in more detail in the simulation study in Sec-
tion 4.1 below, numerical maximization of Ld

T (C) with respect to
C ∈ C is computationally straightforward in the cases of main in-
terest. Nevertheless, we mention here for completeness that if C
is of the form Mp(r), so that no ‘‘sign’’ restrictions are imposed,
then LdT (C, µ) can be maximized over (C, µ) by a switching algo-
rithm. Specifically, for a fixed value of C the maximum likelihood
estimator argmaxµ LdT (C, µ) of µ has a closed-form expression of
the GLS type, a fact that was also exploited in the derivation of
Ld

T (C) above. Similarly, for a fixed value of µ the maximum like-
lihood estimator argmaxC∈Mp(r) L

d
T (C, µ) of C can be obtained by

reduced rank regression applied to the error correction model for
vt = yt − µ′dt . Therefore, LdT (C, µ) can be maximized over (C, µ)
by alternating between maximization over µ given C and maxi-
mization over C given µ.

In the scalar case studied by Jansson and Nielsen (2012),
the local-to-unity asymptotic distribution of the likelihood ratio
statistic accommodating deterministics was found to be identical
that of its no deterministic counterparts in the constant mean case
(i.e., when dt = 1), but not in the linear trend case (i.e., when dt =

(1, t)′). The following multivariate result shares these qualitative
features.

Theorem 2. Suppose {yt} is generated by (5) and (3), with C held
fixed as T → ∞. Moreover, suppose C ⊆Rp×p is a closed cone.

(a) If dt = 1, then LRd
T (C) →d maxC̄∈C Λp,C


C̄

, where Λp,C is

defined in Theorem 1.

8 The low power appears to be attributable to inefficiency of OLS (relative to GLS)
as an estimator of deterministic components in models with highly persistent data.
For details, see e.g. Phillips and Lee (1996) and Canjels and Watson (1997).
(b) If dt = (1, t)′, then LRd
T (C) →d maxC̄∈C Λτ

p,C


C̄

, where, with

C̄s =
1
2


C̄ + C̄ ′


and C̄a =

1
2


C̄ − C̄ ′


denoting the symmetric

and antisymmetric parts of C̄ ,

Λτ
p,C


C̄


= Λp,C

C̄


+
1
2
λp,C


C̄
′ 

Ip − C̄s +
1
3
C̄ ′C̄

−1

λp,C

C̄


−
1
2
λp,C (0)′ λp,C (0) ,

λp,C

C̄


=

Ip − C̄s


WC (1)

− C̄a

 1

0
WC (u) du −

 1

0
udWC (u)


+ C̄ ′C̄

 1

0
uWC (u) du.

Theorem 2(a) implies in particular that in the constant mean
case, the asymptotic local power of the test based on LRd

T


Mp (p)


coincides with that of the no-deterministics trace test. This
property is shared by the (trace) test proposed by Saikkonen and
Luukkonen (1997), which was found by Hubrich et al. (2001) to be
superior to its main rivals, notably the tests proposed by Johansen
(1991). A further implication of Theorem 2(a) is that the relative
merits of LRd

T


Mp (p)


and LRd

T


M−

p (p)

are the same as those

of their no-deterministics counterparts analyzed in Section 2.1,
so also in the constant mean case positive (albeit slight) power
gains can be achieved by imposing ‘‘sign’’ restrictions. In Section 3
we analyze the asymptotic local power functions of our newly
proposed tests and compare with those of the Johansen (1991) and
Saikkonen and Luukkonen (1997) tests.

Our interpretation of the comprehensive simulation evidence
reported in Hubrich et al. (2001) is that in the linear trend case, the
most powerful currently available tests are those of Lütkepohl and
Saikkonen (2000) and Saikkonen and Lütkepohl (2000b). Under the
assumptions of Theorem 2(b), the so-called GLS (trace) statistics
proposed in those papers all have asymptotic representations of
the form

tr

 1

0
W̃C (u) dW̃C (u)′

′  1

0
W̃C (u) W̃C (u)′ du

−1

×

 1

0
W̃C (u) dW̃C (u)′

′


,

where W̃C (u) = WC (u) − uWC (1).
For the purposes of comparing this representation (as well as

certain representations that have arisen in the univariate case)
with that obtained in Theorem 2(b), it turns out to be convenient
to define

ΛGLS
p,C


C̄; C̄∗


= tr


C̄
 1

0
W̃C,C̄∗ (u) dW̃C,C̄∗ (u)′

−
1
2
C̄ ′C̄

 1

0
W̃C,C̄∗ (u) W̃C,C̄∗ (u)′ du

−
1
2
W̃C,C̄∗ (1) W̃C,C̄∗ (1)′


,

where, letting DC̄∗(u) = Ip − C̄∗u, the process

W̃C,C̄∗ (u) = WC (u) − u
 1

0
DC̄∗(s)′DC̄∗(s)ds

−1

×

 1

0
DC̄∗(s)′


dWC (s) − C̄∗WC (s)ds


,
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can be interpreted as a GLS-detrended Ornstein–Uhlenbeck pro-
cess.9

Using this notation, the asymptotic representation of one-
half times the GLS trace statistics of Lütkepohl and Saikko-
nen (2000) and Saikkonen and Lütkepohl (2000b) can be
written as LRGLS

p,C


Mp (p) ; 0


, where LRGLS

p,C


C; C̄∗


= maxC̄∈C

ΛGLS
p,C


C̄; C̄∗


.10 In the univariate case, a test with the same asymp-

totic properties was proposed by Schmidt and Lee (1991). Another
class of (univariate) tests whose large sample properties can be
characterized using representations of the same form are the DF-
GLS statistics of Elliott et al. (1996), which can be shown to corre-
spond to LRGLS

1,C


R−; C̄∗

ERS


, where C̄∗

ERS is a user-chosen constant
set equal to −13.5 by Elliott et al. (1996). Calculations outlined
in the proof of Theorem 2(b) show that our test statistics admit
asymptotic representations of the form maxC̄∈C ΛGLS

p,C


C̄; C̄


. As a

consequence, our test statistics cannot be interpreted asmultivari-
ate generalizations of the DF-GLS statistics of Elliott et al. (1996).

The results of Theorem 2 could be extended to more general
deterministic specifications, allowing for a structural change in the
mean or trend slope at a known break date. Analogous derivations
as in the proof of Theorem 2 would lead to an asymptotic
representation of the form maxC̄∈C ΛGLS

p,C


C̄; C̄


with W̃C,C̄ (u) as

defined above, but with an appropriately adapted definition of
DC̄ (u).

2.3. Reduced rank hypotheses

Next, we consider the problem of testing more general reduced
rank hypotheses on thematrixΠ in themodel (5). For the purposes
of developing tests of the hypothesis that Π is of rank r0 (for some
r0 < p), it turns out to be useful to define q = p − r0 and consider
the case where Π is parameterized as

Π = ΠT (C; r0, α, α⊥, β) = αβ ′
+ T−1α⊥Cα′

⊥
, (6)

where C ∈ Rq×q is an unknown parameter of interest while
α ∈ Rp×r0 , α⊥ ∈ Rp×q, and β ∈ Rp×r0 are nuisance parameters
satisfying the following: (α, α⊥) is orthogonal and the eigenvalues
of Ir0 + α′β are less than one in absolute value.

In (6), Π has rank r0 if and only if C = 0. Conversely, any
Π ∈ Rp×p of rank r0 can be expressed as αβ ′ for some (semi-
orthogonal) α ∈ Rp×r0 and some β ∈ Rp×r0 of full column rank.
Moreover, it turns out that likelihood ratio statistics corresponding
to hypotheses concerning C in (6) depend on (α, α⊥, β) in a
sufficiently nice way that it is of relevance to proceed ‘‘as if’’ these
parameters were known. For our purposes, a further attraction
of the specification (6) is that restrictions on Π implied by
cointegration are ‘‘sign’’ restrictions on C of the exact same form
as those discussed earlier.

Assuming (counterfactually) that (α, α⊥, β) is known, a likeli-
hood ratio statistic for testing the null hypothesis C = 0 against
the alternative C ∈ C \ {0} is given by
LRd

T (C; r0, α⊥) = sup
C̄∈C,µ

LdT (C̄, µ; r0, α, α⊥, β)

− max
µ

LdT (0, µ; r0, α, α⊥, β) ,

9 In other words, W̃C,C̄∗ (u) is a multivariate version of the process Vc(u, c̄∗)

defined by Elliott et al. (1996, Section 2.3).
10 It can be shown that if the assumptions of Theorem 2(b) hold, then

LRGLS
T


C; C̄∗


→d LRGLS

p,C


C; C̄∗


,

where, letting µ̂∗

T = argmaxµ LdT

C̄∗, µ


, LRGLS

T


C; C̄∗


= supC̄∈C LdT


C̄, µ̂∗

T


−

LdT

0, µ̂∗

T


. As a consequence, every limiting representation (indexed byC and C̄∗) of

the formLRGLS
p,C


C; C̄∗


is achievable. It is beyond the scope of this paper to attempt

to isolate ‘‘optimal’’ choices ofC and C̄∗ . Instead, our aim is to clarify the relationship
between our tests and certain tests already in the literature.
where

LdT (C, µ; r0, α, α⊥, β) = −
1
2

T
t=1

∥YTt (C; r0, α, α⊥, β)

−DTt (C; r0, α, α⊥, β) vec (µ)∥2 ,

with y0 = 0, d0 = 0, and

YTt (C; r0, α, α⊥, β) = 1yt − ΠT (C; r0, α, α⊥, β) yt−1,

DTt (C; r0, α, α⊥, β)

= Ip ⊗ 1d′

t − ΠT (C; r0, α, α⊥, β) ⊗ d′

t−1.

As the notation suggests, the likelihood ratio statistic depends
on (α, α⊥, β) only through α⊥. Indeed, as shown in the proof
of Theorem 3 the statistic LRd

T (C; r0, α⊥) is simply the statistic
LRd

T (C) of the previous subsection applied to

α′

⊥
yt

rather than

{yt}. As a consequence, one would expect the large sample distri-
butions of LRd

T (C; r0, α⊥) to be of the same form as those obtained
in Theorem 2. That conjecture is confirmed by the following re-
sult, which furthermore gives a simple condition (on the estimator
α̂⊥,T ) under which a ‘‘plug-in’’ statistic of form LRd

T


C; r0, α̂⊥,T


is

asymptotically equivalent to LRd
T (C; r0, α⊥).

Theorem 3. Suppose {yt} is generated by (5) and (6), with (

α, α⊥,

β

and) C held fixed as T → ∞. Moreover, suppose C ⊆Rq×q is a

closed cone and suppose α̂⊥,T →p α⊥.

(a) If dt = 1, then LRd
T


C; r0, α̂⊥,T


→d maxC̄∈C Λq,C


C̄

, where

Λq,C is defined in Theorem 1.
(b) If dt = (1, t)′, then LRd

T


C; r0, α̂⊥,T


→d maxC̄∈C Λτ

q,C


C̄

,

where Λτ
q,C is defined in Theorem 2.

The consistency requirement on α̂⊥,T ismild because thematrix
Π0 = αβ ′ is of rank r0 and is consistently estimable under the
other assumptions of Theorem 3. To be specific, let N (·; r0) be
an Rp×q-valued function which satisfies N (M; r0)′ N (M; r0) =

Iq and N (M; r0)′ M = 0 for every p × p matrix M of rank r0.
Then α̂⊥,T = N(Π̂0,T ; r0) will be consistent for α⊥ = N (Π0; r0)
provided Π̂0,T →p Π0 and provided the function N (·; r0) is chosen
to be continuous onMp (r0)\Mp (r0 − 1), the set of p×pmatrices
of rank r0.

2.4. Serial correlation and unknown error distribution

As a final generalization, we consider the model (1) under the
following assumption on the initial condition and the errors.

Assumption 1. (a) The initial condition satisfies max

∥v0∥ , . . . ,

∥v−k∥


= op(
√
T ).

(b) the εt form a conditionally homoskedastic martingale differ-
ence sequence with unknown (full rank) covariance matrix Σ

and supt E ∥εt∥
2+δ < ∞ for some δ > 0.

As argued by Müller and Elliott (2003) in a univariate context,
relaxing Assumption 1(a) may be of interest and will affect the
large sample power properties (but not the large sample size
properties) of cointegration tests. To conserve space we develop
asymptotic theory only under Assumption 1(a), but in the Monte
Carlo experiments below we investigate the consequences of
replacing Assumption 1(a) by assumptions of Müller and Elliott
(2003) type, and find that the tests proposed herein remain
competitive with (and often superior to) their rivals in that case.

To develop tests of the hypothesis that Π is of rank r0, it once
again proves convenient to employ a very particular parameteri-
zation of Π . Specifically, collecting all nuisance parameters other
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Table 1
Simulated quantiles of the distributions of maxC̄∈C Λq,0(C̄) and maxC̄∈C Λτ

q,0(C̄).

q C = Mq (q) C = M−
q (q)

90% 95% 99% 99.9% 90% 95% 99% 99.9% NC

Panel A: maxC̄∈C Λq,0

C̄


1 1.477 2.054 3.486 5.513 1.294 1.861 3.271 5.262 0.0%
2 5.228 6.135 8.104 10.55 5.032 5.925 7.825 10.31 0.6%
3 10.86 12.11 14.73 17.99 10.67 11.90 14.50 17.85 1.6%
4 18.45 20.01 23.16 27.28 18.27 19.82 22.94 27.17 2.9%
5 27.99 29.88 33.73 38.18 27.81 29.68 33.51 37.94 3.9%
6 39.49 41.66 45.97 51.34 39.32 41.49 45.81 51.12 4.4%

Panel B: maxC̄∈C Λτ
q,0


C̄


1 3.203 3.974 5.665 7.999 3.203 3.974 5.665 7.999 0.0%
2 7.809 8.861 11.05 13.74 7.802 8.848 11.03 13.74 0.1%
3 14.33 15.68 18.54 22.27 14.31 15.65 18.49 22.20 0.2%
4 22.71 24.35 27.70 31.67 22.67 24.32 27.65 31.54 0.4%
5 33.05 35.01 38.82 43.50 33.01 34.96 38.79 43.44 0.7%
6 45.24 47.47 51.87 57.60 45.19 47.40 51.82 57.51 1.0%

Note: The table presents simulated quantiles, whereWiener processes are approximated by 1000 discrete steps with standard Gaussian innovations. The column labeled NC
contains the percentage of the replications where the numerical optimization procedure did not converge when C = M−

q (q). No replications had convergence problems
for the case with C = Mq (q). All entries are based on 100,000 Monte Carlo replications.
than µ in the matrix θ = (α, α⊥, β, Σ, Γ1, . . . , Γk), it turns out to
be useful to consider the case where Π is parameterized as

Π = ΠT (C; r0, θ) = αβ ′
+ T−1Σα⊥Cα′

⊥
Γ (1), (7)

where C ∈ Rq×q is an unknown parameter of interest while
α ∈ Rp×r0 , α⊥ ∈ Rp×q, β ∈ Rp×r0 , and Γ1, . . . , Γk ∈ Rp×p are
nuisance parameters satisfying the following: (Σ−1/2α, Σ1/2α⊥)
is orthogonal, the solutions to the determinantal equation
det


Γ (z) (1 − z) − αβ ′z


= 0 satisfy z = 1 or |z| > 1, and the

matrix β ′Γ (1)−1 α is nonsingular.
The Gaussian quasi-log-likelihood function corresponding to

the model with v0 = · · · = v−k = 0 and with θ known can be
expressed, up to a constant, as

LdT (C, µ; r0, θ) = −
1
2

T
t=1

Σ−1/2 [YTt (C; r0, θ)

−DTt (C; r0, θ) vec (µ)]∥2 , (8)

where, setting y0 = · · · = y−k = 0 and d0 = · · · = d−k = 0,

YTt (C; r0, θ) = Γ (L) 1yt − ΠT (C; r0, θ) yt−1

and

DTt (C; r0, θ) = Γ (L) ⊗ 1d′

t − ΠT (C; r0, θ) ⊗ d′

t−1.

Replacing θ by an estimator θ̂T we are led to consider quasi-
likelihood ratio type statistics of the formLRd

T (C; r0) = sup
C̄∈C,µ

LdT (C̄, µ; r0, θ̂T ) − max
µ

LdT (0, µ; r0, θ̂T ).

Theorem 4. Suppose {yt} is generated by (1) under Assumption 1,
and with Π satisfying (7) with (θ and) C held fixed as T → ∞.
Moreover, suppose C ⊆Rq×q is a closed cone and suppose θ̂T →p θ .

(a) If dt = 1, then LRd
T (C; r0) →d maxC̄∈C Λq,C


C̄

, where Λq,C is

defined in Theorem 1.
(b) If dt = (1, t)′, then LRd

T (C; r0) →d maxC̄∈C Λτ
q,C


C̄

, where

Λτ
q,C is defined in Theorem 2.

A possible choice for the consistent estimator θ̂T is the maxi-
mizer of the conditional quasi-likelihood, obtained as the density
of (yk+2, . . . , yT ) conditional on starting values (y1, . . . , yk+1). The
corresponding model under the null hypothesis may be expressed
as

1yt = αβ ′yt−1 + Γ11yt−1 + · · · + Γk1yt−k + Φdt + εt

(t = k + 2, . . . , T ) ,

where Φdt = Γ (L)µ′1dt − αβ ′µ′dt−1. As analyzed in Johansen
(1995), conditional likelihood estimation of the parameters of the
model in case (a) leads to reduced rank regression applied to the
system

1yt = α(β ′, ρ1)(y′

t−1, 1)
′
+ Γ11yt−1 + · · · + Γk1yt−k + εt ,

where ρ1 = −β ′µ′; in case (b), reduced rank regression is applied
to

1yt = α(β ′, ρ2)(y′

t−1, t)
′
+ Γ11yt−1

+ · · · + Γk1yt−k + Φ2 + εt ,

whereρ2 = −β ′µ′(0, 1)′ andΦ2 are unrestricted. Johansen (1995)
shows that the resulting estimator of θ is consistent under the null
hypothesis, and this result can be extended to local alternatives of
the type (7).

3. Critical values and local power

To enable application of the newly proposed tests in practice,
and to assess themagnitude of the power gains achievable by using
the full likelihood and imposing the ‘‘sign’’ restriction discussed
above, we used the results in Theorems 1 and 2 to compute
asymptotic critical values and local power functions of the tests
for C = Mq (q) and C = M−

q (q).
Critical values of the tests are given in Table 1. This table,

as well as the local power functions in this section, are based
on simulations conducted in Ox, see Doornik (2007). For each of
the 100,000 replications, we simulated the q-variate Brownian
motion processW (u), approximated by a Gaussian vector random
walk with 1000 steps. To simulate local power for some value of
C ≠ 0, we used the simulated W (u) to generate, using an Euler
discretization, the q-variate Ornstein–Uhlenbeck process WC (u).
These were then used to calculate the limiting log-likelihood
ratio functions Λp,C (C̄) and Λτ

p,C (C̄) given in Theorems 1 and 2,
where C = 0 for the simulations under the null hypothesis (to
obtain critical values) and specific values of C ≠ 0, discussed
below,were used for local power calculations. For each replication,
the functions Λp,C (C̄) and Λτ

p,C (C̄) were maximized over C̄ . The
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‘‘sign’’ restrictionwas imposed bymaximization using the MaxSQP
sequential quadratic programming optimization routine, while the
results without the ‘‘sign’’ restriction were obtained using the
MaxBFGS routine. Replications where the MaxSQP routine did not
converge have not been discarded, in order to avoid the possibility
that the power of the ‘‘sign-restricted’’ tests might be biased
upward due to selectivity of convergent replications.

Next we study the power of the tests for the univariate (q = 1)
and bivariate (q = 2) cases. In the univariate case, the local power
is simply plotted against ℓ = −C , where ℓ ranges from 0 to 25
in the case of a constant mean, and from 0 to 50 in the case of
a linear trend. In the bivariate case, we consider only cases with
rank(C) = 1, and adopt the following variation of the parameteri-
zation proposed by Hubrich et al. (2001), see also Johansen (1995,
Chapter 14),

C = ℓ


−


1 − ρ2 0
ρ 0


, ℓ ≥ 0, ρ ∈ [0, 1].

Here ℓ = ∥C∥ andρ determines the angle between a and b⊥, where
C = ab′.11 The parameterization has been chosen such that local
power increasesmonotonically in both ℓ and ρ. Note that the value
ρ = 1 corresponds to the process

WC (u) = W (u) +


0 0
ℓ 0

  u

0
W (s)ds,

which is an I(2) process in continuous time. Because the test is pro-
posed to detect stationary linear combinations in yt , local power
against alternatives with ρ = 1 is not our main interest, but these
cases are included in the results below. In particular, we consider
ρ ∈ {0, 0.5, 0.75, 1} and ℓ ∈ [0, 50].

For the case of a constant mean, we compare the two likelihood
ratio tests, indicated by LR(M) and LR(M−), with the standard Jo-
hansen trace test for an unknownmean (i.e., with a restricted con-
stant), indicated by JT. We use the power function of the trace test
as the (only) benchmark because the trace test seems to be the
most popular test in applications and because the local power of
the trace test was found by Lütkepohl et al. (2001) to be very sim-
ilar to that of its closest rival, the maximum eigenvalue test (i.e.,
the test corresponding to C = Mq (1)). Note that the power of
the likelihood ratio test with C = Mq (q) is in fact identical to the
power of Johansen’s trace test for a known mean (equal to zero).
As mentioned in Section 2.2, the test proposed by Saikkonen and
Luukkonen (1997), which also allows for an unknown mean, has
the same asymptotic local power function as that of LR(M).

In Figs. 1 and 2we display the asymptotic local power functions
for the constant mean case. It is clear that imposing the sign re-
striction does lead to a local power gain in the univariate case, but
appears to make very little difference with q = 2. More impor-
tantly, both versions of the LR test have much higher asymptotic
local power than the trace test, both in the univariate and in the
bivariate case, although the power difference decreases as ρ ap-
proaches the I(2) boundary ρ = 1. This highlights the power gains
that can be obtained from using the full likelihood instead of the
conditional likelihood.

Figs. 3 and 4 display the asymptotic local power functions for
the linear trend case. In this casewe have also included the asymp-
totic local power functions of the tests proposed by Lütkepohl and
Saikkonen (2000) and Saikkonen and Lütkepohl (2000b), indicated
by SL. Now the gains from imposing the ‘‘sign’’ restriction vanish
entirely. In the univariate case, it is well known that allowing for a

11 An alternative interpretation of ρ is as the long-run correlation between the
errors v1t and v2t in a cointegrating regression framework y1t = βy2t + u1t , where
1u1t = (−ℓ/T )u1,t−1 + v1t and 1y2t = v2t ; see, e.g., Perron and Rodriguez (2012).
Fig. 1. Asymptotic local power functions of cointegration tests, constant mean,
q = 1. Note: The asymptotic local power functions (5% level) against ℓ are generated
using 100,000Monte Carlo replications, whereWiener processes are approximated
by 1000 discrete steps with standard Gaussian innovations. q = p − r0 refers to
the number of integrated linear combinations under the null hypothesis. LR(M−)

and LR(M) refer to the likelihood ratio tests allowing for a constant mean, with or
without the ‘‘sign’’ restriction imposed, and JT refers to Johansen’s trace test with a
restricted constant.

linear trend leads to a shift to the left in the distribution of the au-
toregressive coefficient estimator, relative to the case of a constant
mean,which leads to a reduction of the probability of the estimator
ending up in the explosive region (both under the null and under
local alternatives), to such an extent that truncating the distribu-
tion at one does not affect asymptotic local power. Figs. 3 and 4
suggest that apparently the same phenomenon occurs in higher-
dimensional cases as well. The power difference between the like-
lihood ratio tests and the trace test in the linear trend case in Figs. 3
and 4 are comparable to that in the constant mean case in Figs. 1
and 2. The likelihood ratio tests also dominate the SL tests in terms
of asymptotic local power, especially for local alternatives rela-
tively far from the null hypothesis (i.e., for large ℓ), where the local
power of the SL tests appears to approach one only very slowly.

As remarked by Hubrich et al. (2001), further power gains are
possible in case the process yt has a linear trend, but it is known
that the linear trend in the cointegrating linear combinations
β ′yt is zero. This corresponds to the model with an unrestricted
constant as analyzed by Johansen (1991, Theorem 2.1), and by
Saikkonen and Lütkepohl (2000a). A drawback of this class of tests
is that they are not asymptotically similar: their asymptotic null
distribution depends on whether the trend in the integrated linear
combinations is zero or not. For this reason, and because such tests
are based on a different set of assumptions than our tests, we have
not included them explicitly in the local power comparison.

4. Monte Carlo simulations

In this section we present Monte Carlo simulation results to
illustrate finite sample properties of the proposed tests and to
compare with existing tests. The first subsection outlines the
practical details on the implementation of our tests.

4.1. Implementation of the LR tests

Suppose we are calculating the LR test for H0 : r = r0, for
some 0 ≤ r0 ≤ p − 1. The first thing that is needed to im-
plement the LR test in practice, is a preliminary estimate of θ =

(α, α⊥, β, Σ, Γ1, . . . , Γk). Here we note that α⊥ should be nor-
malized such that α′

⊥
Σα⊥ = Ip, and also that if r0 = 0 then

α = β = 0 and α⊥ = Σ−1/2. This preliminary estimate could
be obtained in many different ways, but we apply the suggestion
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Fig. 2. Asymptotic local power functions of cointegration tests, constant mean, q = 2. Note: The asymptotic local power functions (5% level) against ℓ are generated
using 100,000 Monte Carlo replications, where Wiener processes are approximated by 1000 discrete steps with standard Gaussian innovations. q = p − r0 refers to the
number of integrated linear combinations under the null hypothesis. LR(M−) and LR(M) refer to the likelihood ratio tests allowing for a constant mean, with or without
the ‘‘sign’’ restriction imposed, and JT refers to Johansen’s trace test with a restricted constant.
following Theorem 4 and obtain the estimate from the Johansen
procedure under the appropriate rank restriction and with the ap-
propriate deterministic components present. The preliminary es-
timate θ̂ = (α̂, α̂⊥, β̂, Σ̂, Γ̂1, . . . , Γ̂k), with α̂′

⊥
Σ̂ α̂⊥ = Ip, and if

r0 = 0 then with α̂ = β̂ = 0 and α̂⊥ = Σ̂−1/2, is taken as given
and is fixed throughout the remainder of the procedure.

We then proceed to calculate the likelihood for a given value
of the parameter C . First, we calculate ŶTt(C) = α̂′

⊥
Γ̂ (L)1yt −

T−1C α̂′

⊥
Γ̂ (1)yt−1 and D̂Tt(C) = α̂′

⊥
Γ̂ (L) ⊗ 1d′

t − T−1C α̂′

⊥
Γ̂ (1) ⊗

d′

t−1 for t = 1, . . . , T , and to do so we set y0 = · · · = y−k = 0
and d0 = · · · = d−k = 0. Next, the likelihood function (8) should
now be maximized, and again this could be done in several ways.
We found it easiest to concentrate the likelihood function (8) with
respect to µ and therefore maximize

L̂d
T (C) = −

1
2
Q̂YY ,T (C)

+
1
2
Q̂DY ,T (C)′ Q̂DD,T (C)−1 Q̂DY ,T (C)

with respect to C over the parameter space C, where Q̂YY ,T (C)

=
T

t=1 ŶTt (C)′ ŶTt (C) , Q̂DY ,T (C) =
T

t=1 D̂Tt (C)′ ŶTt (C), and
Q̂DD,T (C) =

T
t=1 D̂Tt (C)′ D̂Tt (C). In the case where C = Mp(r),

this can be done by unrestricted maximization over a ∈ Rp×r

and b = [Ir , b2] with b2 ∈ R(p−r)×r , setting C = ab′. Thus, if
for example C = Rp×p, as will often be the case when trace-
type tests are considered, the maximization is unrestricted. On the
other hand, whenC = M−

p (r), themaximization should be carried
out under the appropriate eigenvalue restriction. In practice we
used Ox, and, as in the asymptotic local power analysis, we applied
the unrestricted maximization routine MaxBFGS in the former
case, and the restricted maximization routine MaxSQP (sequential
quadratic programming) in the latter case. Software implementing
our proposed procedure is available from the authors upon
request.

Finally, given the value of the maximized likelihood function,
we subtract the value under the null hypothesis, C = 0, to calculate
the LR statistic, noting that there is no multiplication by two. The
value of the LR statistic is compared with the appropriate critical
value obtained from Table 1, and as usual the test rejects if the LR
statistic exceeds the critical value.
Fig. 3. Asymptotic local power functions of cointegration tests, linear trend, q = 1.
Note: The asymptotic local power functions (5% level) against ℓ are generated using
100,000 Monte Carlo replications, where Wiener processes are approximated by
1000 discrete steps with standard Gaussian innovations. q = p − r0 refers to the
number of integrated linear combinations under the null hypothesis. LR(M−) and
LR(M) refer to the likelihood ratio tests allowing for a linear trend, with or without
the ‘‘sign’’ restriction imposed, JT refers to Johansen’s trace test with a restricted
linear trend, and SL refer to the test proposed by Saikkonen and Lütkepohl (2000b).

4.2. Monte Carlo setup

We consider the two-dimensional VAR model,

yt = µ1 + µ2t + vt , 1vt = Πvt−1 + Γ 1vt−1 + εt , (9)

where εt ∼ i.i.d. N (0, I2). The 2 × 1 parameters µ1, µ2 are set
equal to zero in the data generating process, so that yt = vt ,
but either µ1 or (µ1, µ2), in the constant mean and trend cases,
respectively, are estimated as part of the testing procedure. We
set Γ = γ I2 with γ ∈ {0, 1/2}, and, following the setup in the
asymptotic local power analysis, we set

Π = η(1 − γ )


−


1 − ρ2 0
ρ 0


, (10)

where η ≥ 0 is a scale parameter, ρ is an angle parameter, and
the factor (1 − γ ) arises from Γ (1) = I2(1 − γ ) as in (7). Thus,
when η = 0 the cointegration rank is zero and when η > 0 the
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Fig. 4. Asymptotic local power functions of cointegration tests, linear trend, q = 2. Note: The asymptotic local power functions (5% level) against ℓ are generated
using 100,000 Monte Carlo replications, where Wiener processes are approximated by 1000 discrete steps with standard Gaussian innovations. q = p − r0 refers to the
number of integrated linear combinations under the null hypothesis. LR(M−) and LR(M) refer to the likelihood ratio tests allowing for a linear trend, with or without the
‘‘sign’’ restriction imposed, JT refers to Johansen’s trace test with a restricted linear trend, and SL refer to the test proposed by Saikkonen and Lütkepohl (2000b).
cointegration rank is one. We simulate with ρ ∈ {0, 1/2, 3/4} as
in the asymptotic local power study.

To examine the sensitivity of our results to the initial values
assumption, we initialize the process in two different ways. In one
set of results, the process is initialized with zeros, i.e. v0 = · · · =

v−k = 0. In the other set of results, we initialize the process from
the stationary distribution of (v1,0, 1v2,0), . . . , (v1,−k, 1v2,−k)
together with v2,−k−1 = 0 (when the cointegrating rank is one)
and the stationary distribution of 1v0, . . . , 1v−k together with
v−k−1 = 0 (when the cointegrating rank is zero).

We simulate 10,000 independent replications from this data
generating process with sample sizes T ∈ {250, 500, 750}, reflect-
ing, e.g., quarterly data since about 1950 (T = 250) ormonthly data
since about 1970 and 1950 (T = 500 and T = 750, respectively).
When γ = 0, a VAR(1) is applied, i.e., k = 0 (no lag augmentation),
and when γ = 1/2, a VAR(2) is applied, i.e., k = 1, so that correct
specification is assumed.We simulate the LR test withC = M−

2 (2)
and C = M2(2) = R2×2; that is, both with the ‘‘sign’’ restric-
tion imposed andwithout. These tests are denoted by LR−

T and LRT ,
respectively, in our tables. We also report the corresponding re-
sults for the Johansen trace tests, denoted by JTT , which are im-
plemented with a restricted constant term (for the constant mean
case) or with a restricted trend term (for the linear trend case). Fi-
nally, we report results for the Saikkonen and Luukkonen (1997)
tests (in the constant mean case) or the Saikkonen and Lütkepohl
(2000b) tests (in the linear trend case), and in either case these are
denoted by SLT in our tables.

4.3. Monte Carlo results

The Monte Carlo simulation results with zero initialization
are presented in Tables 2–5. The tables present the (percentage)
empirical rejection frequencies for three tests. In Panel A of each
table, we examine the size of the tests by testing the (true) null
hypotheses H0 : r = 1 with η = 1/30 (1/20 in the linear trend
case) and H0 : r = 0 with η = 0. In Panel B of each table we
examine power by testing the (false) null hypothesis H0 : r = 0
with η = 1/30 (1/20 in the linear trend case). Both the raw
rejection frequencies and the corresponding size-corrected powers
Table 2
Simulation results, VAR(1) model, γ0 = 0, constant mean, initialized with zeros.

Panel A: Simulated size

ρ T η = 1/30,H0 : r = 1 η = 0,H0 : r = 0
JTT SLT LRT LR−

T JTT SLT LRT LR−

T

0.00 250 0.9 4.6 4.3 5.5 5.6 8.8 5.9 5.8
0.00 500 2.6 6.2 5.9 6.8 5.3 7.3 5.3 5.2
0.00 750 4.4 6.1 5.3 6.2 5.7 7.0 5.4 5.3
0.50 250 1.2 3.9 3.3 4.2 5.5 8.7 5.8 5.7
0.50 500 2.9 5.5 4.6 5.5 5.2 7.8 5.6 5.9
0.50 750 4.6 5.6 4.2 4.9 5.4 7.0 5.4 5.2
0.75 250 2.1 4.7 2.2 2.8 5.5 8.3 5.7 5.9
0.75 500 4.8 5.2 2.7 3.1 5.7 7.4 5.6 5.2
0.75 750 5.1 5.7 2.7 3.2 5.3 6.9 5.4 5.2

Panel B: Simulated power with η = 1/30,H0 : r = 0

Not size-corrected Size-corrected
0.00 250 8.7 23.7 17.5 18.3 7.5 14.7 14.8 16.2
0.00 500 25.5 56.9 48.0 50.1 24.4 47.3 47.0 48.8
0.00 750 54.3 88.0 83.5 84.7 50.7 82.3 82.2 83.5
0.50 250 11.8 26.2 21.1 22.2 10.8 17.3 18.7 19.8
0.50 500 33.7 64.1 58.5 59.8 32.6 53.2 56.0 57.3
0.50 750 65.6 92.2 89.8 90.2 63.6 88.5 89.0 90.0
0.75 250 17.9 33.8 30.1 31.1 16.7 24.5 27.5 28.5
0.75 500 50.6 76.9 74.4 75.6 48.1 68.1 72.0 74.3
0.75 750 82.4 96.5 96.0 96.0 81.4 94.7 95.4 95.8

Note: The table presents (percentage) empirical rejection frequencies for the tests
and models described in Section 4.2. The nominal size of the tests is 5% and all
entries are based on 10,000 Monte Carlo replications.

are reported. Throughout the tables, the nominal size of the tests
is 5%.

First, consider the results for the model allowing for a constant
mean (but no trend) presented in Tables 2–3. All the tests demon-
strate good size control for the null H0 : r = 1. For the null
H0 : r = 0, the SLT test is rather over-sized,whereas thenewlypro-
posed LRT and LR−

T tests have very good size properties. The (unad-
justed) power of the tests reflects the relatively poor size control
of the SLT test. After size-correction, the powers of the SLT test and
the LRT and LR−

T tests are almost identical, and all three tests have
much higher rejection frequencies than the JTT test.

Next, consider the results for the model that allows for a linear
trend. These are presented in Tables 4–5, which are laid out exactly
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Table 3
Simulation results, VAR(2) model, γ0 = 1/2, constant mean, initialized with zeros.

Panel A: Simulated size

ρ T η = 1/30,H0 : r = 1 η = 0,H0 : r = 0
JTT SLT LRT LR−

T JTT SLT LRT LR−

T

0.00 250 1.1 3.8 4.0 5.2 6.6 7.9 4.6 4.5
0.00 500 2.4 5.0 5.5 6.7 5.5 6.2 4.4 4.4
0.00 750 4.4 5.4 5.1 6.0 5.9 5.8 4.6 4.6
0.50 250 1.1 3.4 3.1 4.0 6.2 7.1 4.3 4.2
0.50 500 3.1 5.0 4.0 4.9 5.8 6.5 4.9 4.7
0.50 750 4.8 5.4 4.2 4.9 5.9 5.9 4.9 4.7
0.75 250 1.9 4.3 2.1 2.6 6.3 7.4 4.2 4.0
0.75 500 4.5 4.9 2.5 2.9 5.9 5.9 4.5 4.2
0.75 750 5.2 5.6 2.7 3.2 5.6 6.1 4.9 4.7

Panel B: Simulated power with η = 1/30,H0 : r = 0

Not size-corrected Size-corrected
0.00 250 9.6 20.5 14.0 14.8 7.3 13.5 14.9 15.9
0.00 500 25.1 51.7 44.7 46.5 23.1 47.0 47.4 49.5
0.00 750 52.8 84.8 81.1 82.3 48.0 82.4 82.3 83.9
0.50 250 12.1 23.1 15.7 16.6 9.8 17.4 17.9 18.8
0.50 500 32.3 59.4 52.3 53.9 29.2 52.5 53.0 55.1
0.50 750 63.3 89.9 87.4 87.7 60.1 87.5 87.7 88.3
0.75 250 17.7 31.4 21.4 22.3 15.0 24.4 24.3 25.1
0.75 500 47.5 73.7 67.4 68.5 44.5 69.7 70.0 72.5
0.75 750 79.3 95.6 94.4 94.5 77.5 94.4 94.5 95.1

Note: The table presents (percentage) empirical rejection frequencies for the tests
and models described in Section 4.2. The nominal size of the tests is 5% and all
entries are based on 10,000 Monte Carlo replications.

Table 4
Simulation results, VAR(1) model, γ0 = 0, linear trend, initialized with zeros.

Panel A: Simulated size

ρ T η = 1/20,H0 : r = 1 η = 0,H0 : r = 0
JTT SLT LRT LR−

T JTT SLT LRT LR−

T

0.00 250 1.4 2.5 3.4 3.4 5.9 5.0 5.9 6.0
0.00 500 3.3 4.2 5.4 5.4 5.2 4.5 5.6 5.5
0.00 750 5.1 4.9 5.7 5.7 5.9 5.0 5.9 5.9
0.50 250 1.4 2.2 2.3 2.3 5.4 4.6 5.8 5.8
0.50 500 4.3 3.2 4.2 4.2 5.4 4.8 5.6 5.6
0.50 750 5.5 3.7 4.5 4.5 5.9 5.1 6.3 6.2
0.75 250 2.0 1.4 1.3 1.3 5.6 5.1 6.1 6.1
0.75 500 5.1 2.1 1.8 1.8 5.7 5.1 6.0 5.9
0.75 750 5.7 2.4 1.9 1.9 5.6 5.0 5.8 5.8

Panel B: Simulated power with η = 1/20,H0 : r = 0

Not size-corrected Size-corrected
0.00 250 12.8 17.8 21.6 21.7 11.3 17.7 19.5 19.6
0.00 500 41.8 55.4 64.5 64.4 41.2 57.5 62.4 62.3
0.00 750 80.3 86.6 95.0 95.0 77.7 86.8 93.6 93.5
0.50 250 15.6 21.8 26.3 26.3 14.7 23.1 23.7 23.7
0.50 500 51.5 64.9 73.2 73.2 50.0 65.6 71.0 71.1
0.50 750 87.8 90.5 97.2 97.2 85.5 90.2 95.9 96.0
0.75 250 22.6 28.4 33.4 33.5 20.7 28.0 30.0 30.0
0.75 500 69.0 76.6 85.3 85.2 66.2 76.3 82.7 82.8
0.75 750 95.8 94.9 99.3 99.2 95.1 94.9 99.1 99.0

Note: The table presents (percentage) empirical rejection frequencies for the tests
and models described in Section 4.2. The nominal size of the tests is 5% and all
entries are based on 10,000 Monte Carlo replications.

as the previous tables, but with a slightly larger scale parameter,
η. For this model, all tests show excellent size control (recall that
the SLT test in the model with a linear trend is different from the
SLT test in the model with a constant mean), although all tests are
slightly undersized for the null H0 : r = 1. In Panel B of both
tables, the asymptotic local power results are reflected very clearly,
in the sense that the newly proposed LRT and LR−

T tests have higher
(both unadjusted and size-corrected) power than the JTT test as
well as the SLT test. The differences in size-corrected power are
in many cases quite substantial. For T = 500 and T = 750,
the size-corrected powers of the LRT and LR−

T tests are five to
Table 5
Simulation results, VAR(2) model, γ0 = 1/2, linear trend, initialized with zeros.

Panel A: Simulated size

ρ T η = 1/20,H0 : r = 1 η = 0,H0 : r = 0
JTT SLT LRT LR−

T JTT SLT LRT LR−

T

0.00 250 1.1 1.5 2.7 2.7 6.9 5.1 4.2 4.2
0.00 500 3.1 3.3 5.1 5.1 5.4 4.8 4.7 4.7
0.00 750 5.0 4.4 5.4 5.4 6.3 5.0 5.4 5.4
0.50 250 1.4 1.3 2.0 2.0 6.6 5.1 4.4 4.4
0.50 500 4.0 2.6 3.6 3.6 6.1 4.9 4.8 4.7
0.50 750 5.4 3.2 4.3 4.3 6.0 5.3 5.9 5.8
0.75 250 2.2 1.2 1.4 1.4 6.7 5.2 4.5 4.5
0.75 500 5.0 1.7 1.6 1.6 6.3 5.1 5.4 5.3
0.75 750 5.7 1.7 1.8 1.8 5.8 4.9 5.1 5.1

Panel B: Simulated power with η = 1/20,H0 : r = 0

Not size-corrected Size-corrected
0.00 250 13.4 17.3 17.3 17.4 10.1 17.2 19.7 19.8
0.00 500 40.1 53.2 59.8 59.6 38.2 53.7 61.0 60.9
0.00 750 77.8 84.8 92.8 92.8 72.6 84.8 92.3 92.1
0.50 250 16.2 20.0 18.6 18.7 13.2 19.7 20.3 20.4
0.50 500 49.4 61.6 66.5 66.5 44.7 62.2 68.0 68.1
0.50 750 84.9 88.3 95.7 95.7 81.4 87.7 94.5 94.5
0.75 250 22.4 25.9 21.3 21.4 18.4 25.2 23.2 23.2
0.75 500 64.9 72.1 77.6 77.8 59.5 71.6 76.4 76.6
0.75 750 94.0 92.7 98.3 98.3 92.7 92.9 98.2 98.2

Note: The table presents (percentage) empirical rejection frequencies for the tests
and models described in Section 4.2. The nominal size of the tests is 5% and all
entries are based on 10,000 Monte Carlo replications.

Table 6
Simulation results, VAR(1) model, γ0 = 0, constant mean, initialized with stat.

Panel A: Simulated size

ρ T η = 1/30,H0 : r = 1 η = 0,H0 : r = 0
JTT SLT LRT LR−

T JTT SLT LRT LR−

T

0.00 250 1.1 3.5 3.7 4.8 5.6 8.8 5.9 5.8
0.00 500 2.9 5.3 5.6 6.6 5.3 7.2 5.3 5.2
0.00 750 4.3 5.8 5.4 6.0 5.7 7.0 5.4 5.3
0.50 250 1.3 3.3 3.0 3.9 5.5 8.6 5.8 5.7
0.50 500 3.1 4.7 4.2 5.0 5.2 7.7 5.6 5.9
0.50 750 4.9 5.2 4.3 5.0 5.4 6.9 5.4 5.2
0.75 250 2.2 4.3 2.3 2.8 5.5 8.3 5.7 5.9
0.75 500 5.0 5.0 2.9 3.3 5.7 7.3 5.6 5.2
0.75 750 5.3 5.3 2.9 3.4 5.3 6.9 5.4 5.2

Panel B: Simulated power with η = 1/30,H0 : r = 0

Not size-corrected Size-corrected
0.00 250 9.7 20.4 13.1 13.9 8.5 12.4 10.9 12.1
0.00 500 27.2 48.7 34.6 36.3 25.9 40.4 33.8 35.2
0.00 750 56.2 80.5 63.2 64.6 52.5 73.5 61.9 63.4
0.50 250 12.7 21.8 15.4 16.2 12.0 14.3 13.7 14.5
0.50 500 35.6 53.6 42.6 44.0 34.6 42.8 40.1 41.7
0.50 750 67.5 83.0 71.5 72.5 65.7 77.9 70.4 72.0
0.75 250 20.4 29.0 24.2 24.9 19.2 20.4 22.0 22.4
0.75 500 54.1 64.2 58.5 59.0 51.8 55.4 56.3 57.7
0.75 750 84.5 87.8 82.1 82.1 83.7 84.1 81.2 81.7

Note: The table presents (percentage) empirical rejection frequencies for the tests
and models described in Section 4.2. The nominal size of the tests is 5% and all
entries are based on 10,000 Monte Carlo replications.

eight percentage points higher than that of the SLT test throughout
Tables 4–5.

Finally, to examine the robustness of the tests towards the ini-
tial values assumption, Tables 6–9 present results corresponding
to those in Tables 2–5, but with stationary initialization. It is clear
from the tables that the empirical rejection frequencies of the JTT
test are almost identical for the two different initializations. Fur-
thermore, the size properties of the SLT , LRT , and LR−

T tests under
the stationary initialization are also almost identical to those under
the zero initialization. Specifically, the SLT test is slightly oversized
in the model with a constant mean (recall again that it is different



H.P. Boswijk et al. / Journal of Econometrics 184 (2015) 97–110 107
Table 7
Simulation results, VAR(2) model, γ0 = 1/2, constant mean, initialized with stat.

Panel A: Simulated size

ρ T η = 1/30,H0 : r = 1 η = 0,H0 : r = 0
JTT SLT LRT LR−

T JTT SLT LRT LR−

T

0.00 250 1.3 2.4 3.2 4.0 6.6 7.8 4.6 4.5
0.00 500 2.6 3.6 5.2 6.1 5.5 6.2 4.5 4.3
0.00 750 4.4 4.4 5.1 5.8 5.9 5.9 4.6 4.6
0.50 250 1.4 2.3 2.6 3.2 6.2 7.0 4.3 4.2
0.50 500 3.1 3.8 3.7 4.7 5.8 6.4 4.8 4.7
0.50 750 4.8 4.7 4.2 4.9 5.9 5.9 4.9 4.7
0.75 250 2.3 3.2 1.8 2.3 6.3 7.3 4.1 4.2
0.75 500 4.9 4.1 2.5 2.8 5.9 6.0 4.5 4.2
0.75 750 5.1 4.9 2.8 3.2 5.6 6.0 4.9 4.7

Panel B: Simulated power with η = 1/30,H0 : r = 0

Not size-corrected Size-corrected
0.00 250 10.4 16.6 10.1 10.7 8.0 10.9 10.9 11.5
0.00 500 26.7 38.1 29.6 30.8 24.8 34.1 32.0 33.0
0.00 750 54.4 67.5 57.9 58.9 49.8 64.4 59.4 60.4
0.50 250 13.6 18.6 10.8 11.4 11.1 13.4 12.7 13.7
0.50 500 34.7 44.0 35.6 36.8 31.5 38.0 36.3 37.8
0.50 750 65.8 72.9 65.1 65.9 62.2 69.7 65.6 66.8
0.75 250 20.1 24.9 15.6 16.0 17.0 19.2 17.7 18.7
0.75 500 50.9 56.6 49.2 49.9 47.6 52.6 51.5 53.7
0.75 750 81.6 81.1 76.0 76.4 79.9 79.0 76.3 77.2

Note: The table presents (percentage) empirical rejection frequencies for the tests
and models described in Section 4.2. The nominal size of the tests is 5% and all
entries are based on 10,000 Monte Carlo replications.

from the SLT test in the model with a linear trend), whereas the
other tests show excellent size control.

In terms of power, both the SLT test and the LRT and LR−

T tests
show some loss in power compared with the zero initialization. In
fact, the (unadjusted and size-corrected) power of the JTT test is
often higher than that of the SLT test in the model that allows for a
linear trend, see Panel B in Tables 8 and 9. However, even under the
stationary initialization, the newly proposed LRT and LR−

T tests still
have superior (unadjusted and size-corrected) power compared
with the JTT test throughout all of Tables 6–9.

5. Discussion and conclusions

In this paper, we have suggested improved tests for cointe-
gration rank in the vector autoregressive model and developed
relevant asymptotic distribution theory and local power results.
The tests are (quasi-)likelihood ratio tests based on aGaussian like-
lihood, but as usual the asymptotic results do not require normally
distributed innovations. The power gains relative to existing tests
are due to two factors. First, instead of basing our tests on the con-
ditional (with respect to the initial observations) likelihood, we
follow the recent unit root literature and base our tests on the full
likelihood as in, e.g., Elliott et al. (1996). Second, our tests incor-
porate a ‘‘sign’’ restriction which generalizes the one-sided unit
root test.We show that the asymptotic local power of the proposed
tests dominates that of existing cointegration rank tests.

Computationally, the new tests require numerical optimiza-
tion; for the tests that do not impose the sign restriction, this nu-
merical optimization is fast and does not have any convergence
problems when implemented using the procedure described in
Section 4.1.

To deal with the nuisance parameters, we use a plug-in ap-
proach for those parameters that are irrelevant to the asymptotic
distributions (and asymptotic local power). On the other hand, the
likelihood is maximized with respect to those parameters that are
important for asymptotic distributions and power. Existing tests
based on GLS detrending, e.g. Xiao and Phillips (1999), do the op-
posite and use a plug-in approach for the asymptotically relevant
Table 8
Simulation results, VAR(1) model, γ0 = 0, linear trend, initialized with stat.

Panel A: Simulated size

ρ T η = 1/20,H0 : r = 1 η = 0,H0 : r = 0
JTT SLT LRT LR−

T JTT SLT LRT LR−

T

0.00 250 1.4 2.1 3.1 3.1 5.9 5.0 5.9 6.0
0.00 500 3.4 3.4 5.5 5.5 5.2 4.5 5.6 5.6
0.00 750 5.1 4.2 5.8 5.8 5.9 5.0 5.9 5.9
0.50 250 1.4 1.6 2.1 2.1 5.4 4.6 5.8 5.8
0.50 500 4.3 2.2 4.0 4.0 5.4 4.8 5.6 5.6
0.50 750 5.5 2.5 4.5 4.5 5.9 5.1 6.3 6.2
0.75 250 2.1 1.2 1.2 1.2 5.6 5.1 6.1 6.1
0.75 500 5.2 1.5 1.9 1.9 5.7 5.1 6.0 5.9
0.75 750 5.7 1.2 1.9 1.9 5.6 5.0 5.8 5.8

Panel B: Simulated power with η = 1/20,H0 : r = 0

Not size-corrected Size-corrected
0.00 250 13.3 15.3 18.7 18.8 11.8 15.2 16.8 17.0
0.00 500 42.9 46.4 55.1 55.1 42.5 48.3 52.9 52.9
0.00 750 81.6 76.6 87.2 87.1 78.5 76.8 85.1 85.0
0.50 250 16.4 18.2 22.2 22.3 15.5 19.2 19.7 19.7
0.50 500 52.9 54.8 63.5 63.5 51.5 55.7 61.3 61.3
0.50 750 88.7 82.0 91.2 91.2 86.6 81.7 88.8 88.9
0.75 250 25.0 24.9 29.3 29.2 22.7 24.3 25.9 25.9
0.75 500 71.2 67.7 77.6 77.7 68.2 67.4 74.9 74.9
0.75 750 96.3 89.7 96.4 96.4 95.7 89.7 96.0 96.0

Note: The table presents (percentage) empirical rejection frequencies for the tests
and models described in Section 4.2. The nominal size of the tests is 5% and all
entries are based on 10,000 Monte Carlo replications.

Table 9
Simulation results, VAR(2) model, γ0 = 1/2, linear trend, initialized with stat.

Panel A: Simulated size

ρ T η = 1/20,H0 : r = 1 η = 0,H0 : r = 0
JTT SLT LRT LR−

T JTT SLT LRT LR−

T

0.00 250 1.2 1.3 2.4 2.3 7.0 5.1 4.3 4.3
0.00 500 3.2 2.7 5.1 5.1 5.4 4.8 4.7 4.7
0.00 750 5.0 3.4 5.6 5.6 6.3 4.9 5.3 5.3
0.50 250 1.7 1.0 1.8 1.8 6.6 5.1 4.3 4.3
0.50 500 4.0 1.7 3.3 3.3 6.1 4.8 4.8 4.8
0.50 750 5.4 1.7 4.1 4.1 6.0 5.3 5.8 5.8
0.75 250 2.5 0.8 1.2 1.2 6.7 5.2 4.4 4.4
0.75 500 5.1 1.1 1.6 1.6 6.3 5.2 5.4 5.4
0.75 750 5.7 0.9 1.9 1.9 5.8 4.9 5.1 5.1

Panel B: Simulated power with η = 1/20,H0 : r = 0

Not size-corrected Size-corrected
0.00 250 14.4 14.2 14.4 14.5 10.8 14.0 16.0 16.0
0.00 500 41.4 43.0 48.2 48.2 39.6 43.5 49.5 49.5
0.00 750 79.0 74.0 82.0 81.8 73.9 74.7 80.9 80.8
0.50 250 17.3 16.8 15.0 15.1 14.3 16.6 16.7 17.0
0.50 500 51.2 51.0 54.8 54.8 46.8 51.7 56.1 56.1
0.50 750 85.8 79.0 86.7 86.7 82.4 78.1 84.2 84.4
0.75 250 24.3 22.4 18.2 18.1 20.1 21.9 20.2 20.3
0.75 500 66.9 61.8 66.9 66.9 61.9 61.1 65.4 65.5
0.75 750 94.4 85.3 92.6 92.6 93.3 85.6 92.4 92.5

Note: The table presents (percentage) empirical rejection frequencies for the tests
and models described in Section 4.2. The nominal size of the tests is 5% and all
entries are based on 10,000 Monte Carlo replications.

parameters and maximize the likelihood with respect to the
asymptotically irrelevant parameters.

By proposing cointegration rank tests with power superior to
those of existing tests, this paper has demonstrated by example
that these existing tests are suboptimal in terms of asymptotic
local power. In the univariate case, our tests reduce to those of
Jansson and Nielsen (2012) and were shown there to be ‘‘nearly
efficient’’ (in the sense of Elliott et al., 1996). Generalizing the op-
timality theory of Elliott et al. (1996) to multivariate settings is
beyond the scope of this paper, however, so it remains an open
questionwhether the tests developed herein themselves enjoy op-
timality properties.
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Appendix. Proofs

Proof of Theorem 1

We use a method of proof similar to that of Jansson and Nielsen
(2012). Expanding LT (C) around C = 0, we have

LT (C) − LT (0) = F (C, ST ,HT ) = tr

CST −

1
2
C ′CHT


,

where

(ST ,HT ) =


1
T

T
t=2

yt−11y′

t ,
1
T 2

T
t=2

yt−1y′

t−1


.

Therefore, LRT (C) can be represented as LRT (C) = maxC̄∈C

F

C̄, ST ,HT


.

Under the assumptions of Theorem 1 it follows from Phillips
(1988) that

(ST ,HT ) →d (SC , HC )

=

 1

0
WC (u) dWC (u)′ ,

 1

0
WC (u)WC (u)′ du


,

implying in particular that F

C̄, ST ,HT


→d F


C̄, SC , HC


=

Λp,C

C̄

for every C̄ ∈ C. Using this convergence result and the

fact that the set X of pairs (S,H) of p × p matrices for which H
is symmetric and positive definite satisfies Pr [(SC , HC ) ∈ X] = 1,
Theorem 1 will follow from the continuous mapping theorem if
it can be shown that the functional maxC̄∈C F


C̄, ·

is continuous

on X.
Using simple bounds (and the fact that H0 is positive definite

whenever (S0,H0) ∈ X), it can be shown that any (S0,H0) ∈ X
admits a finite constant K and an open set X0 ⊆ X containing
(S0,H0) such that

sup
(S,H)∈X0,∥C̄∥>K

F

C̄, S,H


≤ 0.

Specifically, the asserted property of F (·) follows from the fact that

lim
K→∞

sup
∥C̄∥>K

C̄−2 F C̄, S,H

− F∗


C̄,H

 → 0,

where F∗ (C,H) = −
1
2 tr

C ′CH


, the convergence is uniform

(in (S,H)) on compacta, and limK→∞ sup∥C̄∥>K

C̄−2
F∗

C̄, ·

is

negative and continuous on the set of positive definite matrices.
Therefore, because F (0, S,H) = 0 and because C is closed and

contains the zero matrix, it holds for any (S,H) ∈ X0 that

max
C̄∈C

F

C̄, S,H


= max

C̄∈C,∥C̄∥≤K
F

C̄, S,H


.

Because

C̄ ∈ C :

C̄ ≤ K

is compact, the theorem of the max-

imum (e.g., Stokey and Lucas, 1989, Theorem 3.6) shows that
maxC̄∈C F


C̄, ·

is continuous at (S0,H0).

Proof of Theorem 2

Because the profile log-likelihood function Ld
T (·) is invariant

under transformations of the form yt → yt + m′dt we can assume
without loss of generality that µ = 0, so that vt = yt in the proof.
Moreover, the proofs of parts (a) and (b) are very similar, so to
conserve space we omit the details for part (a).

Proceeding as in the proof of Theorem 1, it can be shown that
Ld

T


C̄

−Ld

T (0) can bewritten as F d

C̄, Xd

T


for some Xd

T satisfying
a convergence property of the form Xd

T →d Xd
C and some function

F d (·) enjoying the property that the functional maxC̄∈C F d

C̄, ·

is

continuous on a setXd satisfying Pr

Xd

C ∈ Xd


= 1. By implication,
maxC̄∈C Ld
T


C̄


− Ld
T (0) →d maxC̄∈C F d


C̄, XC


, so it suffices to

show that Λτ
p,C


C̄

is the pointwise (in C̄) weak limit of Ld

T


C̄

−

Ld
T (0).
To do so, note first that

Ld
T


C̄

− Ld

T (0) = LT

C̄

− LT (0)

+
1
2
QDY ,T


C̄
′
QDD,T


C̄
−1

QDY ,T

C̄


−
1
2
QDY ,T (0)′ QDD,T (0)−1 QDY ,T (0) ,

where LT

C̄


− LT (0) →d Λp,C

C̄

because vt = yt . Next, let

d0 = 0 and y0 = 0 and define ΨT = Ip ⊗ diag(1, 1/
√
T ) and

d̃Tt = diag(1, 1/
√
T )dt . For any C̄ ∈ C, we have

ΨTQDD,T

C̄

ΨT

= Ip ⊗


T

t=1

1d̃Tt1d̃′

Tt


+

C̄ ′C̄


⊗


1
T 2

T
t=1

d̃T ,t−1d̃′

T ,t−1



− C̄ ′
⊗


1
T

T
t=1

d̃T ,t−11d̃′

Tt


− C̄ ⊗


1
T

T
t=1

1d̃Tt d̃′

T ,t−1



→ Ip ⊗


1 0
0 1


− C̄s ⊗


0 0
0 1


+

C̄ ′C̄


⊗


0 0
0 1/3


= Ip ⊗


1 0
0 0


+


Ip − C̄s +

1
3
C̄ ′C̄


⊗


0 0
0 1



=


Ip ⊗


1 0
0 0


+


Ip − C̄s +

1
3
C̄ ′C̄

−1

⊗


0 0
0 1

−1

,

where the last equality can be verified directly by using the so-
called mixed-product property of the Kronecker product.

Also, using Phillips (1988) and the identity
 1
0 WC (u) du =

WC (1) −
 1
0 udWC (u),

ΨTQDY ,T

C̄


= vec


T

t=1

1d̃Tt1v′

t


+ vec


1
T 2

T
t=1

d̃T ,t−1v
′

t−1


C̄ ′C̄



− vec


1
T

T
t=1

1d̃Ttv′

t−1


C̄ ′


− vec


1
T

T
t=1

d̃T ,t−11v′

t


C̄



→d vec


Y′

WC (1)′


+ vec

 0 1

0
uWC (u)′ du

 C̄ ′C̄


− vec

 0

WC (1)′ −
 1

0
udWC (u)′

 C̄ ′


− vec

 0 1

0
udWC (u)′

 C̄


= vec


Y′

λC

C̄
′ ,

where Y is a random variable independent of WC (·). The desired
conclusion follows from the preceding displays and simple algebra.

The definition DC̄ (u) = Ip − C̄u immediately implies 1

0
DC̄ (u)

′DC̄ (u)du = Ip − C̄s +
1
3
C̄ ′C̄ .

Next, using C̄s = C̄ − C̄a and the identity
 1
0 WC (u) du = WC (1) − 1

0 udWC (u), straightforward algebra shows that λC (C̄) may be
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expressed as

λp,C (C̄) =

 1

0
DC̄ (u)

′

dWC (u) − C̄WC (u)du


.

This leads to

Λτ
p,C (C̄) − Λp,C (C̄)

=
1
2
λp,C (C̄)′

 1

0
DC̄ (u)

′DC̄ (u)du
−1

λp,C (C̄)

−
1
2
WC (1)′WC (1)

=
1
2
bC (C̄)′

 1

0
DC̄ (u)

′DC̄ (u)du

bC (C̄)

−
1
2
WC (1)′WC (1),

where

bC (C̄) =

 1

0
DC̄ (u)

′DC̄ (u)du
−1

×

 1

0
DC̄ (u)

′

dWC (u) − C̄WC (u)du


is the GLS estimated slope parameter in W̃C,C̄ (r) = WC (u) −

ubC (C̄), i.e. the estimated coefficient from continuous-time GLS
regression ofWC (u) on u.

From this expression it can be shown (after substantial rear-
rangement of terms) that Λτ

p,C (C̄) = ΛGLS
p,C


C̄; C̄


, implying in par-

ticular that LRd
T (C) →d maxC̄∈C ΛGLS

p,C


C̄; C̄


as claimed in themain

text.

Proof of Theorem 3

Because (α, α⊥) is orthogonal and replacing yt by y∗
t =

y∗′

1,t , y
∗′

2,t

′
=

y′
tα, y′

tα⊥

′ if necessary, we can assume without
loss of generality that (α, α⊥) = Ip. In that special case, the implied
model for y∗

2t = α′

⊥
yt is of the form (5) with Π = T−1C ∈ Rq×q (as

in (3)). Moreover, it follows from simple algebra that, for any C̄ ,

max
µ

LdT

C̄, µ; r0, α, α⊥, β


− max

µ
LdT (0, µ; r0, α, α⊥, β)

= Ld
T


C̄; r0


− Ld

T (0; r0) ,

where Ld
T (C; r0) is the statistic Ld

T (C) of Section 2.2 computed
using y∗

2t rather yt ; that is,

Ld
T (C; r0) = −

1
2
QYY ,T (C; r0) +

1
2
QDY ,T (C; r0)′

×QDD,T (C; r0)−1 QDY ,T (C; r0) , (11)

where, setting y∗

2,0 = 0 and d0 = 0 and defining YTt (C; r0) =

1y∗

2t − T−1Cy∗

2,t−1 and DTt (C) = Ip−r0 ⊗ 1d′
t − T−1C ⊗ d′

t−1,

QYY ,T (C; r0) =

T
t=1

YTt (C; r0)′ YTt (C; r0) ,

QDY ,T (C; r0) =

T
t=1

DTt (C; r0)′ YTt (C; r0) ,

QDD,T (C; r0) =

T
t=1

DTt (C; r0)′ DTt (C; r0) .

Theorem 3 therefore follows from Theorem 2 in the special
case where α̂⊥,T = α⊥. Since the statistics of interest are smooth
functionals of the process T−1/2α̂′

⊥,Ty⌊T ·⌋, the more general result,
with α̂⊥,T a consistent estimator of α⊥, follows from the result for
α̂⊥,T = α⊥ combined with the fact that

sup
0≤u≤1

T−1/2
α̂′

⊥,Ty⌊Tu⌋ − α′

⊥
y⌊Tu⌋


≤
α̂⊥,T − α⊥

 sup
0≤u≤1

T−1/2y⌊Tu⌋
→p 0,

which holds because α̂⊥,T →p α⊥ and because T−1/2y⌊T ·⌋ is tight.

Proof of Theorem 4

First consider the special case where θ̂T = θ . Because (Σ−1/2α,
Σ1/2α⊥) is orthogonal, the matrix (Σ−1α, α⊥) is non-singular.
Transforming vt = yt − µ′dt by this matrix leads to transformed
errors ε∗

t = (ε∗′

1t , ε
∗′

2t)
′
=

ε′
tΣ

−1α, ε′
tα⊥

′ with covariance matrix
Ip and the transformed system

α′Σ−1Γ (L)1vt = α′Σ−1αβ ′vt−1 + ε∗

1t ,

α′

⊥
Γ (L)1vt = T−1Cα′

⊥
Γ (1)vt−1 + ε∗

2t .

Because the first equation does not involve the parameter C , and
the two disturbances ε∗

1t and ε∗

2t are independent, the profile
likelihood function is defined only from the second equation. In
other words, analogously to the proof of Theorem 3, we find that
for any C̄ ,

max
µ

LdT

C̄, µ; r0, θ


− max

µ
LdT (0, µ; r0, θ)

= Ld
T


C̄; r0


− Ld

T (0; r0) ,

where Ld
T (C; r0) is defined as in (11), but with YTt(C; r0) now

defined as

YTt(C; r0) = α′

⊥
Γ (L)1yt − T−1Cα′

⊥
Γ (1)yt−1.

Define wt = α′

⊥
Γ (1)vt and w∗

t = α′

⊥
Γ (L)vt . The solution to

Exercise 14.1 in Hansen and Johansen (1998) can be used to show
that
T−1/2w⌊T ·⌋, T−1/2w∗

⌊T ·⌋


→d (WC (·),WC (·)) ,

where WC (u) =
 u
0 exp(C(u − s))dW (s) and W (·) is a

q-dimensional Wiener process, obtained as the weak limit of
T−1/2⌊T ·⌋

t=1 α′

⊥
εt . (The derivation further replaces α1β

′

1 in the no-
tation of Hansen and Johansen (1998) by Σα⊥Cα′

⊥
Γ (1), imply-

ing that their ‘‘standardized’’ mean-reversion parameter becomes
ab′

= (α′

⊥
Σα⊥)−1/2α′

⊥
α1β

′

1β⊥(α′

⊥
Γ (1)β⊥)−1(α′

⊥
Σα⊥)1/2 = C .)

With ΨT and d̃Tt defined as in the proof of Theorem 2 we then
find, analogously to the proof of that theorem (and again assuming
µ = 0 without loss of generality), that

ΨTQDY ,T

C̄; r0


= vec


T

t=1

1d̃Tt1w∗′

t


+ vec


1
T 2

T
t=1

d̃T ,t−1w
′

t−1


C̄ ′C̄



− vec


1
T

T
t=1

1d̃Ttw′

t−1


C̄ ′



− vec


1
T

T
t=1

d̃T ,t−11w∗′

t


C̄



→d vec


Y′

λC

C̄
′ ,

whereas ΨTQDD,T (C̄, r0)ΨT has the same limit as before. This leads
to the required result for the case where θ̂T = θ .



110 H.P. Boswijk et al. / Journal of Econometrics 184 (2015) 97–110
If θ̂T is a consistent estimator, then wt and w∗
t in the equation

above need to be replaced by ŵt = α̂′

⊥,T Γ̂T (1)yt and ŵ∗
t =

α̂′

⊥,T Γ̂T (L)yt , respectively. As in the proof of Theorem3, consistency
of θ̂T implies

sup
0≤u≤1

T−1/2
ŵ⌊Tu⌋ − w⌊Tu⌋


≤

α̂′

⊥,T Γ̂T (1) − α′

⊥
Γ (1)

 sup
0≤u≤1

T−1/2y⌊Tu⌋
→p 0.

Furthermore, because

wt = α′

⊥
Γ (L)yt = α′

⊥
Γ (1)yt + α⊥Γ ∗(L)1yt

= w∗

t + α⊥Γ ∗(L)1yt ,

where Γ ∗(z) = [Γ (z) − Γ (1)]/(1 − z), it follows that

sup
0≤u≤1

T−1/2
w∗

⌊Tu⌋ − w⌊Tu⌋
→p 0,

and analogously we have sup0≤u≤1 T−1/2
ŵ∗

⌊Tu⌋ − ŵ⌊Tu⌋
→p 0.
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