
Supplementary materials for this article are available online. Please click the JASA link at http://pubs.amstat.org.

Robust Data-Driven Inference for
Density-Weighted Average Derivatives

Matias D. CATTANEO, Richard K. CRUMP, and Michael JANSSON

This paper presents a novel data-driven bandwidth selector compatible with the small bandwidth asymptotics developed in Cattaneo, Crump,
and Jansson (2009) for density-weighted average derivatives. The new bandwidth selector is of the plug-in variety, and is obtained based
on a mean squared error expansion of the estimator of interest. An extensive Monte Carlo experiment shows a remarkable improvement in
performance when the bandwidth-dependent robust inference procedures proposed by Cattaneo, Crump, and Jansson (2009) are coupled
with this new data-driven bandwidth selector. The resulting robust data-driven confidence intervals compare favorably to the alternative
procedures available in the literature. The online supplemental material to this paper contains further results from the simulation study.
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1. INTRODUCTION

Semiparametric models, which include both a finite dimen-
sional parameter of interest and an infinite dimensional nui-
sance parameter, play a central role in modern statistical and
econometric theory, and are potentially of great interest in em-
pirical work. However, the applicability of semiparametric es-
timators is seriously hampered by the sensitivity of their per-
formance to seemingly ad hoc choices of “smoothing” and
“tuning” parameters involved in the estimation procedure. Al-
though classical large sample theory for semiparametric esti-
mators is now well developed, these theoretical results are typi-
cally invariant to the particular choice of parameters associated
with the nonparametric estimator employed, and usually require
strong untestable assumptions (e.g., smoothness of the infinite
dimensional nuisance parameter). As a consequence, inference
procedures based on these estimators are in general not robust
to changes in the choice of tuning and smoothing parameters
underlying the nonparametric estimator, and to departures from
key unobservable model assumptions. These facts suggest that
classical asymptotic results for semiparametric estimators may
not always accurately capture their behavior in finite samples,
posing considerable restrictions on the overall applicability they
may have for empirical work.

This paper proposes two robust data-driven inference proce-
dures for the semiparametric density-weighted average deriva-
tives estimator of Powell, Stock, and Stoker (1989). The aver-
aged derivatives is a simple yet important semiparametric esti-
mand of interest, which naturally arises in many statistical and
econometric models such as (nonadditive) single-index models
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(see, e.g., Powell 1994 and Matzkin 2007 for review). This es-
timand has been considered in a variety of empirical problems,
including nonparametric demand estimation (Härdle, Hilden-
brand, and Jerison 1991), policy analysis of tax and subsidy
reform (Deaton and Ng 1998), and nonlinear pricing in la-
bor markets (Coppejans and Sieg 2005). This paper focuses on
the density-weighted average derivatives estimator not only be-
cause of its own importance, but also because it admits a par-
ticular U-statistic representation. As discussed in detail below,
this representation is heavily exploited in the theoretical devel-
opments presented here, which implies that the results in this
paper may be extended to cover other estimators having a sim-
ilar representation.

The main idea is to develop a novel data-driven bandwidth
selector compatible with the small bandwidth asymptotic the-
ory presented in Cattaneo, Crump, and Jansson (2009). This al-
ternative (first-order) large sample theory encompasses the clas-
sical large sample theory available in the literature, and also en-
joys several robustness properties. In particular, (i) it provides
valid inference procedures for (small) bandwidth sequences that
would render the classical results invalid, (ii) it permits the use
of a second-order kernel regardless of the dimension of the re-
gressors and therefore removes strong smoothness assumptions,
and (iii) it provides a limiting distribution that is in general not
invariant to the particular choices of smoothing and tuning para-
meters, without necessarily forcing a slower than root-n rate of
convergence (where n is the sample size). The key theoretical
insight behind these results is to accommodate bandwidth se-
quences that break down the asymptotic linearity of the estima-
tor of interest, leading to a more general first-order asymptotic
theory that is no longer invariant to the particular choices of pa-
rameters underlying the preliminary nonparametric estimator.
Consequently, it is expected that an inference procedure based
on this alternative asymptotic theory would (at least partially)
“adapt” to the particular choices of these parameters.

The preliminary simulation results in Cattaneo, Crump, and
Jansson (2009) show that this alternative asymptotic theory
opens the possibility for the construction of a robust inference
procedure, providing a range of (small) bandwidths for which
the appropriate test statistic enjoys approximately correct size.
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However, the bandwidth selectors available in the literature turn
out to be incompatible with these new results in the sense that
they would not deliver a bandwidth choice within the robust
range. The new data-driven bandwidth selector presented here
achieves this goal, thereby providing a robust automatic (i.e.,
fully data-driven) inference procedure for the estimand of inter-
est. These results are corroborated by an extensive Monte Carlo
experiment, which shows that the asymptotic theory developed
in Cattaneo, Crump, and Jansson (2009) coupled with the data-
driven bandwidth selector proposed here leads to remarkable
improvements in inference when compared to the alternative
procedures available in the literature. In particular, the resulting
confidence intervals exhibit close-to-correct empirical coverage
across all designs considered. Among other advantages, these
data-driven statistical procedures allow for the use of a second-
order kernel, which is believed to deliver more stable results
in applications (see, e.g., Horowitz and Härdle 1996), and ap-
pear to be considerably more robust to the additional variability
introduced by the estimation of the bandwidth selectors. Fur-
thermore, these results are important because the standard non-
parametric bootstrap is not a valid alternative in general to the
large sample theory employed in this paper (Cattaneo, Crump,
and Jansson 2010).

Another interesting feature of the analysis presented here is
related to the well-known trade-off between efficiency and ro-
bustness in statistical inference. In particular, the novel proce-
dures presented here are considerably more robust while in gen-
eral (semiparametric) inefficient. This feature is captured by the
behavior of the new robust confidence intervals in the simula-
tion study, where they are seen to have correct size and less
bias but larger length on average. For example, when the clas-
sical procedure is valid (i.e., when using a higher-order kernel),
the efficiency loss is found to be around 10% on average, while
the bias of the estimator is reduced by about 60% on average.

This paper contributes to the important literature of semi-
parametric inference for weighted average derivatives. This
population parameter was originally introduced by Stoker
(1986), and has been intensely studied since then. Härdle and
Stoker (1989) and Härdle et al. (1992) study the asymptotic
properties of general weighted average derivatives estimators,
while Newey and Stoker (1993) discuss their semiparametric
efficiency properties under appropriate restrictions. The asymp-
totic results, however, are considerably complicated by the fact
that their representation requires handling stochastic denomina-
tors and appears to be very sensitive to the choice of trimming
parameters. The density-weighted average derivatives estimator
circumvents this problem, while retaining the desirable proper-
ties of the general weighted average derivative, and leads to
a simple and useful semiparametric estimator. Powell, Stock,
and Stoker (1989) study the first-order large sample proper-
ties of this estimator and provide sufficient (but not necessary)
conditions for root-n consistency and asymptotic normality.
Nishiyama and Robinson (2000, 2005) study the second-order
large sample properties of density-weighted average derivatives
by deriving valid Edgeworth expansions for the estimator con-
sidered in this paper (see also Robinson 1995), while Härdle
and Tsybakov (1993) and Powell and Stoker (1996) provide
second-order mean squared error expansions for this estima-
tor (see also Newey, Hsieh, and Robins 2004). Both types of

higher-order expansions provide simple plug-in bandwidth se-
lectors targeting different properties of this estimator, and are
compatible with the classical large sample theory available in
the literature. Ichimura and Todd (2007) provide a recent survey
with particular emphasis on implementation.

The rest of the paper is organized as follows. Section 2 de-
scribes the model and reviews the main results available in
the literature regarding first-order large sample inference for
density-weighted average derivatives. Section 3 presents the
higher-order mean squared error expansion and develops the
new (infeasible) theoretical bandwidth selector, while Section 4
describes how to construct a feasible (i.e., data-driven) band-
width selector and establishes its consistency. Section 5 sum-
marizes the results of an extensive Monte Carlo experiment.
Section 6 discusses how the results may be generalized and con-
cludes.

2. MODEL AND PREVIOUS RESULTS

Let zi = (yi,x′
i)

′, i = 1, . . . ,n, be a random sample from a
vector z = (y,x′)′, where y ∈ R is a dependent variable and x =
(x1, . . . , xd)

′ ∈ R
d is a continuous explanatory variable with a

density f (·). The population parameter of interest is the density-
weighted average derivative given by

θ = E

[
f (x)

∂

∂x
g(x)

]
,

where g(x) = E[y|x] denotes the population regression func-
tion. For example, this estimand is a popular choice for the esti-
mation of the coefficients (up to scale) in a single-index model
with unknown link function. To see this, note that θ ∝ β when
g(x) = τ(x′β) for an unknown (link) function τ(·), a semipara-
metric problem that arises in a variety of contexts, including
discrete choice and censored models.

The following assumption collects typical regularity condi-
tions imposed on this model.

Assumption 1. (a) E[y4] < ∞, E[σ 2(x)f (x)] > 0 and
V[∂e(x)/∂x − y ∂f (x)/∂x] is positive definite, where σ 2(x) =
V[y|x] and e(x) = f (x)g(x).

(b) f is (Q+1) times differentiable, and f and its first (Q+1)

derivatives are bounded, for some Q ≥ 2.
(c) g is twice differentiable, and e and its first two derivatives

are bounded.
(d) v is differentiable, and vf and its first derivative are

bounded, where v(x) = E[y2|x].
(e) lim‖x‖→∞[f (x)+|e(x)|] = 0, where ‖·‖ is the Euclidean

norm.

Assumption 1 and integration by parts lead to θ = −2 ×
E[y ∂f (x)/∂x], which in turn motivates the analogue estimator
of Powell, Stock, and Stoker (1989) given by

θ̂n = −2
1

n

n∑
i=1

yi
∂

∂x
f̂n,i(xi),

f̂n,i(x) = 1

n − 1

n∑
j=1,j	=i

1

hd
n

K

(
xj − x

hn

)
,

where f̂n,i(·) is a “leave-one-out” kernel density estimator for
some kernel function K : Rd → R and some positive (band-
width) sequence hn. Typical regularity conditions imposed on



1072 Journal of the American Statistical Association, September 2010

the kernel-based nonparametric estimator are given in the fol-
lowing assumption.

Assumption 2. (a) K is even and differentiable, and K and its
first derivative are bounded.

(b)
∫

Rd K̇(u)K̇(u)′ du is positive definite, where K̇(u) =
∂K(u)/∂u.

(c) For some P ≥ 2,
∫

Rd [|K(u)|(1 + ‖u‖P) + ‖K̇(u)‖(1 +
‖u‖2)]du < ∞, and for (l1, . . . , ld) ∈ Z

d+,∫
Rd

ul1
1 · · ·uld

d K(u)du =
{

1, if l1 + · · · + ld = 0

0, if 0 < l1 + · · · + ld < P.

Powell, Stock, and Stoker (1989) showed that, under ap-
propriate restrictions on the bandwidth sequence and kernel
function, the estimator θ̂n is asymptotically linear with influ-
ence function given by L(z) = 2[∂e(x)/∂x − y ∂f (x)/∂x − θ].
Thus, the asymptotic variance of this estimator is given by
� = E[L(z)L(z)′]. Moreover, although not covered by the re-
sults in Newey and Stoker (1993), it is possible to show that
L(z) is the efficient influence function for θ , and hence � is the
semiparametric efficiency bound for this estimand. The follow-
ing result describes the exact conditions and summarizes the
main conclusion. (Limits are taken as n → ∞ unless otherwise
noted.)

Result 1 (Powell, Stock, and Stoker 1989). If Assumptions 1
and 2 hold, and if nh2 min(P,Q)

n → 0 and nhd+2
n → ∞, then

√
n(θ̂n − θ) = 1√

n

n∑
i=1

L(zi) + op(1) →d N (0,�).

Result 1 follows from noting that the estimator θ̂n admits a
n-varying U-statistic representation given by

θ̂n =
(

n
2

)−1 n−1∑
i=1

n∑
j=i+1

U(zi, zj;hn),

U(zi, zj;h) = −h−(d+1)K̇
(

xi − xj

h

)
(yi − yj),

which leads to the Hoeffding decomposition θ̂n = θn + L̄n +
W̄n, where

θn = E[U(zi, zj;hn)], L̄n = 1

n

n∑
i=1

L(zi;hn),

W̄n =
(

n
2

)−1 n−1∑
i=1

n∑
j=i+1

W(zi, zj;hn),

with L(zi;h) = 2[E[U(zi, zj;h)|zi]−E[U(zi, zj;h)]] and W(zi,

zj;h) = U(zi, zj;h) − (L(zi;h) + L(zj;h))/2 − E[U(zi, zj;h)].
This decomposition shows that the estimator admits a bilin-
ear form representation in general, which clearly justifies the
conditions imposed on the bandwidth sequence and the kernel
function: (i) condition nh2 min(P,Q)

n → 0 ensures that the bias
of the estimator is asymptotically negligible because θn − θ =
O(hmin(P,Q)

n ), and (ii) condition nhd+2
n → ∞ ensures that the

“quadratic term” of the Hoeffding decomposition is also as-
ymptotically negligible because W̄n = Op(n−1h−(d+2)/2

n ). Un-
der the same conditions, Powell, Stock, and Stoker (1989) also

develop a simple consistent estimator for �, which is given by
the analogue estimator

�̂n = 1

n

n∑
i=1

L̂n,iL̂′
n,i,

L̂n,i = 2

[
1

n − 1

n∑
j=1,j	=i

U(zi, zj;hn) − θ̂n

]
.

Consequently, under the conditions imposed in Result 1, it is
straightforward to form a studentized version of θ̂n, leading to

an asymptotically pivotal test statistic given by
√

n�̂
−1/2
n (θ̂n −

θ) →d N (0, Id), with �̂n →p �. This test statistic may be used
in the usual way to construct a confidence interval for θ (or,
equivalently, to carry out the corresponding dual hypothesis
test).

As discussed in Newey (1994), asymptotic linearity of a
semiparametric estimator has several distinct features that may
be considered attractive from a theoretical point of view. In par-
ticular, asymptotic linearity is a necessary condition for semi-
parametric efficiency and leads to a limiting distribution of the
statistic of interest that is invariant to the choice of the nonpara-
metric estimator used in the construction of the semiparametric
procedure. In other words, regardless of the particular choice
of preliminary nonparametric estimator, the limiting distribu-
tion will not depend on the nonparametric estimator whenever
the semiparametric estimator admits an asymptotic linear rep-
resentation.

However, achieving an asymptotic linear representation of
a semiparametric estimator imposes several strong model as-
sumptions and leads to a large sample theory that may not ac-
curately represent the finite sample behavior of the estimator.
In the case of θ̂n, asymptotic linearity would require P > 2 un-
less d = 1, which in turn requires strong smoothness conditions
(Q ≥ P). Consequently, classical asymptotic theory will require
the use of a higher-order kernel whenever more than one covari-
ate is included. In addition, classical asymptotic theory (when-
ever valid) leads to a limiting experiment which is invariant to
the particular choices of smoothing (K) and tuning (hn) parame-
ters involved in the construction of the estimator, and therefore
it is unlikely to be able to “adapt” to changes in these para-
meters. In other words, inference based on classical asymptotic
theory is silent with respect to the impact that these parameters
may have on the finite sample behavior of θ̂n.

In an attempt to better characterize the finite sample behavior
of θ̂n, Cattaneo, Crump, and Jansson (2009) show that it is pos-
sible to increase the robustness of this estimator by considering
a different asymptotic experiment. In particular, instead of forc-
ing asymptotic linearity of the estimator, the authors develop
an alternative first-order asymptotic theory that accommodates
weaker assumptions than those imposed in the classical first-
order asymptotic theory discussed above. Intuitively, the idea is
to characterize the (joint) asymptotic behavior of both the linear
(L̄n) and quadratic (W̄n) terms. The following result collects the
main findings.

Result 2 (Cattaneo, Crump, and Jansson 2009). If Assump-
tions 1 and 2 hold, and if min(nhd+2

n ,1)nh2 min(P,Q)
n → 0 and
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n2hd
n → ∞, then

(V[θ̂n])−1/2(θ̂n − θ) →d N (0, Id),

where

V[θ̂n] = 1

n
[� + o(1)] +

(
n
2

)−1

h−(d+2)
n [� + o(1)],

with � = 2E[σ 2(x)f (x)] ∫
Rd K̇(u)K̇(u)′ du. In addition,

1

n
�̂n = 1

n
[� + op(1)] + 2

(
n
2

)−1

h−(d+2)
n [� + op(1)].

Result 2 shows that the conditions on the bandwidth se-
quence may be considerably weakened without invalidating the
limiting Gaussian distribution. In particular, whenever hn is
chosen so that nhd+2

n is bounded, the limiting distribution will
cease to be invariant with respect to the underlying preliminary
nonparametric estimator because θ̂n is no longer asymptotically
linear. In particular, note that nhd+2

n → κ > 0 retains the root-
n consistency of θ̂n. In addition, because hn is allowed to be
“smaller” than usual, the bias of the estimator is controlled in
a different way, removing the need for higher-order kernels. In
particular, Result 2 remains valid even in cases when the esti-
mator is not consistent. Finally, this result also highlights the
well-known trade-off between robustness and efficiency in the
context of semiparametric estimation. In particular, the estima-
tor θ̂n is semiparametric efficient if and only if nhd+2

n → ∞,
while it is possible to construct more robust inference proce-
dures under considerably weaker conditions.

It follows from Result 2 that the feasible classical testing

procedure based on
√

n�̂
−1/2
n (θ̂n − θ) will be invalid unless

nhd+2
n → ∞, which corresponds to the classical large sample

theory case (Result 1). To solve this problem, Cattaneo, Crump,
and Jansson (2009) propose two alternative corrections to the
standard error matrix �̂n, leading to two options for “robust”
standard errors. To construct the first “robust” standard error
formula, the authors introduce a simple consistent estimator for
�, under the same conditions of Result 2, which is given by the
analogue estimator

�̂n = hd+2
n

(
n
2

)−1 n−1∑
i=1

n∑
j=i+1

Ŵn,ijŴ′
n,ij,

Ŵn,ij = U(zi, zj;hn) − 1
2 (L̂n,i + L̂n,j) − θ̂n.

Thus, using this estimator,

V̂1,n = 1

n
�̂n −

(
n
2

)−1

h−(d+2)
n �̂n

yields a consistent standard error estimate under small band-
width asymptotics (i.e., under the weaker conditions imposed
in Result 2, which include in particular those imposed in Re-
sult 1). To describe the second “robust” standard error formula,
let �̂n(Hn) be the estimator �̂n constructed using a bandwidth
sequence Hn [e.g., �̂n = �̂n(hn) by definition]. Then, under the
same conditions of Result 2,

V̂2,n = 1

n
�̂n

(
21/(d+2)hn

)

also yields a consistent standard error estimate under small
bandwidth asymptotics.

Consequently, under the conditions imposed in Result 2, it
is straightforward to form a studentized version of θ̂n, lead-
ing to two simple, robust and pivotal test statistics of the
form V̂−1/2

k,n (θ̂n − θ) →d N (0, Id), with V̂−1
k,nV[θ̂n] →p Id , k =

1,2. These test statistics may also be used to construct (as-
ymptotically equivalent) confidence intervals for θ under the
(weaker) conditions imposed in Result 2, and constitute alter-
native procedures to the classical confidence interval introduced
above.

These results, however, have the obvious drawback of being
dependent on the choice of hn, which is unrestricted beyond
the rate restrictions imposed in Result 2. A preliminary Monte
Carlo experiment reported in Cattaneo, Crump, and Jansson
(2009) shows that the new, robust standard error formulas have
the potential to deliver good finite sample behavior if the ini-
tial bandwidth is chosen to be small enough. Unfortunately, the
plug-in rules available in the literature for hn fail to deliver a
choice of bandwidth that would enjoy the robustness property
introduced by the new asymptotic theory described in Result 2.
This is not too surprising, since these bandwidth selectors are
typically constructed to balance (higher-order) bias and vari-
ance in a way that is “appropriate” for the classical large sample
theory.

3. MSE EXPANSION AND “OPTIMAL”
BANDWIDTH SELECTORS

This paper considers the mean squared error expansion of
θ̂n as the starting point for the construction of the plug-in
“optimal” bandwidth selector. To derive this expansion it is
necessary to strengthen the assumptions concerning the data-
generating process. The following assumption describes these
additional mild sufficient conditions.

Assumption 3. (a) E[‖∂g(x)/∂x‖2f (x)] < ∞.
(b) g is (Q + 1) times differentiable, and e and its first (Q +

1) derivatives are bounded.
(c) v is three times differentiable, and vf and its first three

derivatives are bounded.
(d) lim‖x‖→∞[σ(x)f (x) + ‖∂σ (x)/∂x‖f (x)] = 0.

Assumption 3(a) is used to ensure that the higher-order mean
squared expansion is valid up to the order needed in this pa-
per. Assumptions 3(b) and 3(c) are in agreement with those im-
posed in Powell and Stoker (1996) and Nishiyama and Robin-
son (2000, 2005), while Assumption 3(d) is slightly stronger
than the analogue restriction imposed in those papers.

Theorem 1. If Assumptions 1, 2, and 3 hold, then for s =
min(P,Q) and ḟ(x) = ∂f (x)/∂x,

E[(θ̂n − θ)(θ̂n − θ)′]

= 1

n
� +

(
n
2

)−1

h−(d+2)
n � +

(
n
2

)−1

h−d
n V

+ h2s
n B B′ + O(n−1hs

n) + o(n−2h−d + h2s
n ),
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where

B = −2(−1)s

s!
∑

0≤l1,...,ld≤s
l1+···+ld=s

[∫
Rd

ul1
1 · · ·uld

d K(u)du
]

× E

[(
∂(l1+···+ld)

∂xl1
1 · · · ∂xld

d

ḟ(x)

)
g(x)

]

and

V =
∫

Rd
K̇(u)K̇(u)′

(
u′

E

[
σ 2(x)

∂2

∂x ∂x′ f (x)

+
(

∂

∂x
g(x)

)(
∂

∂x
g(x)

)′
f (x)

]
u
)

du.

The result in Theorem 1 is similar to the one obtained by
Härdle and Tsybakov (1993) and Powell and Stoker (1996),
the key difference being that the additional term of order
O(n−2h−d

n ) is explicitly retained here. (Recall that Result 2 re-
quires n2hd

n → ∞.)
To motivate the new “optimal” bandwidth selector, recall that

the “robust” variance matrix in Result 2 is given by the first two
terms of the mean squared error expansion presented in The-
orem 1, which suggests considering the next two terms of the
expansion to construct an “optimal” bandwidth selector. (Note
that, as it is common in the literature, this approach implicitly
assumes that both B and V are nonzero.) Intuitively, balanc-
ing these terms corresponds to the case of nhd+2

n → κ < ∞,
and therefore pushes the selected bandwidth to the “small band-
width region.” This approach may be considered “optimal” in
a mean square error sense because it makes the leading terms
ignored in the general large sample approximation presented in
Result 2 as small as possible.

To describe the new bandwidth selector, let λ ∈ R
d and con-

sider (for simplicity) a bandwidth that minimizes the next two
terms of E[(λ′(θ̂n − θ))2]. This “optimal” bandwidth selector is
given by

h∗
CCJ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
d(λ′V λ)

s(λ′B)2n2

)1/(2s+d)

, if λ′V λ > 0

(
2|λ′V λ|
(λ′B)2n2

)1/(2s+d)

, if λ′V λ < 0.

This new theoretical bandwidth selector is consistent with
the small bandwidth asymptotics described in Result 2 because
n2(h∗

CCJ)
d → ∞. In addition, observe that n−1hs

n = o(n−2h−d
n )

whenever nhs+d
n → 0, which is satisfied when hn = h∗

CCJ.
This new bandwidth selector may be compared to the two

competing plug-in bandwidth selectors available in the litera-
ture, proposed by Powell and Stoker (1996) and Nishiyama and
Robinson (2005), and given by

h∗
PS =

(
(d + 2)(λ′�λ)

s(λ′B)2n2

)1/(2s+d+2)

and

h∗
NR =

(
2(λ′�λ)

(λ′B)2n2

)1/(2s+d+2)

,

respectively. Inspection of these bandwidth selectors shows that
h∗

CCJ ≺ h∗
PS � h∗

NR, leading to a bandwidth selection of smaller

order. [Nishiyama and Robinson (2000) derive a third alterna-
tive bandwidth selector which is not explicitly discussed here
because this procedure is targeted to one-sided hypothesis test-
ing. Nonetheless, inspection of this alternative bandwidth selec-
tion procedure, denoted h∗

NR00, shows that h∗
CCJ ≺ h∗

NR00 when-
ever d + 8 > 2s. Therefore, h∗

CCJ is of smaller order unless
strong smoothness assumptions are imposed in the model and a
corresponding higher-order kernel is employed.]

4. DATA–DRIVEN BANDWIDTH SELECTORS

The previous section described a new (infeasible) plug-in
bandwidth selector that is compatible with the small bandwidth
asymptotic theory introduced in Result 2. In order to imple-
ment this selector in practice, as well as its competitors h∗

PS and
h∗

NR, it is necessary to construct consistent estimates for each
of the leading constants. These estimates would lead to a data-
driven (i.e., automatic) bandwidth selector, denoted ĥCCJ. This
section introduces easy to implement, consistent nonparamet-
ric estimators for B, �, and V . (Alternatively, a straightforward
bandwidth selector may be constructed using a “rule-of-thumb”
estimator based on some ad hoc distributional assumptions.)

To describe the data-driven plug-in bandwidth selectors, let
bn be a preliminary positive bandwidth sequence, which may
be different for each estimator. A simple analog estimator of
� was introduced in Section 2. In particular, let �̂n(bn) be
the estimator �̂n constructed using a bandwidth sequence bn

[e.g., �̂n = �̂n(hn) by definition]. Note that this estimator is a
n-varying U-statistic as well. Theorem 1 and the calculations
provided in Cattaneo, Crump, and Jansson (2009) show that, if
Assumptions 1, 2, and 3 hold, then

�̂n(bn) = � + b2
n V + Op

(
b3

n + n−1/2 + n−1b−d/2
n

)
,

which gives the consistency of this estimator if bn → 0 and
n2bd

n → ∞.
Next, consider the construction of consistent estimators of B

and V , the two parameters entering the new bandwidth selec-
tor h∗

CCJ. To this end, let k be a kernel function, which may be
different for each estimator, and may be different from K. The
following assumption collects a set of sufficient conditions to
establish consistency of the plug-in estimators proposed in this
paper for B and V .

Assumption 4. (a) f , v, and e are (s + 1 + S) times differ-
entiable, and f , vf , e, and their first (s + 1 + S) derivatives are
bounded, for some S ≥ 1.

(b) k is even and M times differentiable, and k and its first M
derivatives are bounded, for some M ≥ 0.

(c) For some R ≥ 2,
∫
Rd |k(u)|(1 + ‖u‖R)du < ∞, and for

(l1, . . . , ld) ∈ Z
d+,∫

Rd
ul1

1 · · ·uld
d k(u)du =

{
1, if l1 + · · · + ld = 0

0, if 0 < l1 + · · · + ld < R.

For the bias B, a plug-in estimator is given by

B̂n = −2(−1)s

s!
∑

0≤l1,...,ld≤s
l1+···+ld=s

[∫
Rd

ul1
1 · · ·uld

d K(u)du
]
ϑ̂ l1,...,ld,n,
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where

ϑ̂ l1,...,ld,n = 1

n(n − 1)

n∑
i=1

n∑
j=1,j	=i

b−(d+1)
n

×
(

∂(l1+···+ld)

∂xl1
1 · · · ∂xld

d

k̇(x)

∣∣∣∣
x=(xi−xj)/bn

)
yi,

with k̇(x) = ∂k(x)/∂x. The estimator ϑ̂ l1,...,ld,n is the sam-
ple analog estimator of the estimand E[(∂(l1+···+ld) ḟ(x)/∂xl1

1 · · ·
∂xld

d )y], and is also a n-varying U-statistic estimator employing
a leave-one-out kernel-based density estimator.

It is also possible to form an obvious plug-in estimator for the
new higher-order term V . However, this estimator would have
the unappealing property of requiring the estimation of several
nonparametric objects (σ 2(x), ∂2f (x)/∂x ∂x′, ∂g(x)/∂x, f (x)).
Moreover, this direct plug-in approach is likely to be less stable
when implemented because it would require handling stochas-
tic denominators. Fortunately, it is possible to construct an alter-
native, indirect estimator much easier to implement in practice.
This estimator is intuitively justified as follows: the results pre-
sented above show that, under appropriate regularity conditions,
b−2

n (�̂n(bn)−�) = V +Op(bn +n−1/2b−2
n +n−1b−d/2−2

n ), and
therefore an estimator satisfying �̃n = � + op(b2

n) would lead
to

V̂n = b−2
n (�̂n(bn) − �̃n) = V + op(1),

if bn → 0, nb4
n → 0, and n2bd+4

n → 0. Under appropriate con-
ditions, an estimator having these properties is given by

�̃n = δ̂n

∫
Rd

K̇(u)K̇(u)′ du,

δ̂n =
(

n
2

)−1 n−1∑
i=1

n∑
j=i+1

b−d
n k

(
xj − xi

bn

)
(yi − yj)

2.

In this case, δ̂n is a sample analog estimator of the estimand
2E[σ 2(x)f (x)], which is also a n-varying U-statistic estimator
employing a leave-one-out kernel-based density estimator.

Theorem 2. If Assumptions 1, 3, and 4 hold, then:

(i) For M ≥ s + 1,

ϑ̂ l1,...,ld,n = E

[(
∂(l1+···+ld)

∂xl1
1 · · · ∂xld

d

ḟ(x)

)
y

]

+ Op
(
bmin(R,S)

n + n−1/2 + n−1b−(d+2+2s)/2
n

)
.

(ii) For R ≥ 3,

δ̂n = 2E[σ 2(x)f (x)] + Op
(
bmin(R,s+1+S)

n + n−1/2 + n−1b−d/2
n

)
.

This theorem gives simple sufficient conditions to construct a
robust data-driven bandwidth selector consistent with the small
bandwidth asymptotics derived in Cattaneo, Crump, and Jans-
son (2009). In particular, define

ĥCCJ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
d(λ′V̂nλ)

s(λ′B̂n)2n2

)1/(2s+d)

, if λ′V̂nλ > 0

(
2|λ′V̂nλ|
(λ′B̂n)2n2

)1/(2s+d)

, if λ′V̂nλ < 0.

The following corollary establishes the consistency of the
new bandwidth selector ĥCCJ.

Corollary 1. If Assumptions 1, 2, 3, and 4 hold with M ≥
s + 1 and R ≥ 3, and if bn → 0 and n2bmax(8,d+2+2s)

n → ∞,
then for λ ∈ R

d such that λ′B 	= 0 and λ′V λ 	= 0,

ĥCCJ

h∗
CCJ

→p 1.

(The analogous result also holds for ĥPS and ĥNR.)

The results presented so far are silent about the selection
of the initial bandwidth choice bn in applications, beyond the
rate restrictions imposed by Corollary 1. A simple choice for
the preliminary bandwidth bn may be based on some data-
driven bandwidth selector developed for a nonparametric object
present in the corresponding target estimands B, � and V . Typi-
cal examples of such procedures include simple rule-of-thumbs,
plug-in bandwidth selectors, and (smoothed) cross-validation.

As shown in the simulations presented in the next section,
it appears that a simple data-driven bandwidth selector from
the literature of nonparametric estimation works well for the
choice of bn. Nonetheless, it may be desirable to improve upon
this preliminary bandwidth selector in order to obtain better fi-
nite sample behavior. Although beyond the scope of this pa-
per, a conceptually feasible (but computationally demanding)
idea would be to compute second-order mean squared error ex-
pansions for ϑ̂ l1,...,ld,n, �̂n and δ̂n. Since these three estimators
are n-varying U-statistics, the results from Powell and Stoker
(1996) may be applied to obtain a corresponding set of “opti-
mal” bandwidth choices. These procedures will, in turn, also
depend on a preliminary bandwidth when implemented empir-
ically, which again would need to be chosen in some way. This
idea mimics, in the context of semiparametric estimation, the
well-known second-generation direct plug-in bandwidth selec-
tor (of level 2) from the literature of nonparametric density es-
timation. (See, e.g., Wand and Jones 1995 for a detailed discus-
sion.) Although the validity of such bandwidth selectors would
require stronger assumptions, by analogy from the nonparamet-
ric density estimation literature, they would be expected to im-
prove the finite sample properties of the bandwidth selector for
hn and, in turn, the performance of the semiparametric infer-
ence procedure.

5. MONTE CARLO EXPERIMENT

This section summarizes the main findings from an extensive
Monte Carlo experiment conducted to analyze the finite sample
properties of the new robust data-driven procedures and their
relative merits when compared to the other procedures avail-
able. The online supplemental material includes a larger set of
results from this simulation study, which shows that the findings
reported here are consistent across all designs considered.

Following the results reported in Cattaneo, Crump, and Jans-
son (2009), the Monte Carlo experiment considers six different
models of the “single index” form yi = τ(y∗

i ), where y∗
i = x′

iβ +
εi, τ(·) is a nondecreasing (link) function and εi ∼ N (0,1) is
independent of the vector of regressors xi ∈ R

d . Three different
link functions are considered: τ(y∗) = y∗, τ(y∗) = 1(y∗ > 0),
and τ(y∗) = y∗1(y∗ > 0), which correspond to a linear regres-
sion, probit, and Tobit model, respectively. [1(·) represents the
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Table 1. Monte Carlo models

yi = y∗
i yi = 1(y∗

i > 0) yi = y∗
i 1(y∗

i > 0)

x1i ∼ N (0,1) Model 1: θ1 = 1
4π

Model 3: θ1 = 1
8π3/2 Model 5: θ1 = 1

8π

x1i ∼
χ4−4√

8
Model 2: θ1 = 1

4
√

2π
Model 4: θ1 = 0.02795 Model 6: θ1 = 0.03906

indicator function.] The vector of regressors is generated us-
ing independent random variables and standardized to have
E[xi] = 0 and E[xix′

i] = Id , with the first component x1i hav-
ing either a Gaussian distribution or a chi-squared distribution
with 4 degrees of freedom (denoted χ4), while the remaining
components have a Gaussian distribution throughout the exper-
iment. All the components of β are set equal to unity, and for
simplicity only results for the first component θ1 are considered.

Table 1 summarizes the Monte Carlo models, reports the
value of the population parameter of interest, and provides the
corresponding label of each model considered. (Whenever un-
available in closed form, the population parameters are com-
puted by a numerical approximation.) The simulation study
considers three sample sizes (n = 100, n = 400, n = 700), two
dimensions of the regressors vector (d = 2, d = 4), and two ker-
nel orders (P = 2, P = 4). The kernel function K(·) is chosen to
be a Gaussian product kernel, and the preliminary kernel func-
tion k(·) is chosen to be a fourth-order Gaussian product kernel
as required by Corollary 1. For each combination of parame-
ters 10,000 replications are carried out. To conserve space this
section only includes the results for d = 2 and n = 400.

The simulation experiment considers the three (infeasible)
population bandwidth choices derived in Section 3 (h∗

PS, h∗
NR,

h∗
CCJ), and their corresponding data-driven estimates (ĥPS, ĥNR,

ĥCCJ). The three estimated bandwidths are obtained using the
results described in Section 4 with a common initial band-
width plug-in estimate used to construct B̂n, �̂n and V̂n. To
provide a parsimonious data-driven procedure, an estimate of
the initial bandwidth bn is constructed as a sample average of
a second-generation direct plug-in level-two estimate for the
(marginal) density of each dimension of the regressors vector
(see, e.g., Wand and Jones 1995). Confidence intervals for θ1

are constructed using the classical test statistic
√

n�̂
−1/2
n (θ̂n −

θ), denoted PSS, and the two alternative robust test statistics
V̂−1/2

k,n (θ̂n − θ), k = 1,2, denoted by CCJ1 and CCJ2, respec-
tively. The classical inference procedure PSS is only theoreti-
cally valid when P = 4, while the robust procedures CCJ1 and
CCJ2 are always valid across all simulation designs.

Figures 1 and 2 plot the empirical coverage for the three com-
peting 95% confidence intervals as a function of the choice of
bandwidth for each of the six models. To facilitate the analysis
two additional horizontal lines at 0.90 and at the nominal cov-
erage rate 0.95 are included for reference, and the three popu-
lation bandwidth selectors (h∗

PS, h∗
NR, h∗

CCJ) are plotted as ver-
tical lines. (Note that h∗

PS = h∗
NR for the case d = 2 and P = 2.)

These figures highlight the potential robustness properties that
the test statistics CCJ1 and CCJ2 may have when using the new
data-driven plug-in bandwidth selector. In particular, the the-
oretical bandwidth selector h∗

CCJ lays within the robust region
for which both CCJ1 and CCJ2 have correct empirical cover-
age for a range of bandwidths. For example, this suggests that

(at least) some of the variability introduced by the estimation
of this bandwidth selector will not affect the performance of
the robust test statistics CCJ1 and CCJ2, a property unlikely to
hold for the classical procedure PSS. Table 2 reports the empir-
ical coverage of each possible confidence interval (PSS, CCJ1,
CCJ2) when using each possible population bandwidth selector
(h∗

PS, h∗
NR, h∗

CCJ).
Figures 3 and 4 plot corresponding kernel density estimates

for the test statistic PSS coupled with either h∗
PS and h∗

NR, and
for the test statistics CCJ1 and CCJ2 coupled with h∗

CCJ. To fa-
cilitate the comparison the density of the standard normal is also
depicted. These figures show that the Gaussian approximation
of the robust test statistics using the new bandwidth selector is
considerably better than the corresponding approximation for
PSS when constructed using either of the classical bandwidth
selectors. In particular, the empirical distribution of the classi-
cal procedure appears to be more biased and more concentrated
than the empirical distributions of either CCJ1 or CCJ2. These
findings highlight the well-known trade-off between efficiency
and robustness previously discussed. These results are verified
in Table 3, where the average empirical bias and average empir-
ical interval length are reported for each competing confidence
interval when coupled with each possible population bandwidth
selector.

To analyze the performance of the new data-driven band-
width selector, and the resulting robust data-driven confidence
intervals, Table 4 presents the empirical coverage of each pos-
sible confidence interval (PSS, CCJ1, CCJ2) when using each
possible estimated bandwidth selector (ĥPS, ĥNR, ĥCCJ). These
tables provide concrete evidence of the superior performance
(in terms of achieving correct coverage) of the robust test sta-
tistics when coupled with the new estimated bandwidth. Both
robust confidence intervals (CCJ1, CCJ2) using ĥCCJ provide
close-to-correct empirical coverage across all designs, a prop-
erty not enjoyed by the classical confidence interval (PSS) using
either ĥPS or ĥNR.

The good performance of CCJ1 and CCJ2 is maintained not
only when using a second-order kernel (P = 2), but also when
the dimension of x is larger (d = 4), which provides simula-
tion evidence of the relatively low sensitivity of the new robust
data-driven procedures to the so-called “curse of dimensional-
ity.” This finding may be (heuristically) justified by the fact that
under the small bandwidth asymptotics, the limiting distribu-
tion is not invariant to the “parameter” d, which in turn may
lead to the additional robustness properties found. In addition,
as suggested by the superior distributional approximation re-
ported in Figures 3 and 4, the main findings continue to hold if
other nominal confidence levels are considered.

6. EXTENSIONS AND FINAL REMARKS

This paper introduced a novel data-driven plug-in bandwidth
selector compatible with the small bandwidth asymptotics de-
veloped in Cattaneo, Crump, and Jansson (2009) for density-
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Figure 1. Empirical coverage rates for 95% confidence intervals: d = 2, P = 2, n = 400. The online version of this figure is in color.
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Figure 2. Empirical coverage rates for 95% confidence intervals: d = 2, P = 4, n = 400. The online version of this figure is in color.
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Table 2. Empirical coverage rates of 95% confidence intervals with population bandwidth: d = 2, n = 400

BW PSS CCJ1 CCJ2 BW PSS CCJ1 CCJ2 BW PSS CCJ1 CCJ2

Model 1 Model 3 Model 5
P = 2 h∗

PS 0.244 0.931 0.878 0.876 0.260 0.939 0.887 0.881 0.258 0.929 0.885 0.880
h∗

NR 0.244 0.931 0.878 0.876 0.260 0.939 0.887 0.881 0.258 0.929 0.885 0.880
h∗

CCJ 0.121 0.994 0.948 0.952 0.110 0.995 0.947 0.954 0.125 0.993 0.947 0.951

P = 4 h∗
PS 0.470 0.949 0.926 0.920 0.483 0.951 0.930 0.921 0.488 0.941 0.925 0.918

h∗
NR 0.498 0.940 0.920 0.912 0.512 0.943 0.925 0.912 0.517 0.935 0.918 0.910

h∗
CCJ 0.335 0.978 0.942 0.943 0.333 0.981 0.945 0.945 0.342 0.975 0.940 0.941

Model 2 Model 4 Model 6
P = 2 h∗

PS 0.161 0.970 0.921 0.916 0.172 0.978 0.935 0.931 0.197 0.968 0.920 0.919
h∗

NR 0.161 0.970 0.921 0.916 0.172 0.978 0.935 0.931 0.197 0.968 0.920 0.919
h∗

CCJ 0.081 0.994 0.944 0.946 0.093 0.993 0.947 0.949 0.074 0.995 0.946 0.950

P = 4 h∗
PS 0.325 0.951 0.917 0.907 0.338 0.964 0.938 0.927 0.366 0.962 0.936 0.931

h∗
NR 0.344 0.940 0.909 0.897 0.358 0.958 0.933 0.922 0.388 0.956 0.931 0.926

h∗
CCJ 0.254 0.977 0.940 0.939 0.273 0.982 0.945 0.943 0.220 0.990 0.945 0.949

NOTE: Column BW reports population bandwidths.

weighted average derivatives. This new bandwidth selector is
of the plug-in variety, and is obtained based on a mean squared
error expansion of the estimator of interest. An extensive Monte
Carlo experiment showed a remarkable improvement in perfor-
mance of the resulting new robust data-driven inference pro-
cedure. In particular, the new confidence intervals provide ap-
proximately correct coverage in cases where there are no valid
alternative inference procedures (i.e., using a second-order ker-
nel with at least two regressors), and also compares favorably
to the alternative, classical confidence intervals when they are
theoretically justified.

Since these results are derived by exploiting the n-varying U-
statistic representation of θ̂n, it is plausible that similar results
could be obtained for other estimators having an analogous rep-
resentation. For example, the class of estimands considered in
Newey, Hsieh, and Robins (2004, section 2) have this represen-
tation, and therefore it seems possible that the results presented
here could be generalized to cover that class. More generally,
as suggested in Cattaneo, Crump, and Jansson (2009), an n-
varying U-statistic may be represented as a minimizer of the
U-process:

θ̂n = arg min
θ

(
n
2

)−1 n−1∑
i=1

n∑
j=i+1

Q(zi, zj; θ,hn),

Q(zi, zj; θ ,h) = ‖U(zi, zj,h) − θ‖2,

which also suggests that the results presented here may be ex-
tended to cover this class of estimators (see, e.g., Aradillas-
Lopéz, Honoré, and Powell 2007, pp. 1120–1122).

APPENDIX

Proof of Theorem 1

To save notation, for any function a : Rd → R let ȧ(x) = ∂a(x)/∂x
and ä(x) = ∂a(x)/∂x ∂x′. A Hoeffding decomposition of θ̂n gives

E[(θ̂n − θ)(θ̂n − θ)′] = V[θ̂n] + (E[θ̂n] − θ)(E[θ̂n] − θ)′

= V[L̄n] + V[W̄n] + h2s
n B B′ + o(h2s

n ),

where the bias expansion follows immediately by a Taylor series ex-
pansion.

For V[L̄n], using integration by parts,

E[Un(zi, zj)|zi]

=
∫

Rd
ė(xi + uhn)K(u)du − yi

∫
Rd

ḟ(xi + uhn)K(u)du,

and therefore V[L̄n] = 4n−1
V[E[Un(zi, zj)|zi] − θn] = n−1� +

O(n−1hs
n).

For V[W̄n], by standard calculations,

V[W̄n] =
(

n
2

)−1
E[Un(zi, zj)Un(zi, zj)

′] + O(n−2)

=
(

n
2

)−1
h−(d+2)

n

∫
Rd

K̇(u)K̇(u)′T(x,uhn)dx du + O(n−2),

with T(x,u) = (v(x) + v(x + u) − 2g(x)g(x + u))f (x)f (x + u). Then,
using a Taylor series expansion, T(x,uhn) = T1(x) + T2(x)′uhn +
u′T3(x)uh2

n + o(h2
n), where T1(x) = 2σ 2(x)f (x)2, T2(x) = 2σ 2(x) ×

f (x)ḟ(x) + f (x)2σ̇ 2(x), and T3(x) = σ 2(x)f (x)f̈(x) + f (x)σ̇ 2(x)ḟ(x) +
(v̈(x)/2 − g(x)g̈(x))f (x)2.

Note that
∫
Rd

∫
Rd K̇(u)K̇(u)′T1(x)dx du = ∫

Rd
∫
Rd K̇(u)K̇(u)′ ×

2σ 2(x)f (x)2 dx du = � and, using integration by parts,

hn

∫
Rd

∫
Rd

K̇(u)K̇(u)′(T2(x)′u)dx du

= hn

∫
Rd

K̇(u)K̇(u)′

×
[(∫

Rd
[σ 2(x)2f (x)ḟ(x) + f (x)2σ̇ 2(x)]dx

)′
u
]

du

= 0.

Finally, using integration by parts and the fact that σ̈ 2(x) = v̈(x) −
2ġ(x)ġ(x)′ − 2g(x)g̈(x),

h2
n

∫
Rd

K̇(u)K̇(u)′(u′T3(x)u)dx du

= h2
n

∫
Rd

K̇(u)K̇(u)′

×
[

u′
(∫

Rd
σ 2(x)f̈(x)f (x)dx +

∫
Rd

ġ(x)ġ(x)′f (x)2 dx
)

u
]

du.

Therefore, V[W̄n] = (n
2
)−1h−(d+2)

n � + (n
2
)−1h−d

n V + o(n−2h−d
n ).
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Figure 3. Empirical Gaussian approximation with population bandwidth: d = 2, P = 2, n = 400. The online version of this figure is in color.
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Figure 4. Empirical Gaussian approximation with population bandwidth: d = 2, P = 4, n = 400. The online version of this figure is in color.
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Table 3. Empirical average length of 95% confidence intervals with population bandwidth: d = 2, n = 400

BIAS PSS CCJ1 CCJ2 BIAS PSS CCJ1 CCJ2 BIAS PSS CCJ1 CCJ2

Model 1 Model 3 Model 5
P = 2 h∗

PS 0.005 0.036 0.031 0.030 0.002 0.013 0.011 0.011 0.003 0.022 0.019 0.019
h∗

NR 0.005 0.036 0.031 0.030 0.002 0.013 0.011 0.011 0.003 0.022 0.019 0.019
h∗

CCJ 0.002 0.110 0.080 0.080 0.000 0.053 0.038 0.038 0.001 0.064 0.047 0.047

P = 4 h∗
PS 0.183 3.096 2.842 2.755 0.050 1.184 1.091 1.043 0.090 1.981 1.849 1.782

h∗
NR 0.221 2.971 2.762 2.657 0.065 1.133 1.057 1.001 0.112 1.909 1.802 1.723

h∗
CCJ 0.070 4.302 3.566 3.556 0.002 1.720 1.417 1.409 0.021 2.696 2.279 2.268

Model 2 Model 4 Model 6
P = 2 h∗

PS 0.006 0.080 0.065 0.064 0.002 0.029 0.023 0.023 0.002 0.030 0.025 0.025
h∗

NR 0.006 0.080 0.065 0.064 0.002 0.029 0.023 0.023 0.002 0.030 0.025 0.025
h∗

CCJ 0.002 0.270 0.193 0.194 0.000 0.083 0.060 0.060 0.000 0.168 0.119 0.120

P = 4 h∗
PS 0.483 5.983 5.292 5.093 0.114 2.229 1.973 1.905 0.125 2.558 2.266 2.227

h∗
NR 0.551 5.651 5.077 4.853 0.132 2.108 1.896 1.818 0.143 2.432 2.190 2.142

h∗
CCJ 0.270 7.995 6.555 6.454 0.061 2.843 2.353 2.317 0.042 5.024 3.796 3.821

NOTE: Column BIAS reports absolute difference between average of θ̂n (across simulations) and θ0. All figures times 100.

Proof of Theorem 2

For part (i), note that ϑ̂l1,...,ld,n may be written as a n-varying U-
statistic (assuming without loss of generality that s is even), given by

ϑ̂l1,...,ld,n =
(

n
2

)−1 n−1∑
i=1

n∑
j=i+1

u1(zi, zj;bn),

with (recall that s = l1 + · · · + ld)

u1(zi, zj;b) = b−(d+1+s)
(

∂s

∂xl1
1 · · · ∂xld

d

k̇(x)

∣∣∣∣
x=(xi−xj)/b

)
(yi − yj).

First, change of variables and integration by parts give

E[u1(zi, zj;bn)|zi] =
∫

Rd
k(u)

(
∂s

∂xl1
1 · · · ∂xld

d

ḟ(x)

∣∣∣∣
x=xi−ubn

yi

− ∂s

∂xl1
1 · · · ∂xld

d

ė(x)

∣∣∣∣
x=xi−ubn

)
du.

Second, a Taylor series expansion gives E[u1(zi, zj;bn)] =
ϑ l1,...,ld + O(bmin(R,S)

n ). Next, letting ϑ̂n = ϑ̂ l1,...,ld,n to save nota-

tion, a Hoeffding decomposition gives V[ϑ̂n] = V[ϑ̂1,n] + V[ϑ̂2,n],
where

ϑ̂1,n = 1

n

n∑
i=1

2
[
E[u1(zi, zj;bn)|zi] − E[u1(zi, zj;bn)]],

and

ϑ̂2,n =
(

n
2

)−1 n−1∑
i=1

n∑
j=i+1

[
u1(zi, zj;bn) − E[u1(zi, zj;bn)|zi]

− E[u1(zi, zj;bn)|zj] + E[u1(zi, zj;bn)]].
Finally, using standard calculations, V[ϑ̂1,n] = O(n−1) and

V[ϑ̂2,n] = O(n−2b−(d+2+2s)
n ), and the conclusion follows by Mar-

kov’s Inequality.

Table 4. Empirical coverage rates of 95% confidence intervals with estimated bandwidth: d = 2, n = 400

BW PSS CCJ1 CCJ2 BW PSS CCJ1 CCJ2 BW PSS CCJ1 CCJ2

Model 1 Model 3 Model 5
P = 2 ĥPS 0.248 0.870 0.817 0.809 0.255 0.883 0.819 0.809 0.252 0.887 0.833 0.823

ĥNR 0.248 0.870 0.817 0.809 0.255 0.883 0.819 0.809 0.252 0.887 0.833 0.823
ĥCCJ 0.113 0.980 0.937 0.940 0.132 0.976 0.932 0.932 0.120 0.981 0.938 0.941

P = 4 ĥPS 0.290 0.978 0.921 0.924 0.290 0.980 0.922 0.923 0.290 0.979 0.923 0.926
ĥNR 0.308 0.975 0.921 0.922 0.307 0.977 0.921 0.921 0.308 0.975 0.921 0.922
ĥCCJ 0.187 0.993 0.949 0.953 0.198 0.994 0.948 0.954 0.192 0.995 0.949 0.954

Model 2 Model 4 Model 6
P = 2 ĥPS 0.201 0.858 0.796 0.780 0.208 0.903 0.851 0.838 0.212 0.920 0.860 0.854

ĥNR 0.201 0.858 0.796 0.780 0.208 0.903 0.851 0.838 0.212 0.920 0.860 0.854
ĥCCJ 0.104 0.972 0.916 0.919 0.119 0.973 0.929 0.930 0.105 0.986 0.943 0.946

P = 4 ĥPS 0.239 0.975 0.912 0.911 0.241 0.981 0.925 0.925 0.241 0.986 0.922 0.925
ĥNR 0.254 0.967 0.908 0.906 0.255 0.976 0.925 0.921 0.256 0.981 0.919 0.921
ĥCCJ 0.166 0.991 0.942 0.945 0.175 0.993 0.943 0.948 0.164 0.995 0.951 0.958

NOTE: Column BW reports sample mean of estimated bandwidths.
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For part (ii), note that δ̂n is also a n-varying U-statistic, given by

δ̂n =
(

n
2

)−1 n−1∑
i=1

n∑
j=i+1

u2(zi, zj;bn),

u2(zi, zj;b) = b−dk

(
xj − xi

b

)
(yi − yj)

2.

First, change of variables gives

E[u2(zi, zj;bn)|zi] =
∫

Rd
k(u)

(
y2

i f (xi − ubn)

+ v(xi − ubn)f (xi − ubn) − 2yie(xi − ubn)
)

du.

Second, a Taylor’s expansion gives E[δ̂n] = 2E[σ 2(x)f (x)] +
O(bmin(R,s+1+S)

n ). Next, a Hoeffding decomposition gives V[δ̂n] =
V[δ̂1,n] + V[δ̂2,n], where

δ̂1,n = 1

n

n∑
i=1

2
[
E[u2(zi, zj;bn)|zi] − E[u2(zi, zj;bn)]],

and

δ̂2,n =
(

n
2

)−1 n−1∑
i=1

n∑
j=i+1

[
u2(zi, zj;bn) − E[u2(zi, zj;bn)|zi]

− E[u2(zi, zj;bn)|zj] + E[u2(zi, zj;bn)]].
Finally, using standard calculations, V[δ̂1,n] = O(n−1) and

V[δ̂2,n] = O(n−2bd
n), and the conclusion follows by Markov’s In-

equality.

SUPPLEMENTAL MATERIALS

Further Simulation Results: This document contains a com-
prehensive set of results from the Monte Carlo experiment
summarized in Section 5. These results include all combi-
nations of sample sizes (n = 100, n = 400, n = 700), di-
mension of regressors vector (d = 2, d = 4), and kernel or-
ders (P = 2, P = 4). (06_SmallBandwidthMSE_26Mar2010-
-Supplemental.pdf)

[Received October 2009. Revised February 2010.]
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