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Abstract

This note proposes a consistent bootstrap-based distributional approximation for cube root

consistent estimators such as the maximum score estimator of Manski (1975) and the condi-

tional maximum score estimator of Honoré and Kyriazidou (2000). For estimators of this kind,

the standard nonparametric bootstrap is inconsistent. Our method restores consistency of the

nonparametric bootstrap by altering the shape of the criterion function defining the estimator

whose distribution we seek to approximate. This modification leads to a generic and easy-to-

implement resampling method for inference that is conceptually distinct from other available

distributional approximations, and can also be used in other related settings such as for the

isotonic density estimator of Grenander (1956).
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1 Introduction

In a seminal paper, Kim and Pollard (1990) studied a class of M -estimators exhibiting cube root

asymptotics. These estimators not only have a non-standard rate of convergence, but also have the

property that rather than being Gaussian their limiting distributions are of Chernoff (1964) type;

that is, the limiting distribution is that of the maximizer of a Gaussian process. In fact, in leading

examples of cube root consistent estimators such as the maximum score estimator of Manski (1975),

the covariance kernel of the Gaussian process characterizing the limiting distribution depends on

an infinite-dimensional nuisance parameter. From the perspective of inference, this feature of the

limiting distribution represents a nontrivial complication relative to the conventional asymptoti-

cally normal case, where the limiting distribution is known up to the value of a finite-dimensional

nuisance parameter (namely, the covariance matrix of the limiting distribution). In particular,

the dependence of the limiting distribution on an infinite-dimensional nuisance parameter implies

that resampling-based distributional approximations seem to offer the most attractive approach to

inference in estimation problems exhibiting cube root asymptotics. The purpose of this note is

to propose an easy-to-implement bootstrap-based distributional approximation applicable in such

cases.

As does the familiar nonparametric bootstrap, the method proposed herein employs bootstrap

samples of size n from the empirical distribution function. But unlike the nonparametric bootstrap,

which is inconsistent in general (e.g., Abrevaya and Huang, 2005; Léger and MacGibbon, 2006),

our method offers a consistent distributional approximation for cube root consistent estimators

and therefore has the advantage that it can be used to construct asymptotically valid inference

procedures. Consistency is achieved by altering the shape of the criterion function defining the

estimator whose distribution we seek to approximate. Heuristically, the method is designed to

ensure that the bootstrap version of a certain empirical process has a mean resembling the large

sample version of its population counterpart. The latter is quadratic in the problems we study,

and known up to the value of a certain matrix. As a consequence, the only ingredient needed to

implement the proposed “reshapement”of the objective function is a consistent estimator of the

unknown matrix entering the quadratic mean of the empirical process. Such estimators turn out

to be generically available and easy to compute.
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The note proceeds as follows. Section 2 is heuristic in nature and serves the purpose of outlining

the main idea underlying our approach in the M -estimation setting of Kim and Pollard (1990).

Section 3 then makes the heuristics of Section 2 rigorous in a more general setting where the M -

estimation problem is formed using a possibly n-varying (observation specific) objective function, as

recently studied by Seo and Otsu (2018). Section 4 discusses two examples covered by our general

results, namely the maximum score estimator of Manski (1975) and the conditional maximum score

estimator of Honoré and Kyriazidou (2000). Further discussion of our results is provided in Section

5. Finally, all derivations and proofs have been collected in the supplemental appendix, where an

extension to the case of the isotonic density estimator of Grenander (1956) is also given.

2 Heuristics

Suppose θ0 ∈ Θ ⊆ Rd is an estimand admitting the characterization

θ0 = argmax
θ∈Θ

M0(θ), M0(θ) = E[m0(z,θ)], (1)

where m0 is a known function, and where z is a random vector of which a random sample z1, . . . , zn

is available. Studying estimation problems of this kind for non-smooth m0, Kim and Pollard (1990)

gave conditions under which the M -estimator

θ̂n = argmax
θ∈Θ

M̂n(θ), M̂n(θ) =
1

n

n∑
i=1

m0(zi,θ),

exhibits cube root asymptotics:

3
√
n(θ̂n − θ0) argmax

s∈Rd
{Q0(s) + G0(s)}, (2)

where  denotes weak convergence, Q0(s) is a quadratic form given by

Q0(s) = −1

2
s′V0s, V0 = − ∂2

∂θ∂θ′
M0(θ0),

and G0 is a non-degenerate zero-mean Gaussian process with G0(0) = 0.

Whereas the matrix V0 governing the shape of Q0 is finite-dimensional, the covariance kernel of
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G0 in (2) typically involves infinite-dimensional unknown quantities. As a consequence, the limiting

distribution of θ̂n tends to be more diffi cult to approximate than Gaussian distributions, implying

in turn that basing inference on θ̂n is more challenging under cube root asymptotics than in the

more familiar case where θ̂n is (
√
n-consistent and) asymptotically normally distributed.

As a candidate method of approximating the distribution of θ̂n, consider the nonparametric

bootstrap. To describe it, let z∗1,n, . . . , z
∗
n,n denote a random sample from the empirical distribution

of z1, . . . zn and let the natural bootstrap analogue of θ̂n be denoted by

θ̂
∗
n = argmax

θ∈Θ
M̂∗n(θ), M̂∗n(θ) =

1

n

n∑
i=1

m0(z
∗
i,n,θ).

Then the nonparametric bootstrap estimator of P[θ̂n−θ0 ≤ ·] is given by P∗[θ̂
∗
n− θ̂n ≤ ·], where P∗

denotes a probability computed under the bootstrap distribution conditional on the data. As is well

documented, however, this estimator is inconsistent under cube root asymptotics (e.g., Abrevaya

and Huang, 2005; Léger and MacGibbon, 2006).

For the purpose of giving a heuristic, yet constructive, explanation of the inconsistency of the

nonparametric bootstrap, it is helpful to recall that a proof of (2) can be based on the representation

3
√
n(θ̂n − θ0) = argmax

s∈Rd
{Qn(s) + Ĝn(s)}, (3)

where (for s such that θ0 + sn−1/3 ∈ Θ)

Ĝn(s) = n2/3[M̂n(θ0 + sn−1/3)− M̂n(θ0)−M0(θ0 + sn−1/3) +M0(θ0)]

is a zero-mean random process, while

Qn(s) = n2/3[M0(θ0 + sn−1/3)−M0(θ0)]

is a non-random function that is correctly centered in the sense that argmaxs∈Rd Qn(s) = 0. In

cases where m0 is non-smooth but M0 is smooth, Qn and Ĝn are usually asymptotically quadratic
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and asymptotically Gaussian, respectively, in the sense that

Qn(s)→ Q0(s) (4)

and

Ĝn(s) G0(s). (5)

Under regularity conditions ensuring among other things that the convergence in (4) and (5) is

suitably uniform in s, result (2) then follows from an application of a continuous mapping-type

theorem for the argmax functional to the representation in (3).

Similarly to (3), the bootstrap analogue of θ̂n admits a representation of the form

3
√
n(θ̂

∗
n − θ̂n) = argmax

s∈Rd
{Q̂n(s) + Ĝ∗n(s)},

where (for s such that θ̂n + sn−1/3 ∈ Θ)

Ĝ∗n(s) = n2/3[M̂∗n(θ̂n + sn−1/3)− M̂∗n(θ̂n)− M̂n(θ̂n + sn−1/3) + M̂n(θ̂n)]

and

Q̂n(s) = n2/3[M̂n(θ̂n + sn−1/3)− M̂n(θ̂n)].

Under mild conditions, Ĝ∗n satisfies the following bootstrap counterpart of (5):

Ĝ∗n(s) P G0(s), (6)

where  P denotes conditional weak convergence in probability (defined as van der Vaart and

Wellner, 1996, Section 2.9). On the other hand, although Q̂n is non-random under the bootstrap

distribution and satisfies argmaxs∈Rd Q̂n(s) = 0, it turns out that Q̂n(s) 9P Q0(s) in general. In

other words, the natural bootstrap counterpart of (4) typically fails and, as a partial consequence, so

does the natural bootstrap counterpart of (2); that is, 3
√
n(θ̂

∗
n− θ̂n) 6 P argmaxs∈Rd{Q0(s)+G0(s)}

in general.

To the extent that the implied inconsistency of the bootstrap can be attributed to the fact that
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the shape of Q̂n fails to replicate that of Qn, it seems plausible that a consistent bootstrap-based

distributional approximation can be obtained by basing the approximation on

θ̃
∗
n = argmax

θ∈Θ
M̃∗n(θ), M̃∗n(θ) =

1

n

n∑
i=1

m̃n(z∗i,n,θ),

where m̃n is a suitably “reshaped” version of m0 satisfying two properties. First, Q̃n should be

asymptotically quadratic, where Q̃n is the counterpart of Q̂n associated with m̃n :

Q̃n(s) = n2/3[M̃n(θ̂n + sn−1/3)− M̃n(θ̂n)], M̃n(θ) =
1

n

n∑
i=1

m̃n(zi,θ).

Second, G̃∗n should be asymptotically equivalent to Ĝ
∗
n, where

G̃∗n(s) = n2/3[M̃∗n(θ̂n + sn−1/3)− M̃∗n(θ̂n)− M̃n(θ̂n + sn−1/3) + M̃n(θ̂n)],

is the counterpart of Ĝ∗n associated with m̃n.

Accordingly, let

m̃n(z,θ) = m0(z,θ)− M̂n(θ)− 1

2
(θ − θ̂n)′Ṽn(θ − θ̂n),

where Ṽn is an estimator of V0. Then

3
√
n(θ̃

∗
n − θ̂n) = argmax

s∈Rd
{Q̃n(s) + G̃∗n(s)},

where, by construction, G̃∗n(s) = Ĝ∗n(s) and Q̃n(s) = −s′Ṽns/2. Because G̃∗n = Ĝ∗n, G̃
∗
n(s) P G0(s)

whenever (6) holds. In addition, Q̃n(s)→P Q0(s) provided Ṽn →P V0. As a consequence, it seems

plausible that P∗[θ̃∗n − θ̂n ≤ ·] is a consistent estimator of P[θ̂n − θ0 ≤ ·] if Ṽn →P V0.
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3 Main Result

When making the heuristics of Section 2 precise, it is of interest to consider the more general

situation where the estimator θ̂n is an approximate maximizer (with respect to θ ∈ Θ ⊆ Rd) of

M̂n(θ) =
1

n

n∑
i=1

mn(zi,θ),

where mn is a known function, and where z1, . . . , zn is a random sample of a random vector z. This

formulation of M̂n, which reduces to that of Section 2 when mn does not depend on n, is adopted

in order to cover certain estimation problems where, rather than admitting a characterization of

the form (1), the estimand θ0 admits the characterization

θ0 = argmax
θ∈Θ

M0(θ), M0(θ) = lim
n→∞

Mn(θ), Mn(θ) = E[mn(z,θ)].

In other words, the setting considered in this section is one where θ̂n approximately maximizes

a function M̂n whose population counterpart Mn can be interpreted as a regularization (in the

sense of Bickel and Li, 2006) of a function M0 whose maximizer θ0 is the object of interest. The

additional flexibility (relative to the more traditional M -estimation setting of Section 2) afforded

by the present setting is attractive because it allows us to formulate results that cover local M -

estimators such as the conditional maximum score estimator of Honoré and Kyriazidou (2000).

Studying this type of setting, Seo and Otsu (2018) gave conditions under which θ̂n converges at a

rate equal to the cube root of the “effective”sample size and has a limiting distribution of Chernoff

(1964) type. Analogous conclusions will be drawn below, albeit under slightly different conditions.

For any n and any δ > 0, define Mn = {mn(·,θ) : θ ∈ Θ}, m̄n(z) = supm∈Mn
|m(z)|,

Θδ
0 = {θ ∈ Θ : ||θ − θ0|| ≤ δ}, Dδn = {mn(·,θ)−mn(·,θ0) : θ ∈ Θδ

0}, and d̄δn(z) = supd∈Dδn |d(z)|.

Condition CRA (Cube Root Asymptotics) For a positive qn with rn = 3
√
nqn → ∞, the

following are satisfied:

(i) {Mn : n ≥ 1} is uniformly manageable for the envelopes m̄n and qnE[m̄n(z)2] = O(1).

Also, supθ∈Θ |Mn(θ)−M0(θ)| = o(1) and, for every δ > 0, supθ∈Θ\Θδ
0
M0(θ) < M0(θ0).

(ii) θ0 is an interior point of Θ and, for some δ > 0, M0 and Mn are twice continuously

differentiable on Θδ
0 and supθ∈Θδ

0

∥∥∂2[Mn(θ)−M0(θ)]/∂θ∂θ′
∥∥ = o(1).
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Also, rn||∂Mn(θ0)/∂θ|| = o(1) and V0 = −∂2M0(θ0)/∂θ∂θ
′ is positive definite.

(iii) For some δ > 0, {Dδ′n : n ≥ 1, 0 < δ′ ≤ δ} is uniformly manageable for the envelopes d̄δ′n
and qn sup0<δ′≤δ E[d̄δ

′
n (z)2/δ′] = O(1).

(iv) For every positive δn with δn = O(r−1n ), q2nE[d̄δnn (z)3] + q3nr
−1
n E[d̄δnn (z)4] = o(1), and, for

all s, t ∈ Rd and for some C0 with C0(s, s) + C0(t, t)− 2C0(s, t) > 0 for s 6= t,

sup
θ∈Θδn

0

|qnE[{mn(z,θ + δns)−mn(z,θ)}{mn(z,θ + δnt)−mn(z,θ)}/δn]− C0(s, t)| = o(1).

(v) For every positive δn with δn = O(r−1n ),

lim
C→∞

lim sup
n→∞

sup
0<δ≤δn

qnE[1{qnd̄δn(z) > C}d̄δn(z)2/δ] = 0

and sup
θ,θ′∈Θδn

0
E[|mn(z,θ)−mn(z,θ′)|]/||θ − θ′|| = O(1).

To interpret Condition CRA, consider first the benchmark case where mn = m0 and qn =

1. In this case, the condition is similar to, but slightly stronger than, assumptions (ii)-(vii) of

the main theorem of Kim and Pollard (1990), to which the reader is referred for a definition of

the term (uniformly) manageable. The most notable difference between Condition CRA and the

assumptions employed by Kim and Pollard (1990) is probably that part (iv) contains assumptions

about moments of orders three and four, that the displayed part of part (iv) is a locally uniform

(with respect to θ near θ0) version of its counterpart in Kim and Pollard (1990), and that (i) can

be thought of as replacing the high level condition θ̂n →P θ0 of Kim and Pollard (1990) with more

primitive conditions that imply it for approximate M -estimators. In all three cases, the purpose of

strengthening the assumptions of Kim and Pollard (1990) is to be able to analyze the bootstrap.

More generally, Condition CRA can be interpreted as an n-varying version of a suitably (for the

purpose of analyzing the bootstrap) strengthened version of the assumptions of Kim and Pollard

(1990). The differences between Condition CRA and the i.i.d. version of the conditions in Seo and

Otsu (2018) seem mostly technical in nature, but for completeness we highlight two differences here.

First, to handle dependent data Seo and Otsu (2018) control the complexity of various function

classes using the concept of bracketing entropy. In contrast, because we assume random sampling
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we can follow Kim and Pollard (1990) and obtain maximal inequalities using bounds on uniform

entropy numbers implied by the concept of (uniform) manageability. Second, whereas Seo and

Otsu (2018) controls the bias of θ̂n through a locally uniform bound on Mn−M0, Condition CRA

controls the bias the first and second derivatives of Mn −M0.

Under Condition CRA, the effective sample size is given by nqn. In perfect agreement with Seo

and Otsu (2018), it turns out that if θ̂n is an approximate maximizer of M̂n, then

rn(θ̂n − θ0) argmax
s∈Rd

{Q0(s) + G0(s)}, (7)

where Q0(s) = −s′V0s/2, and where G0 is a zero-mean Gaussian process with G0(0) = 0 and

covariance kernel C0. The heuristics of the previous section are rate-adaptive, so once again it stands

to reason that if Ṽn is a consistent estimator of V0, then a consistent distributional approximation

can be based on an approximate maximizer θ̃
∗
n of

M̃∗n(θ) =
1

n

n∑
i=1

m̃n(z∗i,n,θ), m̃n(z,θ) = mn(z,θ)− M̂n(θ)− 1

2
(θ − θ̂n)′Ṽn(θ − θ̂n),

where z∗1,n, . . . , z
∗
n,n is a random sample from the empirical distribution of z1, . . . zn.

Following van der Vaart (1998, Chapter 23), we say that our bootstrap-based estimator of the

distribution of rn(θ̂n − θ0) is consistent if

sup
t∈Rd

∣∣∣P∗[rn(θ̃
∗
n − θ̂n) ≤ t]− P[rn(θ̂n − θ0) ≤ t]

∣∣∣→P 0. (8)

Because the limiting distribution in (7) is continuous, this consistency property implies consistency

of bootstrap-based confidence intervals (e.g., van der Vaart, 1998, Lemma 23.3). Moreover, con-

tinuity of the limiting distribution implies that (8) holds provided the estimator θ̃
∗
n satisfies the

following bootstrap counterpart of (7):

rn(θ̃
∗
n − θ̂n) P argmax

s∈Rd
{Q0(s) + G0(s)}.

Theorem 1, our main result, gives suffi cient conditions for this to occur.
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Theorem 1 Suppose Condition CRA holds. If Ṽn →P V0 and if

M̂n(θ̂n) ≥ sup
θ∈Θ

M̂n(θ)− oP(r−2n ), M̃∗n(θ̃
∗
n) ≥ sup

θ∈Θ
M̃∗n(θ)− oP(r−2n ),

then (8) holds.

To implement the bootstrap-based approximation to the distribution of rn(θ̂n − θ0), only a

consistent estimator of V0 is needed. A generic estimator based on numerical derivatives is ṼND
n ,

the matrix whose element (k, l) is given by

Ṽ NDn,kl = − 1

4ε2n

[
M̂n(θ̂n + ekεn + elεn)− M̂n(θ̂n + ekεn − elεn)

−M̂n(θ̂n − ekεn + elεn) + M̂n(θ̂n − ekεn − elεn)
]
,

where ek is the kth unit vector in Rd and where εn is a positive tuning parameter. Conditions

under which this estimator is consistent are given in the following lemma.

Lemma 1 Suppose Condition CRA holds and that rn(θ̂n−θ0) = OP(1). If εn → 0 and if rnεn →∞,

then ṼND
n →P V0.

Plausibility of the high-level condition rn(θ̂n − θ0) = OP(1) follows from (7). More generally,

if only consistency is assumed on the part of θ̂n, then ṼND
n →P V0 holds provided εn → 0 and

||θ̂n − θ0||/εn →P 0. The proof of the lemma goes beyond consistency and develops a Nagar-type

mean squared error (MSE) expansion for ṼND
n under the additional assumption that M0 is four

times continuously differentiable near θ0. The approximate MSE can be minimized by choosing εn

proportional to r−3/7n , the optimal factor of proportionality being a functional of the covariance

kernel C0 and the fourth order derivatives of M0 evaluated at θ0. For details, see the supplemental

appendix (Section A.3, Theorem A.3), which also contains a brief discussion of alternative generic

estimators of V0.

We close this section by summarizing the algorithm for our proposed bootstrap-based distrib-

utional approximation.

Bootstrap-Based Approximation Let the notation and conditions in Theorem 1 hold.

Step 1. Compute θ̂n and Ṽn using the original sample z1, . . . , zn.
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Step 2. Compute M̃∗n(θ) and let θ̃
∗
n be an approximate maximizer thereof, both constructed

using the nonparametric bootstrap sample z∗1,n, . . . , z
∗
n,n. (Note that Ṽn is not recomputed

at this step.)

Step 3. Repeat Step 2 B times, and then compute the empirical distribution of rn(θ̃
∗
n − θ̂n).

4 Examples

This section briefly discusses two econometric examples covered by our main result, namely the

maximum score estimator of Manski (1975) and the conditional maximum score estimator of Honoré

and Kyriazidou (2000). From the perspective of this paper, the main difference between these

examples is that (only) the latter corresponds to a situation where mn depends on n.

4.1 The Maximum Score Estimator

To describe a version of the maximum score estimator of Manski (1975), suppose z1, . . . , zn is a

random sample of z = (y,x′)′ generated by the binary response model

y = 1(β′0x + u ≥ 0), Fu|x(0|x) = 1/2, (9)

where β0 ∈ Rd+1 is an unknown parameter of interest, x ∈ Rd+1 is a vector of covariates, and

Fu|x(·|x) is the conditional cumulative distribution function of the unobserved error term u given

x. Following Abrevaya and Huang (2005), we employ the parameterization β0 = (1,θ′0)
′, where

θ0 ∈ Rd is unknown. In other words, we assume that the first element of β0 is positive and then

normalize the (unidentified) scale of β0 by setting its first element equal to unity. Partitioning

x conformably with β0 as x = (x1,x
′
2)
′, a maximum score estimator of θ0 ∈ Θ ⊆Rd is any θ̂MSn

approximately maximizing M̂n for

mn(z,θ) = mMS(z,θ) = (2y − 1)1(x1 + θ′x2 ≥ 0).

Regarded as a member of the class of M -estimators exhibiting cube root asymptotics, the

maximum score estimator is representative in a couple of respects. First, under easy-to-interpret

primitive conditions the estimator is covered by the results of Section 3. In particular, because
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mn does not depend on n we can set qn = 1 when formulating primitive conditions for Condition

CRA; for details, see the supplemental appendix (Section A.4). Second, in addition to the generic

estimator ṼND
n discussed above, the maximum score estimator admits an example-specific consistent

estimator of the V0 associated with it. Let

ṼMS
n = − 1

n

n∑
i=1

(2yi − 1)K̇n(x1i + θ′x2i)x2ix
′
2i

∣∣∣∣∣
θ=θ̂

MS

n

,

where, for a kernel functionK and a bandwidth hn, K̇n(u) = dK̇n(u)/du andKn(u) = K(u/hn)/hn.

As defined, ṼMS
n is simply minus the second derivative, evaluated at θ = θ̂

MS

n , of the criterion function

associated with the smoothed maximum score estimator of Horowitz (1992). The estimator ṼMS
n is

consistent under mild conditions on hn and K; for details, see the supplemental appendix (Section

A.4, Lemma MS), which also reports the results of a Monte Carlo experiment evaluating the

performance of our proposed inference procedure.

4.2 The Conditional Maximum Score Estimator

Consider the dynamic binary response model

Yt = 1(β′0Xt + γ0Yt−1 + α+ ut ≥ 0), t = 1, 2, 3,

where β0 ∈ Rd and γ0 ∈ R are unknown parameters of interest, α is an unobserved (time-invariant)

individual-specific effect, and ut is an unobserved error term. Honoré and Kyriazidou (2000) ana-

lyzed this model and gave conditions under which β0 and γ0 are identified up to scale. Assuming

these conditions hold and assuming the first element of β0 is positive, we can normalize that element

to unity and employ the parameterization (β′0, γ0)
′ = (1,θ′0)

′, where θ0 ∈ Rd is unknown.

To describe a version of the conditional maximum score estimator of Honoré and Kyriazidou

(2000), partition Xt after the first element as Xt = (X1t,X
′
2t)
′ and define z = (y, x1,x

′
2,w

′)′,

where y = y2 − y1, x1 = X12 −X11, x2 = ((X22 −X21)
′, y3 − y0)′, and w = X2 −X3. Assuming

z1, . . . , zn is a random sample of z, a conditional maximum score estimator of θ0 ∈ Θ ⊆Rd is any
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θ̂
CMS

n approximately maximizing M̂n for

mn(z,θ) = mCMS
n (z,θ) = y1(x1 + θ′x2 ≥ 0)Ln(w),

where, for a kernel function L and a bandwidth bn, Ln(w) = L(w/bn)/bdn.

Through its dependence on bn, the function mCMS
n depends on n in a non-negligible way. In

particular, the effective sample size is nbdn (rather than n) in the current setting, so to the extent

that they exist one would expect primitive suffi cient conditions for Condition CRA to include

qn = bdn in this example. Apart from this predictable change, the properties of the conditional

maximum score estimator θ̂
CMS

n turn out to be qualitatively similar to those of θ̂
MS

n . To be specific,

under regularity conditions the conditional maximum score estimator is covered by the results of

Section 3 and an example-specific alternative (of smoothed maximum score type) to the generic

numerical derivative estimator ṼND
n is available; for details, see the supplemental appendix (Section

A.5).

5 Discussion

The applicability of the procedure proposed in this note extends beyond the estimators covered by

Theorem 1. For instance, it is not hard to show that our bootstrap-based distributional approxi-

mation is consistent also in the more standard case where mn(z,θ) is suffi ciently smooth in θ to

ensure that an approximate maximizer of M̂n is asymptotically normal and that the nonparametric

bootstrap is consistent. In fact, θ̃
∗
n is asymptotically equivalent to θ̂

∗
n in that standard case, so our

procedure can be interpreted as a modification of the nonparametric bootstrap that is designed to

be “robust”to the types of non-smoothness that give rise to cube root asymptotics.

Moreover, and perhaps more importantly, the idea of reshaping can be used to achieve consis-

tency of bootstrap-based approximations to the distributions of certain estimators which are not

of M -estimator type, yet exhibit cube root asymptotics and have the feature that the standard

bootstrap-based approximations to their distribution are known to be inconsistent. In particular,

the supplemental appendix (Section A.6) shows how the idea of reshaping a process can be used

to achieve consistency on the part of a bootstrap-based approximation to the distribution of the
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celebrated ( 3
√
n-consistent) isotonic density estimator of Grenander (1956).1

This note is not the first to propose a consistent resampling-based distributional approximation

for cube root consistent estimators. For cube root asymptotic problems, the best known consistent

alternative to the nonparametric bootstrap is probably subsampling (Politis and Romano, 1994),

whose applicability was pointed out by Delgado, Rodriguez-Poo, andWolf (2001). A related method

is the rescaled bootstrap (Dümbgen, 1993), whose validity in cube root asymptotic M -estimation

problems was established recently by Hong and Li (2017). In addition, case-specific smooth boot-

strap methods have been proposed for leading examples such as maximum score estimation (Patra,

Seijo, and Sen, 2015) and isotonic density estimation (Kosorok, 2008; Sen, Banerjee, andWoodroofe,

2010). Like ours, each of these methods can be viewed as offering a “robust” alternative to the

nonparametric bootstrap but, unlike ours, they all achieve consistency by modifying the distri-

bution used to generate the bootstrap counterpart of the estimator whose distribution is being

approximated. In contrast, our method achieves consistency by means of an analytic modification

to the objective function used to construct the bootstrap-based distributional approximation.

As pointed out by two referees and the coeditor, an alternative interpretation of our approach

is available. Restating the result in (7) as

rn(θ̂n − θ0) S0(G0), S0(G) = argmax
s∈Rd

{Q0(s) + G(s)},

our procedure approximates the distribution of S0(G0) by that of S̃n(Ĝ∗n), where

Ĝ∗n(s) = r2n[M̂∗n(θ̂n + sr−1n )− M̂∗n(θ̂n)− M̂n(θ̂n + sr−1n ) + M̂n(θ̂n)]

is a bootstrap process whose distribution approximates that of G0(s) and where

S̃n(G) = argmax
s∈Rd

{Q̃n(s) + G(s)}, Q̃n(s) = −1

2
s′Ṽns,

is an estimator of S0(G). In other words, our procedure replaces the functional S0 with a consistent
1The asymptotic properties of the Grenander estimator have been studied by Prakasa Rao (1969), Groeneboom

(1985), and Kim and Pollard (1990), among others. Inconsistency of the standard bootstrap-based approximation
to the distribution of the Grenander estimator has been pointed out by Kosorok (2008) and Sen, Banerjee, and
Woodroofe (2010), among others.
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estimator (namely, S̃n) and its random argument G0 with a bootstrap approximation (namely,

Ĝ∗n). Similar constructions have been successfully applied in other settings, two relatively recent

examples being Andrews and Soares (2010) and Fang and Santos (2016).

Finally, Seo and Otsu (2018) give conditions under which results of the form (7) can be obtained

also when the data is weakly dependent. It seems plausible that a version of our procedure,

implemented with resampling procedure suitable for dependent data, can be shown to be consistent

under similar conditions, but it is beyond the scope of this note to substantiate that conjecture.

References

Abrevaya, J., and J. Huang (2005): “On the Bootstrap of the Maximum Score Estimator,”
Econometrica, 73(4), 1175—1204.

Andrews, D. W. K., and G. Soares (2010): “Inference for Parameters Defined by Moment
Inequalities Using Generalized Moment Selection,”Econometrica, 78(1), 119—157.

Bickel, P. J., and B. Li (2006): “Regularization in Statistics,”Test, 15(2), 271—344.

Chernoff, H. (1964): “Estimation of the Mode,”Annals of the Institute of Statistical Mathemat-
ics, 16(1), 31—41.

Delgado, M. A., J. M. Rodriguez-Poo, and M. Wolf (2001): “Subsampling Inference in
Cube Root Asymptotics with an Application to Manski’s Maximum Score Estimator,”Economics
Letters, 73(2), 241—250.

Dümbgen, L. (1993): “On Nondifferentiable Functions and the Bootstrap,” Probability Theory
and Related Fields, 95, 125—140.

Fang, Z., and A. Santos (2016): “Inference on Directionally Differentiable Functions,”
arXiv:1404.3763.

Grenander, U. (1956): “On the Theory of Mortality Measurement: Part II,” Scandinavian
Actuarial Journal, 39(2), 125—153.

Groeneboom, P. (1985): “Estimating a Monotone Density,”in Proceedings of the Berkeley Con-
ference in Honor of Jerzy Neyman and Jack Kiefer, pp. 539—555. Institute of Mathematical
Statistics.

Hong, H., and J. Li (2017): “The Numerical Delta Method and Bootstrap,”Working Paper,
Stanford University.

Honoré, B. E., and E. Kyriazidou (2000): “Panel Data Discrete Choice Models with Lagged
Dependent Variables,”Econometrica, 68(4), 839—874.

Horowitz, J. L. (1992): “A Smoothed Maximum Score Estimator for the Binary Response
Model,”Econometrica, 60(3), 505—531.

Kim, J., and D. Pollard (1990): “Cube Root Asymptotics,”Annals of Statistics, 18(1), 191—219.

14



Kosorok, M. R. (2008): “Bootstrapping the Grenander Estimator,” in Beyond Parametrics
in Interdisciplinary Research: Festschrift in Honor of Professor Pranab K. Sen, pp. 282—292.
Institute of Mathematical Statistics.

Léger, C., and B. MacGibbon (2006): “On the Bootstrap in Cube Root Asymptotics,”Cana-
dian Journal of Statistics, 34(1), 29—44.

Manski, C. F. (1975): “Maximum Score Estimation of the Stochastic Utility Model of Choice,”
Journal of econometrics, 3(3), 205—228.

Patra, R. K., E. Seijo, and B. Sen (2015): “A Consistent Bootstrap Procedure for the Maxi-
mum Score Estimator,”arXiv:1105.1976.

Politis, D. N., and J. P. Romano (1994): “Large Sample Confidence Regions Based on Sub-
samples under Minimal Assumptions,”Annals of Statistics, 22(4), 2031—2050.

Prakasa Rao, B. (1969): “Estimation of a Unimodal Density,”Sankhya: The Indian Journal of
Statistics, Series A, 31(1), 23—36.

Sen, B., M. Banerjee, and M. Woodroofe (2010): “Inconsistency of Bootstrap: The Grenan-
der Estimator,”Annals of Statistics, 38(4), 1953—1977.

Seo, M. H., and T. Otsu (2018): “Local M-Estimation with Discontinuous Criterion for Depen-
dent and Limited Observations,”Annals of Statistics, 46(1), 344—369.

van der Vaart, A. W. (1998): Asymptotic Statistics. Cambridge University Press.

van der Vaart, A. W., and J. A. Wellner (1996): Weak Convergence and Empirical Processes.
Springer.

15



Supplemental to “Bootstrap-Based Inference for Cube Root

Consistent Estimators”∗

Matias D. Cattaneo† Michael Jansson‡ Kenichi Nagasawa§

May 30, 2018

Abstract

This supplemental appendix contains proofs of all the results stated in the paper, as well as

other theoretical results that may be of independent interest. It also offers more details on the

examples discussed in the paper. Finally, details on implementation issues are given, including

mean square error expansions of drift estimators, associated MSE-optimal tuning parameter

choices, and rule-of-thumb implementations thereof.

∗Cattaneo gratefully acknowledges financial support from the National Science Foundation through grant SES-
1459931, and Jansson gratefully acknowledges financial support from the National Science Foundation through grant
SES-1459967 and the research support of CREATES (funded by the Danish National Research Foundation under
grant no. DNRF78).
†Department of Economics and Department of Statistics, University of Michigan.
‡Department of Economics, University of California at Berkeley and CREATES.
§Department of Economics, University of Michigan.



Contents

A.1 Setup 1

A.2 Assumptions 1

A.3 Main Results 3

A.4 Example: Maximum Score Estimation 5
A.4.1 Bootstrap-Based Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

A.4.2 Drift Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

A.4.3 Simulation Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

A.5 Example: Conditional Maximum Score Estimation 8
A.5.1 Bootstrap-Based Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

A.5.2 Drift Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

A.6 Extension: Isotonic Density Estimation 11
A.6.1 Bootstrap-based Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

A.6.2 Drift Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A.6.3 Simulation Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A.7 Proofs 15
A.7.1 Proof of Theorem A.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A.7.2 Proof of Theorem A.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A.7.3 Proof of Theorem A.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

A.7.4 Proof of Corollary MS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

A.7.5 Proof of Lemma MS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

A.7.6 Proof of Corollary CMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.7.7 Proof of Lemma CMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.7.8 Proof of Theorem ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A.8 Rule-of-Thumb Bandwidth Selection 46
A.8.1 Maximum Score Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A.8.2 Isotonic Density Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



A.1 Setup

Suppose the estimator θ̂n is an approximate maximizer (with respect to θ ∈ Θ ⊆ Rd) of

M̂n(θ) =
1

n

n∑
i=1

mn(zi,θ),

where mn is a known function and where z1, . . . , zn is a random sample of a random vector z. Also,

suppose the estimand θ0 admits the characterization

θ0 = argmax
θ∈Θ

M0(θ), M0(θ) = lim
n→∞

Mn(θ), Mn(θ) = E[mn(z,θ)].

Finally, suppose θ̃
∗
n is an approximate maximizer of

M̃∗n(θ) =
1

n

n∑
i=1

m̃n(z∗i,n,θ), m̃n(z,θ) = mn(z,θ)− M̂n(θ)− 1

2
(θ − θ̂n)′Ṽn(θ − θ̂n),

where z∗1,n, . . . , z
∗
n,n is a random sample from the empirical distribution of z1, . . . zn and where Ṽn

is a consistent estimator of V0 = −∂2M0(θ0)/∂θ∂θ′.

Our main result gives conditions under which the distribution of θ̂n−θ0 is well approximated by

the bootstrap distribution of θ̃
∗
n− θ̂n. More precisely, we give conditions under which the following

algorithm produces a consistent estimator of the distribution of rn(θ̂n − θ0), where rn is defined

below:

Step 1. Given the sample z1, . . . , zn, calculate θ̂n, Ṽn, and F̂n(·) = n−1
∑n

i=1 1(zi ≤ ·).
Step 2. Draw a bootstrap sample z∗1,n, . . . , z

∗
n,n from F̂n.

Step 3. Compute M̃∗n(θ) and let θ̃
∗
n be an approximate maximizer thereof.

Step 4. Repeat the steps 2 and 3 B times and compute the empirical distribution of rn(θ̃
∗
n− θ̂n).

To implement the procedure, an estimator Ṽn of V0 is needed. The specific estimator described

in the paper is the numerical derivative-based estimator ṼND
n , the matrix whose element (k, l) is

given by

Ṽ NDn,kl = − 1

4ε2n

[
M̂n(θ̂n + ekεn + elεn)− M̂n(θ̂n + ekεn − elεn)

−M̂n(θ̂n − ekεn + elεn) + M̂n(θ̂n − ekεn − elεn)
]
,

where ek is the kth unit vector in Rd and where εn is a positive tuning parameter.

A.2 Assumptions

Our main assumptions are collected in Condition CRA. To state the condition, for any n and any

δ > 0, defineMn = {mn(·,θ) : θ ∈ Θ}, m̄n(z) = supm∈Mn
|m(z)|, Θδ

0 = {θ ∈ Θ : ||θ − θ0|| ≤ δ},

1



Dδn = {mn(·,θ)−mn(·,θ0) : θ ∈ Θδ
0}, and d̄δn(z) = supd∈Dδn |d(z)|.

Condition CRA (Cube Root Asymptotics) For a positive qn with rn = 3
√
nqn → ∞, the

following are satisfied:

(i) {Mn : n ≥ 1} is uniformly manageable for the envelopes m̄n and qnE[m̄n(z)2] = O(1).

Also, supθ∈Θ |Mn(θ)−M0(θ)| = o(1) and, for every δ > 0, supθ∈Θ\Θδ
0
M0(θ) < M0(θ0).

(ii) θ0 is an interior point of Θ and, for some δ > 0, M0 and Mn are twice continuously

differentiable on Θδ
0 and supθ∈Θδ

0

∥∥∂2[Mn(θ)−M0(θ)]/∂θ∂θ′
∥∥ = o(1).

Also, 3
√
nqn||∂Mn(θ0)/∂θ|| = o(1) and V0 = −∂2M0(θ0)/∂θ∂θ′ is positive definite.

(iii) For some δ > 0, {Dδ′n : n ≥ 1, 0 < δ′ ≤ δ} is uniformly manageable for the envelopes d̄δ′n
and qn sup0<δ′≤δ E[d̄δ

′
n (z)2/δ′] = O(1).

(iv) For every positive δn with δn = O(r−1
n ), q2

nE[d̄δnn (z)3] + q3
nr
−1
n E[d̄δnn (z)4] = o(1), and, for

all s, t ∈ Rd and for some C0 with C0(s, s) + C0(t, t)− 2C0(s, t) > 0 for s 6= t,

sup
θ∈Θδn

0

|qnE[{mn(z,θ + δns)−mn(z,θ)}{mn(z,θ + δnt)−mn(z,θ)}/δn]− C0(s, t)| = o(1).

(v) For every positive δn with δn = O(r−1
n ),

lim
C→∞

lim sup
n→∞

sup
0<δ≤δn

qnE[1{qnd̄δn(z) > C}d̄δn(z)2/δ] = 0

and sup
θ,θ′∈Θδn

0
E[|mn(z,θ)−mn(z,θ′)|]/||θ − θ′|| = O(1).

Suppose mn = m0. In that case, we can set qn = 1 and simplify Condition CRA somewhat.

For any n and any δ > 0, define M0 = {m0(·,θ) : θ ∈ Θ}, m̄0(z) = supm∈M0
|m(z)|, Dδ0 =

{m0(·,θ)−m0(·,θ0) : θ ∈ Θδ
0}, and d̄δ0(z) = supd∈Dδ0

|d(z)|.

Condition CRA0 (Cube Root Asymptotics, benchmark case) For rn = 3
√
n→∞, the fol-

lowing are satisfied:

(i)M0 is manageable for the envelope m̄0 and E[m̄0(z)2] <∞.
Also, for every δ > 0, supθ∈Θ\Θδ

0
M0(θ) < M0(θ0).

(ii) θ0 is an interior point of Θ and, for some δ > 0, M0 is twice continuously differentiable

on Θδ
0.

Also, V0 = −∂2M0(θ0)/∂θ∂θ′ is positive definite.

(iii) For some δ > 0, {Dδ′0 : 0 < δ′ ≤ δ} is uniformly manageable for the envelopes d̄δ′0 and

sup0<δ′≤δ E[d̄δ
′

0 (z)2/δ′] <∞.
(iv) For every positive δn with δn = O(r−1

n ), E[d̄δn0 (z)3] + r−1
n E[d̄δn0 (z)4] = o(1), and, for all

s, t ∈ Rd and for some C0 with C0(s, s) + C0(t, t)− 2C0(s, t) > 0 for s 6= t,

sup
θ∈Θδn

0

|E[{m0(z,θ + δns)−m0(z,θ)}{m0(z,θ + δnt)−m0(z,θ)}/δn]− C0(s, t)| = o(1).
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(v) For every positive δn with δn = O(r−1
n ),

lim
C→∞

lim sup
n→∞

sup
0<δ≤δn

E[1{d̄δ0(z) > C}d̄δ0(z)2/δ] = 0

and sup
θ,θ′∈Θδn

0
E[|m0(z,θ)−m0(z,θ′)|]/||θ − θ′|| = O(1).

A.3 Main Results

Theorem A.1 Suppose Condition CRA holds. If

M̂n(θ̂n) ≥ sup
θ∈Θ

M̂n(θ)− oP(r−2
n ),

then

rn(θ̂n − θ0) argmax
s∈Rd

{Q0(s) + G0(s)},

where Q0(s) = −s′V0s/2, and where G0 is a zero-mean Gaussian process with G0(0) = 0 and

covariance kernel C0.

Theorem A.2 Suppose Condition CRA holds. If rn(θ̂n − θ0) = OP(1), Ṽn →P V0, and if

M̃∗n(θ̃
∗
n) ≥ sup

θ∈Θ
M̃∗n(θ)− oP(r−2

n ),

then

rn(θ̃
∗
n − θ̂n) P argmax

s∈Rd
{Q0(s) + G0(s)},

where Q0(s) and G0 are as in Theorem A.1.

Combining Theorems A.1 and A.2, we obtain the main result of the paper.

Corollary A.1 Suppose Condition CRA holds. If Ṽn →P V0 and if

M̂n(θ̂n) ≥ sup
θ∈Θ

M̂n(θ)− oP(r−2
n ), M̃∗n(θ̃

∗
n) ≥ sup

θ∈Θ
M̃∗n(θ)− oP(r−2

n ),

then

sup
t∈Rd

∣∣∣P∗[rn(θ̃
∗
n − θ̂n) ≤ t]− P[rn(θ̂n − θ0) ≤ t]

∣∣∣→P 0.

The following result gives conditions under which ṼND
n is consistent and furthermore presents

results that can be used to obtain a data-based selector of the tuning parameter εn. Let θ =

(θ1, θ2, · · · , θd)′.
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Theorem A.3 Suppose Condition CRA holds and that rn(θ̂n − θ0) = OP(1). If εn → 0 and if

rnεn →∞, then ṼND
n →P V0.

If, in addition, for some δ > 0, M0 and Mn are four times continuously differentiable on Θδ
0,

supθ∈Θδ
0
|∂4[Mn(θ) − M0(θ)]/∂θj1∂θj2∂θj3∂θj4 | = o(1) for all j1, j2, j3, j4 ∈ {1, 2, · · · , d}, and

C0(s,−s) = 0 and C0(s, t) = C0(−s,−t) for all s, t ∈ Rd, then ṼND
n admits an approximation

V̌ND
n satisfying

ṼND
n − V̌ND

n = OP
(
r−2
n ε−2

n

)
+ o(ε2n) +O(r−1

n )

and

E[||V̌ND
n −Vn||2] = ε4n(

d∑
k=1

d∑
l=1

B2
kl) + r−3

n ε−3
n (

d∑
k=1

d∑
l=1

Vkl) + o(ε2n + r−3
n ε−3

n ),

where Vn = −∂2Mn(θ0)/∂θ∂θ′ and where

Bkl =
1

6

(
∂4

∂θ3
k∂θl

M0(θ0) +
∂4

∂θk∂θ
3
l

M0(θ0)

)
,

Vkl =
1

8
[C0(ek + el, ek + el) + C0(ek − el, ek − el)

− 2C0(ek + el, ek − el)− 2C0(ek + el,−ek + el)].

Using this theorem, we immediately obtain the asymptotic MSE-optimal tuning parameter

choice

εAMSEn =

(
3
∑d

k=1

∑d
l=1 Vkl

4
∑d

k=1

∑d
l=1 B

2
kl

)1/7

r−3/7
n .

As the notation suggests, the constants Bkl and Vkl correspond to element (k, l) of ṼND
n , so the

asymptotic MSE-optimal tuning parameter choice for Ṽ NDn,kl is

εAMSEn,kl =

(
3Vkl
4B2

kl

)1/7

r−3/7
n .

Remark There are other possible ways of constructing generic and automatic consistent estimators
of V(θ). Here we briefly mention two generic alternatives, but we do not study their formal

statistical properties to conserve space.

1. Jittering Smoothing. Define mn,η(zi,θ) =
∫
mn(zi,θ+ εnη)dFη(η), where η is a random

variable with absolutely continuous distribution function Fη(η) satisfying
∫
ηdFη(η) = 0

and
∫
η2dFη(η) = 1. By choosing Fη(η) appropriately, θ 7→ mn,η(zi,θ) can be taken

to be two-times continuously differentiable. Therefore, a consistent plug-in estimator of

V(θ) can easily be constructed by differentiating mn,η(zi,θ) with respect to θ, under

appropriate conditions on εn → 0.
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2. Local Polynomial Smoothing. An alternative is to smooth-out the objective function

directly. Suppose {θ` : 1 ≤ ` ≤ L} is a grid of points near θ on Θ, with the property

that θ` − θ`−1 = o(1), then a local polynomial smoothing approach is

γ̂ = argmax
γ∈Rp

L∑
`=1

(M̂n(θ)− rp(θ` − θ)′γ)2K

(
θ` − θ
εn

)

where rp(θ) represents a full polynomial expansion of order p ≥ 2, and εn is a positive

vanishing bandwidth sequence. By choosing the appropriate elements of γ̂, we obtain

an alternative estimator of V(θ).

A.4 Example: Maximum Score Estimation

Our results apply directly to Manski’s Maximum Score Estimator (Manski, 1975, 1985). The

econometric model is

y = 1(x′β0 + u ≥ 0), Fu|x(0|x) = 1/2,

where z = (y,x′)′ and x = (x1,x
′
2)′ is a (d+ 1)-dimensional vector of covariates. For identifiability,

we need a normalization of β0. As in Abrevaya and Huang (2005), we employ β0 = (1,θ′0)′, where

θ0 ∈ Rd is unknown.
Then, a maximum score estimator of θ0 ∈ Θ ⊂ Rd is any θ̂MSn approximately maximizing M̂n

for

mn(z,θ) = mMS(z,θ) = (2y − 1)1(x1 + x′2θ ≥ 0).

Therefore, under random sampling, the maximum score estimator is computed as the approximate

M -estimator

β̂n ≈ argmax
β∈B

1

n

n∑
i=1

(2yi − 1)1(x′iβ ≥ 0),

where B is the parameter space such that B ⊂ {β ∈ Rd+1 : |e′1β| = 1}.

A.4.1 Bootstrap-Based Inference

To verify the high-level conditions in Condition CRA0, we assume the following.

Condition MS Suppose the maximum score model is as above.

(i) Median(u|x) = 0 and 0 < P(y = 1|x) < 1 almost surely. The conditional distribution

function of u given x, denoted by Fu|x1,x2(u|x1,x2), is bounded and SF times continuously

differentiable in u and x1 with bounded derivatives for some SF ≥ 1.

(ii) The support of x is not contained in any proper linear subspace of Rd+1, E[‖x2‖2] <∞,
and conditional on x2, x1 has everywhere positive Lebesgue density.

(iii) The set Θ = {θ ∈ Rd : (1,θ′)′ ∈ B} is compact and θ0 is an interior point of Θ.

(iv) MMS
0 (θ) = E[(2y − 1)1(x1 + x′2θ ≥ 0)] is S times continuously differentiable near θ0 for

5



some S ≥ 2 and VMS
0 = −∂2MMS

0 (θ0)/∂θ∂θ′ is positive definite.

(v) The conditional density of x1 given x2, denoted by fx1|x2(x1|x2), is bounded and Sf times

continuously differentiable in x1 with bounded derivatives for some Sf ≥ 1.

Under these assumptions, we can deduce the following result.

Corollary MS If Condition MS holds, then

3
√
n(θ̂

MS

n − θ0) argmax
s∈Rd

{
−1

2
s′VMS

0 s + G0(s)

}

where G0 is a mean-zero Gaussian process indexed by Rd with covariance kernel CMS0 (·, ·), and

VMS
0 = 2E

[
x2x

′
2fz|x2(−x′2θ0|x2)fε|z,x2(0| − x′2θ0,x2)

]
,

CMS0 (s, t) =
1

2
(L0(s) + L0(t)− L0(s− t)), L0(s) = E

[
fz|x2(−x′2θ0|x2)|x′2s|

]
.

Furthermore, if a consistent estimator for the Hessian term is available (i.e., Ṽn →P VMS
0 for

some estimator Ṽn), then the reshaped bootstrap consistently estimates the large sample distribution

of 3
√
n(θ̂

MS

n − θ0).

A.4.2 Drift Estimation

Here we discuss an example-specific construction of Ṽn for the maximum score estimator and

suffi cient conditions for its consistency. Our proposed estimator for maximum score estimation is

ṼMS
n = ṼMS

n (θ̂
MS

n ), ṼMS
n (θ) = − 1

n

n∑
i=1

(2yi − 1)K̇((x1i + x′2iθ)/hn)x2ix
′
2ih
−2
n (A.1)

where hn = o(1) is a bandwidth, K is a kernel function, and K̇(u) = dK(u)/du.

To analyze the properties of this estimator, we impose the following conditions on the kernel

function.

Condition K
(i)
∫
RK(v)dv = 1 and lim|v|→∞ vK(v) = 0.

(ii) For all v1, v2 ∈ R, |K̇(v1)− K̇(v2)| ≤ B(v1)|v1 − v2| with
∫
RB(v)dv +

∫
RB(v)2dv <∞.

(iii)
∫
R |K̇(v)|2dv +

∫
R |vK̇(v)|dv <∞.

(iv) lim|v|→∞ v
2K(v) = 0,

∫
R vK(v)dv = 0, and

∫
R |v|

3|K̇(v)|dv <∞.

With these restrictions on the kernel function K, we obtain the following result for ṼMS
n =

ṼMS
n (θ̂

MS

n ), which improves slightly on Theorem A.3 because of the additional smoothness imposed.

Let F (s)
u|x1,x2(u|x1,x2) = dsFu|x1,x2(−u|u+ x1, x2)/dus and f (s)

x1|x2(x1|x2) = dsfx1|x2(x1|x2)/dxs1.
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Lemma MS Suppose Conditions MS and K(i)-(iii) hold.

If hn → 0, nh3
n →∞, and E[‖x2‖6] <∞, then ṼMS

n →P VMS
0 .

Furthermore, if Condition K(iv) also holds, S ≥ 4, SF ≥ 3, and Sf ≥ 2, then

ṼMS
n = ṼMS

n (θ0) +OP(n−5/6h−5/2
n ) + oP(h2

n) +OP(n−1/3),

with the term OP(n−1/3) independent of hn, and

E
[
‖ṼMS

n (θ0)−VMS
0 ‖2

]
= h4

n(
d∑

k=1

d∑
l=1

B2
kl) +

1

nh3
n

(
d∑

k=1

d∑
l=1

Vkl) + o(h4
n + n−1h−3

n )

where

Bkl = E[(e′kx2x
′
2el){F

(1)
u|x1,x2(0| − x′2θ0,x2)f

(2)
x1|x2(−x′2θ0|x2)

+ F
(2)
u|x1,x2(0| − x′2θ0,x2)f

(1)
x1|x2(−x′2θ0|x2)

+
1

3
F

(3)
u|x1,x2(0| − x′2θ0,x2)fx1|x2(−x′2θ0|x2)}]

∫
v3K̇(v)dv

and

Vkl = E[(e′kx2x
′
2el)

2fx1|x2(−x′2θ0|x2)]

∫
|K̇(u)|2du.

A.4.3 Simulation Evidence

To investigate the finite sample properties of our proposed bootstrap-based inference procedures,

we conducted a Monte Carlo experiment. Following Horowitz (2002), and to allow for a comparison

with his bootstrap-based inference method for the smoothed maximum score estimator, we generate

data from a model with d = 1, where

x = (x1, x2)′ ∼ N
((

0

1

)
,

(
1 0

0 1

))
,

and where ε can take three distinct distributions. Specifically, DGP 1 sets ε ∼ Logistic(0, 1)/
√

2π2/3,

DGP 2 sets ε ∼ T3/
√

3, where Tk denotes a Student’s t distribution with k degrees of freedom, and
DGP 3 sets ε ∼ (1 + 2(x1 + x2)2 + (x1 + x2)4)Logistic(0, 1)/

√
π2/48. The parameter is θ0 = 1 in

all cases.

The Monte Carlo experiment employs a sample size n = 1, 000 with B = 2, 000 bootstrap

replications and S = 2, 000 simulations. For each of the three DGPs, we implement the stan-

dard non-parametric bootstrap, m-out-of-n bootstrap, and our proposed method using the two

estimators ṼMS
n and ṼND

n of V0. We report empirical coverage for nominal 95% confidence inter-

vals and their average interval length. For the case of our proposed procedures, we investigate

their performance using both (i) a grid of fixed tuning parameter values (bandwidth/derivative

step) around the MSE-optimal choice and (ii) infeasible and feasible AMSE-optimal choices of the

7



tuning parameter.

Table 1 presents the main results, which are consistent across all three simulation designs. First,

as expected, the standard nonparametric bootstrap (labeled “Standard”) does not perform well,

leading to confidence intervals with an average 64% empirical coverage rate. Second, them-out-of-n

bootstrap (labeled “m-out-of-n”) performs somewhat better for small subsamples, but leads to very

large average interval length of the resulting confidence intervals. Our proposed methods, on the

other hand, exhibit excellent finite sample performance in this Monte Carlo experiment. Results

employing the example-specific plug-in estimator ṼMS
n are presented under the label “Plug-in”while

results employing the generic numerical derivative estimator ṼND
n are reported under the label “Num

Deriv”. Empirical coverage appears stable across different values of the tuning parameters for each

method, with better performance in the case of ṼMS
n . We conjecture that n = 1, 000 is too small for

the numerical derivative estimator ṼND
n to lead to as good inference performance as ṼMS

n (e.g., note

that the MSE-optimal choice εMSE is greater than 1). Nevertheless, empirical coverage of confidence

intervals constructed using our proposed bootstrap-based method is close to 95% in all cases except

when ṼND
n is used with either the infeasible asymptotic choice εAMSE or its estimated counterpart

ε̂AMSE, and with an average interval length of at most half that of any of the m-out-of-n competing

confidence intervals. In particular, confidence intervals based on ṼMS
n implemented with the feasible

bandwidth ĥAMSE perform quite well across the three DGPs considered.

In sum, applying the bootstrap-based inference methods proposed in this note to the case of the

Maximum Score estimator of Manski (1975) lead to confidence intervals with very good coverage

and length properties in the simulation designs considered.

A.5 Example: Conditional Maximum Score Estimation

Our results also apply directly to the conditional maximum score estimator introduced by Honoré

and Kyriazidou (2000) in the context of a dynamic panel discrete choice model, which was also

recently studied by Seo and Otsu (2018). The model is

Yt = 1{X′tβ0 + γ0Yt−1 + α+ ut ≥ 0}, t = 1, 2, 3,

where β0 ∈ Rd and γ0 ∈ R are unknown parameters of interest, and α is a time-invariant unobserved
term. In addition to {Yt,Xt}3t=1, the initial condition Y0 is observed. As in maximum score example,

we need to impose a normalization on the parameters and we take (β′0, γ0) = (1,θ′0) i.e the first

element of β0 is unity.

To describe a version of the conditional maximum score estimator, partition Xt into (X1t,X
′
2t)
′

where X1t is the first element of Xt and let z = (y, x1,x
′
2,w

′)′ where y = Y2− Y1, x1 = X12−X11,

x2 = ((X22 −X21)′, Y3 − Y0)′, and w = X2 −X3. Then, the conditional maximum score estimator

is an approximate maximizer θ̂
CMS

n of M̂n with

mn(z,θ) = mCMS
n (z,θ) = y1{x1 + x′2θ ≥ 0}Ln(w)
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where bn = o(1) is a sequence of bandwidths, and Ln(x) = b−dn L(x/bn) with L(·) a kernel function.

A.5.1 Bootstrap-Based Inference

We employ the following additional notation:

ψ(x1,x2,w) = {E(A(Y0, Y3)|x1,x2,w)− E(B(Y0, Y3)|x1,x2,w)}fx1(x1|x2,w),

A(d0, d3) = 1(Y0 = d0, Y1 = 0, Y2 = 1, Y3 = d3),

B(d0, d3) = 1(Y0 = d0, Y1 = 1, Y2 = 0, Y3 = d3),

ϕ1(w;θ) =

∫ ∫ ∞
−x′2θ

ψ(x,x2,w)dxdFx2|w(x2|w)fw(w),

ϕ2(w) =

∫
x2ψ(−x′2θ0,x2,w)dFx2|w(x2|w)fw(w),

V(w;θ) =

∫
x2x

′
2

d

dx
ψ(x,x2,w)

∣∣∣∣
x=−x′2θ

dFx2|w(x2|w)fw(w),

and X = {Xt}3t=1, W = {w : ‖w‖ ≤ η}, and S = R × supp(x2) ×W for some η > 0. To verify

Assumption CRA, we impose the following primitive set of conditions.

Condition CMS Let S ≥ 1 and Sf ≥ 1 be some integers.

(i) The parameter space Θ is compact and θ0, which satisfies (1,θ′0)′ = (β′0, γ0)′, lies in the

interior of Θ.

(ii) The sample {zi}i≥1 is i.i.d. across i = 1, 2, . . . , n. The data generating process is

P(Y0 = 1|X, α) = p(X, α),

P(Yt = 1|X, α, Y0, . . . , Yt−1) = F (X′tβ0 + γ0Yt−1 + α), t = 1, 2, 3,

where F (·) is strictly increasing on the entire real line.
(iii) P(y 6= 0|x1,x2,w) > 0 on S. The density fw is continuous on W and fw(0) > 0.

(iv) The support ofX1−X2 given w ≡ X2−X3 is not contained in any proper linear subspace

of Rd for all w ∈ W and E[‖x2‖2|w] ≤ C for all w ∈ W.
(v) The conditional density fx1(x1|x2,w) is positive and bounded on S. In addition, there
exists a function Bf : Rd → R+ such that, for some ε > 0,

sup
w∈W

|fx1(ṽ|x2,w)− fx1(v|x2,w)| ≤ Bf (v,x2)|ṽ − v|ε,

with supw∈W E[‖x2‖3Bf (−x′2θ0,x2)|w] <∞.
(vi) The function ψ(x1,x2,w) is bounded and S times continuously differentiable in x1 with

bounded derivatives on S.
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(vii) The functions ϕ1(w;θ) and V(w;θ) satisfy, for some ε > 0,

sup
θ∈Θ
|ϕ1(w;θ)− ϕ1(0;θ)|+ sup

θ∈Θδ
0

‖V(w;θ)−V(0;θ)‖ ≤ C‖w‖ε, w ∈ W.

The function ϕ2 is Sf times continuously differentiable on W. Also, V(0;θ0) is positive

definite.

(viii) The kernel function L(·) is bounded, compactly supported, P -th order with 1 ≤ P ≤ Sf ,
and

∫
L(v)dv = 1.

Under these conditions, we have the following result.

Corollary CMS Suppose Condition CMS holds. If nbdn →∞ and nbd+3P
n → 0, then

3

√
nbdn(θ̂

CMS

n − θ0) argmax
s∈Rd

{
−1

2
s′VCMS

0 s + G0(s)

}
where G0 is a mean-zero Gaussian process with covariance kernel CCMS0 (·, ·), and

VCMS
0 = E[x2x

′
2ψ

(1)(−x′2θ0,x2,0)|w = 0]fw(0), ψ(1)(x,x2,w) =
d

dx
ψ(x,x2,w),

CCMS0 (s, t) = E
[
min{|x′2s|, |x′2t|}fx1|x2,w(−x′2θ0|x2,0)1{sgn(x′2s) = sgn(x′2t)}

∣∣w = 0
]
fw(0).

Furthermore, if a consistent estimator for the Hessian term is available (i.e., Ṽn →P VCMS
0 for

some estimator Ṽn), then the reshaped bootstrap consistently estimates the large sample distribution

of 3
√
nbdn(θ̂

CMS

n − θ0).

A.5.2 Drift Estimation

As we have done for maximum score example, we can also consider a case-specific estimator of

VAMSE
0 . Our proposed estimator is

ṼCMS
n = ṼCMS

n (θ̂
CMS

n ), ṼCMS
n (θ) = − 1

nh2
n

n∑
i=1

yiK̇

(
x1i + x′2iθ

hn

)
x2ix

′
2iLn(wi)

where hn = o(1) is a bandwidth, and K̇(u) = dK(u)/du with K a kernel function.

We impose Condition K on the kernel function K(·), and obtain the following result for ṼCMS
n .

Let VCMS
n = ∂2MCMS

n (θ0)/∂θ∂θ′ where MCMS
n (θ) = E[mCMS

n (z,θ)].

Lemma CMS Suppose Condition CMS and Assumption K hold with S ≥ 2.

If hn → 0 and nbdnh
3
n →∞, and E[‖x2‖6|w] ≤ C for w ∈ W, then ṼCMS

n →P VCMS
0 .

Furthermore, if S ≥ 3, then

E
[
‖ṼCMS

n (θ0)−VCMS
n ‖2

]
= O(h4

n + (nbdnh
3
n)−1),
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where the rate is sharp in the sense that there exist constants Bkl and Vkl such that

E[(Ṽ CMSn,kl(θ0)− V CMS0,kl )
2]

h4
nB+ (nbdnh

3
n)−1V

→ 1,

where Ṽ CMSn,kl(θ0) and V CMS0,kl denote the (k, l)-th elements of ṼCMS
n (θ0) and VCMS

n , respectively.

A.6 Extension: Isotonic Density Estimation

Our main ideas and results can also be used to conduct valid bootstrap-based inference in the

context of isotonic density estimation, another cube root consistent estimator with a Chernoff-type

limiting distribution. See, e.g., van der Vaart and Wellner (1996, Example 3.2.14) for a modern

textbook treatment of this example.

Suppose we observe x1, . . . , xn
iid∼ F where F is continuous distribution function supported on

[0,∞) with non-increasing density f . An extensively-studied method of estimating f(x0), x0 ∈
(0,∞), is nonparametric maximum likelihood estimation (NPMLE):

argmax
f∈F

1

n

n∑
i=1

log f(xi)

where F is the class of non-increasing densities supported on [0,∞). It is well known that the

solution to this problem, denoted by f̂n(x), is the left derivative at x of the least concave majorant

(LCM) of the empirical distribution function F̂n(·) = n−1
∑n

i=1 1(xi ≤ ·).
The asymptotic distributional result for the NPMLE in this setting is as follows.

Lemma ID If f is differentiable at x0 with f (1)(x0) < 0, then

3
√
n(f̂n(x0)− f(x0)) |4f (1)(x0)f(x0)|1/3 argmax

s∈R

{
W(s)− s2

}
where W is a standard two-sided Brownian motion with W(0) = 0.

The NPMLE estimator f̂n(x0) is not a member of the class of M -estimators considered in this

paper, but nonetheless a distributional approximation of 3
√
n(f̂n(x0) − f(x0)) can be established

using the results for cube root consistent estimators discussed herein via the switching technique

of Groeneboom (1985). Therefore, we first outline the main idea underlying this distributional

approximation because it provides an insight to our proposed bootstrap-based inference approach.

The NPMLE estimator is the left-derivative of the least concave majorant (LCM) of F̂n at x0.

Using this property, we have

Ŝn(a) ≤ x ⇐⇒ f̂n(x) ≤ a

where

Ŝn(a) = argmax
s≥0

{F̂n(s)− as}.
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This is the switching technique alluded above. Then, we have

P
[
n1/3(f̂n(x0)− f(x0)) ≤ t

]
= P

[
Ŝn(f(x0) + n−1/3t) ≤ x0

]
.

Using the definition of Ŝn(a) and change-of-variable x = x0 + sn−1/3,

Ŝn(f(x0) + n−1/3t) = argmax
x∈[0,∞)

{
F̂n(x)− (f(x0) + n−1/3t)x

}
= x0 + n−1/3 argmax

s∈[−n1/3x0,∞)

{
F̂n(x0 + sn−1/3)− (f(x0) + n−1/3t)(x0 + sn−1/3)

}
= x0 + n−1/3 argmax

s∈[−n1/3x0,∞)

{
F̂n(x0 + sn−1/3)− F̂n(x0)− (f(x0) + n−1/3t)sn−1/3

}
= x0 + n−1/3 argmax

s∈[−n1/3x0,∞)

{
n2/3(F̂n(x0 + sn−1/3)− F̂n(x0)− f(x0)sn−1/3)− ts

}
where we use that a maximizer is invariant under shifting and scaling of the objective function.

Therefore, to study the limit law of n1/3(f̂n(x0) − f(x0)), it suffi ces to look at the asymptotic

distribution of the maximizer of n2/3(F̂n(x0 + sn−1/3)− F̂n(x0)−f(x0)sn−1/3)− ts. To do that, we
can first establish weak convergence of the objective function and then apply an argmax continuous

mapping theorem.

To establish uniform weak convergence of the objective function, we let

n2/3(F̂n(x0 + sn−1/3)− F̂n(x0)− f(x0)sn−1/3)− ts = Qn(s) +Gn(s)

where

Qn(s) = n2/3
(
F (x0 + sn−1/3)− F (x0)− f(x0)sn−1/3

)
− ts,

Gn(s) = n2/3
(
F̂n(x0 + sn−1/3)− F̂n(x0)− (F (x0 + sn−1/3)− F (x0))

)
.

For the first term, using differentiability of f at x0, a Taylor expansion gives

Qn(s) =
f (1)(x0)

2
s2 − ts+ o(1),

which is non-random and the o(1) term converges uniformly with respect to s over a compact

subset of R. Note that in this M -estimation problem, the Hessian term −V0 equals f (1)(x0), the

first derivative of f at x0.

For the second term, Lindeberg-Feller CLT implies finite-dimensional convergence and a stan-

dard maximal inequality shows stochastic equicontinuity, so we can establish that for any compact

subset S ⊂ R,
Gn(s) W(f(x0)s), s ∈ S.

12



Then, an argmax continuous mapping theorem implies

P
(
n1/3(f̂n(x0)− f(x0)) ≤ t

)
→ P

(
argmax

s

{
W(f(x0)s) + f (1)(x0)s2/2− ts

}
≤ 0

)
.

Rewriting the object inside the argmax operator using properties of Brownian motion (c.f., van der

Vaart and Wellner, 1996, Problem 3.2.5), we obtain the conclusion of Lemma ID.

A.6.1 Bootstrap-based Inference

The above discussion indicates that, if ∆̃n is the left-derivative at t0 of the LCM of some generic

function Un(x), we have

P[n1/3∆̃n ≤ t] = P
(

argmax
s

{
n2/3(Un(x0 + sn−1/3)− Un(x0))− ts

}
≤ 0

)
.

Therefore, for bootstrap validity, we need to study the bootstrap counterpart n2/3(U∗n(x0+sn−1/3)−
U∗n(x0)) and, in particular, establish uniform weakly convergence in probability in order to establish

validity of the bootstrap distributional approximation.

However, as discussed in our paper, in the cube root consistent case as in Kim and Pollard

(1990) the bootstrap approximation of the objective function fails at the Hessian term. Therefore,

we reshape the M -estimator as before prior to applying the bootstrap. In particular, let ∆̃∗n be the

left-derivative at x = x0 of the LCM of F̃ ∗n(x), where

F̃ ∗n(x) = F̂ ∗n(x)− F̂n(x) +
1

2
Ṽn(x− x0)2, Ṽn = f̃ (1)

n (x0),

F̂ ∗n(·) =
∑n

i=1 1(x∗i ≤ ·), and f̃
(1)
n (x0) is a consistent estimator of f (1)(x0).

The form of the above objective function exactly mimics the intuition described in the paper:

we remove the problematic drift term under the bootstrap distribution and add back a plug-in

estimate thereof.

Theorem ID Suppose the conditions in Lemma ID hold. If f̃ (1)
n (x0)→P f

(1)(x0), then

3
√
n∆̃∗n  P |4f (1)(x0)f(x0)|1/3 argmax

s∈R

{
W(s)− s2

}
,

where ∆̃∗n be the left-derivative at x = x0 of the LCM of F̃ ∗n(x) = F̂ ∗n(x)− F̂n(x) + 1
2 Ṽn(x− x0)2.

The above bootstrap-based construction employs the reshaped objective function F̃ ∗n(x). An-

other possibility is to use F̃ ∗n(x) + f̂n(x0)x with f̂n(x0) being the NPMLE from the original sample.

If we let f̃∗n(x0) be the left-derivative at x0 of the LCM of the alternative objective function, we

have

f̃∗n(x0)− f̂n(x0) = ∆̃∗n.
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This follows because given G(x) = g(x) + cx for some constant c, the LCM of G equals the LCM

of g plus cx. In particular, suppose that this claim is false. Then, there exists a concave function

F such that G(x) ≤ F (x) for all x and F (x̃) < Lg(x̃) + cx̃ for at least one x̃, where Lg denotes

the LCM of g. Thus, F (x̃) − cx̃ < Lg(x̃) and this implies F (x̆) − cx̆ < g(x̆) for some x̆, but this

contradicts G(x) ≤ F (x) for all x.

A.6.2 Drift Estimation

In this example the counterpart of −V0 is simply f (1)(x0), the first derivative of the Lebesgue

density f(x) at x0. Thus, the estimation of the drift term can be done using standard nonparamet-

ric estimation techniques, already available in most software platforms. For methodological and

technical details see, for example, Wand and Jones (1995).

A.6.3 Simulation Evidence

We investigate the finite sample properties of confidence intervals for f(x0) constructed using the

bootstrap-based distributional approximation whose consistency was established in Theorem ID.

We employ the DGPs and simulation setting previously considered in Sen, Banerjee, and Woodroofe

(2010). This, as in the case of the Maximum Score estimator discussed in the paper, allows for a

direct comparison with other bootstrap-based inference methods and their numerical performance

already studied in previous work available in the literature.

We estimate f(x0) at the evaluation point x0 = 1 using a random sample of observations,

where three distinct distributions are considered: DGP 1 sets x ∼ Exponential(1), DGP 2 sets

x ∼ |Normal(0, 1)|, and DGP 3 sets x ∼ |T3|. As in the case of the Maximum Score example, the

Monte Carlo experiment employs a sample size n = 1, 000 with B = 2, 000 bootstrap replications

and S = 2, 000 simulations, and compares three types of bootstrap-based inference procedures:

the standard non-parametric bootstrap, m-out-of-n bootstrap, and our proposed method using two

distinct estimators of f ′(x0) (plug-in and numerical derivative).

Table 2 presents the numerical results for this example. We continue to report empirical coverage

for nominal 95% confidence intervals and their average interval length. For the case of our proposed

procedures, we again investigate their performance using both (i) a grid of fixed tuning parameter

value (derivative step/bandwidth) and (ii) infeasible and feasible AMSE-optimal choice of tuning

parameter. Also in this case, the numerical evidence is very encouraging. Our proposed bootstrap-

based inference method leads to confidence intervals with excellent empirical coverage and average

interval length, outperforming both the standard nonparametric bootstrap (which is inconsistent)

and the m-out-of-n bootstrap (which is consistent). In particular, in this example, the plug-in

method employs an off-the-shelf kernel derivative estimator, which in this case leads to confidence

intervals that are very robust (i.e., insensitive) to the choice of bandwidth. Furthermore, when

the corresponding feasible off-the-shelf MSE-optimal bandwidth is used, the resulting confidence

intervals continue to perform excellently. Finally, the generic numerical derivative estimator also

leads to very good performance of bootstrap-based infeasible and feasible confidence intervals.
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In sum, this example provides a second numerical illustration of the very good finite sample

performance of inference based on our proposed bootstrap-based distributional approximation for

cube root consistent estimators.

A.7 Proofs

A.7.1 Proof of Theorem A.1

Under the assumptions of the theorem,

rn(θ̂n − θ0) = argmax
s∈Rd

{Qn(s) + Ĝn(s)}+ oP(1),

where

Qn(s) = r2
n[Mn(θ0 + sr−1

n )−Mn(θ0)]1(θ0 + sr−1
n ∈ Θ)

and

Ĝn(s) = r2
n[M̂n(θ0 + sr−1

n )− M̂n(θ0)−Mn(θ0 + sr−1
n ) +Mn(θ0)]1(θ0 + sr−1

n ∈ Θ).

Moreover, rn(θ̂n − θ0) = OP(1) by Lemmas A.1 and A.3 and Qn + Ĝn  Q0 + G0 by Lemmas

A.2, A.4, and A.5. The result now follows from the argmax continuous mapping theorem.

A.7.1.1 Consistency

Lemma A.1 Suppose Condition CRA(i) holds and suppose rn →∞. If

M̂n(θ̂n) ≥ sup
θ∈Θ

M̂n(θ)− oP(1),

then θ̂n − θ0 = oP(1).

Proof of Lemma A.1. It suffi ces to show that every δ > 0 admits a positive constant cδ such

that

P

[
M̂n(θ0)− sup

θ∈Θ\Θδ
0

M̂n(θ) > cδ

]
→ 1. (A.2)

By assumption, supθ∈Θ |Mn(θ)−M0(θ)| = o(1). Also, it follows from Pollard (1989, Theorem 4.2)

that

sup
θ∈Θ
|M̂n(θ)−Mn(θ)| = OP(

√
n−1E[m̄n(z)2]) = OP(1/

√
nqn) = OP(r−1/6

n ) = oP(1).
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As a consequence, for any δ > 0,

M̂n(θ0)− sup
θ∈Θ\Θδ

0

M̂n(θ) = M0(θ0)− sup
θ∈Θ\Θδ

0

M0(θ) + oP(1),

so (A.2) is satisfied with cδ = [M0(θ0)− supθ∈Θ\Θδ
0
M0(θ)]/2.

A.7.1.2 Local Behavior of Mn

IfMn is twice continuously differentiable on a neighborhood Θn of θ0, then it follows from Taylor’s

theorem that∣∣∣∣Mn(θ)−Mn(θ0) +
1

2
(θ − θ0)′Vn(θ − θ0)

∣∣∣∣ ≤ Ṁn||θ − θ0||+
1

2
M̈n||θ − θ0||2, (A.3)

for every θ ∈ Θn, where

Vn = −1

2

∂2

∂θ∂θ′
Mn(θ0), Ṁn =

∥∥∥∥ ∂∂θMn(θ0)

∥∥∥∥ , M̈n = sup
θ∈Θn

∥∥∥∥ ∂2

∂θ∂θ′
[Mn(θ)−Mn(θ0)]

∥∥∥∥ .
As an immediate consequence of (A.3), we have the following result about Qn.

Lemma A.2 Suppose Condition CRA(ii) holds and suppose rn →∞. Then, for any finite K > 0,

sup
||s||≤K

|Qn(s)−Q0(s)| → 0.

Proof of Lemma A.2. Let K > 0 be given and suppose n is large enough that Kr−1
n ≤ δ,

where δ > 0 is as in Condition CRA(ii). Using (A.3) with Θn = ΘKr−1n
0 , we have, uniformly in s

with ||s|| ≤ K,

|Qn(s)−Q0(s)| =

∣∣∣∣r2
n[Mn(θ0 + sr−1

n )−Mn(θ0)] +
1

2
s′V0s

∣∣∣∣
≤ 1

2

∣∣s′(Vn −V0)s
∣∣+ rnṀn||s||+

1

2
M̈n||s||2 = K2o(1),

where the last equality uses

Vn −V0 = − ∂2

∂θ∂θ′
[Mn(θ0)−M0(θ0)]→ 0, rnṀn = rn

∥∥∥∥ ∂∂θMn(θ0)

∥∥∥∥→ 0,

16



and

M̈n = sup

θ∈Θ
Kr−1n
0

∥∥∥∥ ∂2

∂θ∂θ′
[Mn(θ)−Mn(θ0)]

∥∥∥∥
≤ 2 sup

θ∈Θ
Kr−1n
0

∥∥∥∥ ∂2

∂θ∂θ′
[Mn(θ)−M0(θ)]

∥∥∥∥+ sup

θ∈Θ
Kr−1n
0

∥∥∥∥ ∂2

∂θ∂θ′
[M0(θ)−M0(θ0)]

∥∥∥∥→ 0,

which completes the proof.

A.7.1.3 Rate of Convergence

Lemma A.3 Suppose Conditions CRA(ii) and CRA(iii) hold and suppose rn →∞. If θ̂n − θ0 =

oP(1) and if

M̂n(θ̂n) ≥ sup
θ∈Θ

M̂n(θ)− oP(r−2
n ),

then θ̂n − θ0 = OP(r−1
n ).

Proof of Lemma A.3. For any δ > 0 and any positive integer C, P[rn||θ̂n − θ0|| > 2C ] is no

greater than

P[sup
θ∈Θ

M̂n(θ)− M̂n(θ̂n) ≥ δr−2
n ] + P[||θ̂n − θ0|| > δ/2]

+
∑

j≥C,2j≤δrn

P

[
sup

2j−1<rn||θ−θ0||≤2j
M̂n(θ)− M̂n(θ0) ≥ −δr−2

n

]
.

By assumption, the probabilities on the first line go to zero for any δ > 0. As a consequence, it

suffi ces to show that the sum on the last line can be made arbitrarily small (for large n) by making

δ > 0 small and C large.

To do so, let δ > 0 be small enough so that Conditions CRA(ii) and CRA(iii) are satisfied and

lim inf
n→∞

[λmin(Vn)− M̈ δ
n] > 0,

where λmin(·) denotes the minimal eigenvalue of the argument and

Vn = − ∂2

∂θ∂θ′
Mn(θ0), M̈ δ

n = sup
θ∈Θδ

0

∥∥∥∥ ∂2

∂θ∂θ′
[Mn(θ)−Mn(θ0)]

∥∥∥∥ .
Then, for all n large enough and for any integer pair (j, C) with j ≥ C, we have:

Mn(θ0)− sup
2j−1<rn||θ−θ0||≤2j

Mn(θ)− δr−2
n ≥ 22jcn(δ, C)r−2

n

17



where

cn(δ, C) =
1

8
[λmin(Vn)− M̈ δ

n]− 2−Crn

∥∥∥∥ ∂∂θMn(θ0)

∥∥∥∥− 2−2Cδ,

and where the inequality uses the following implication of (A.3): If λmin(Vn)− M̈ δ
n ≥ 0, then

Mn(θ0)− sup
θ∈Θ′n

Mn(θ) ≥ 1

2
[λmin(Vn)− M̈ δ

n] inf
θ∈Θ′n

||θ − θ0||2 − Ṁn sup
θ∈Θ′n

||θ − θ0||

for any subset Θ′n of Θn.

Choosing C large enough that lim infn→∞ cn(δ, C) > 2c > 0 for some c > 0, we may assume

that cn(δ, C) > c for every n, in which case

∑
j≥C,2j≤δrn

P

[
sup

2j−1<rn||θ−θ0||≤2j
M̂n(θ)− M̂n(θ0) ≥ −δr−2

n

]

≤
∑

j≥C,2j≤δrn

P

[
sup

2j−1<rn||θ−θ0||≤2j
{M̂n(θ)− M̂n(θ0)−Mn(θ) +Mn(θ0)} ≥ 22jcn(δ, C)r−2

n

]

≤
∑

j≥C,2j≤δrn

P

[
sup

rn||θ−θ0||≤2j
||M̂n(θ)− M̂n(θ0)−Mn(θ) +Mn(θ0)|| ≥ 22jcr−2

n

]

≤
∑

j≥C,2j≤δrn

r2
nE
[
suprn||θ−θ0||≤2j ||M̂n(θ)− M̂n(θ0)−Mn(θ) +Mn(θ0)||

]
22jc

,

where the last inequality uses the Markov inequality.

Under Condition CRA(iii), qn sup0≤δ′≤δ E[d̄δ
′
n (z)2/δ′] = O(1) and it follows from Pollard (1989,

Theorem 4.2) that the sum on the last line is bounded by a constant multiple of

∑
j≥C,2j≤δrn

r2
n

√
E[d̄

2j/rn
n (z)2]

22j
≤
√
qn sup

0≤δ′≤δ
E[d̄δ

′
n (z)2/δ′]

∑
j≥C

1

23j/2
,

which can be made arbitrarily small by making C large.

A.7.1.4 Weak Convergence

To show that Ĝn  G0, it suffi ces to show finite-dimensional convergence and stochastic equicon-

tinuity.

Lemma A.4 Suppose Conditions CRA(iii) and CRA(iv) hold, rn → ∞, and suppose Qn(s) =

o(
√
n) for every s ∈ Rd. Then Ĝn converges to G0 in the sense of weak convergence of finite-

dimensional projections.

18



Proof of Lemma A.4. Because Ĝn(s) = n−1/2
∑n

i=1 ψn(zi; s), where

ψn(z; s) =
√
rnqn[mn(z,θ0 + sr−1

n )−mn(z,θ0)−Mn(θ0 + sr−1
n ) +Mn(θ0)]1(θ0 + sr−1

n ∈ Θ)

the result follows from the Cramér-Wold device and the Berry-Esseen inequality if it can be shown

that, for any s, t ∈ Rd,
E[ψn(z; s)ψn(z; t)]→ C0(s, t)

and

n−1/2E[|ψn(z; s)|3]→ 0.

Let s, t ∈ Rd be given and suppose without loss of generality that θ0 + sr−1
n ,θ0 + tr−1

n ∈ Θ.

Then, using Qn(s) = o(
√
n) and the representation

ψn(z; s) =
√
rnqn[mn(z,θ0 + sr−1

n )−mn(z,θ0)]− n−1/2Qn(s),

we have:

E[ψn(z; s)ψn(z; t)]

= rnqnE[{mn(z,θ0 + sr−1
n )−mn(z,θ0)}{mn(z,θ0 + tr−1

n )−mn(z,θ0)}]− n−1Qn(s)Qn(t)

→ C0(s, t)

and, using E[d̄δnn (z)3] = o(q−2
n ) (for δn = O(r−1

n )),

n−1/2E[|ψ(z; s)|3] ≤ 8n−1/2r3/2
n q3/2

n E[|mn(z,θ0 + sr−1
n )−mn(z,θ0)|3] + 8n−2|Qn(s)|3

= o(n−1/2r3/2
n q3/2

n q−2
n ) + o(n−1/2) = o(1),

as was to be shown.

Lemma A.5 Suppose Conditions CRA(iii) and CRA(v) hold and suppose rn →∞. Then, for any
finite K > 0 and for any positive ∆n with ∆n = o(1),

sup
||s−t||≤∆n

||s||,||t||≤K

|Ĝn(s)− Ĝn(t)| →P 0.

Proof of Lemma A.5. Let K > 0 be given. Proceeding as in the proof of Kim and Pollard

(1990, Lemma 4.6) and using the fact that qnδ−1
n E[d̄δnn (z)2] = O(1) (for δn = O(r−1

n )), it suffi ces to

show that

qnrn sup
||s−t||≤∆n

||s||,||t||≤K

1

n

n∑
i=1

dn(zi; s, t)2 →P 0,

where dn(z; s, t) = |mn(z,θ0 + sr−1
n )−mn(z,θ0 + tr−1

n )|/2.
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For any C > 0 and any s, t ∈ Rd with ||s||, ||t|| ≤ K,

qn
1

n

n∑
i=1

dn(zi; s, t)2 ≤ qn
1

n

n∑
i=1

d̄Kr
−1
n

n (zi)
21{qnd̄Kr

−1
n

n (zi) > C}

+CE[dn(z; s, t)]

+C
1

n

n∑
i=1

{dn(zi; s, t)− E[dn(z; s, t)]},

and therefore

qnrnE

 sup
||s−t||≤∆n

||s||,||t||≤K

1

n

n∑
i=1

dn(z; s, t)2

 ≤ qnrnE
[
d̄Kr

−1
n

n (z)21{qnd̄Kr
−1
n

n (z) > C}
]

+Crn sup
||s−t||≤∆n

||s||,||t||≤K

E[dn(z; s, t)]

+CrnE

 sup
||s−t||≤∆n

||s||,||t||≤K

| 1
n

n∑
i=1

{dn(zi; s, t)− E[dn(z; s, t)]}|

 .
For large n, the first term on the majorant side can be made arbitrarily small by making C

large. Also, for any fixed C, the second term tends to zero because ∆n → 0. Finally, Pollard (1989,

Theorem 4.2) can be used to show that for fixed C and for large n, the last term is bounded by a

constant multiple of

rnn
1/2

√
E[d̄Kr

−1
n

n (z)2] =
√
Kr−1

n

√
qnE[d̄Kr

−1
n

n (z)2/(Kr−1
n )] = O(r−1

n ) = o(1),

which gives the result.

A.7.2 Proof of Theorem A.2

Under the assumptions of the theorem,

rn(θ̃
∗
n − θ̂n) = argmax

s∈Rd
{Q̃n(s) + G̃∗n(s)}+ oP(1),

where

Q̃n(s) = r2
n[M̃n(θ̂n + sr−1

n )− M̃n(θ̂n)]1(θ̂n + sr−1
n ∈ Θ) = −1

2
s′Ṽns1(θ̂n + sr−1

n ∈ Θ)

and

G̃∗n(s) = r2
n[M̃∗n(θ̂n + sr−1

n )− M̃∗n(θ̂n)− M̃n(θ̂n + sr−1
n ) + M̃∗n(θ̂n)]1(θ̂n + sr−1

n ∈ Θ).
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Moreover, rn(θ̃
∗
n− θ̂n) = OP(1) by Lemmas A.6 and A.8 and Q̃n + G̃∗n  P Q0 + G0 by Lemmas

A.7, A.9, and A.10. The result now follows from the argmax continuous mapping theorem.

A.7.2.1 Consistency

Lemma A.6 Suppose Condition CRA(i) holds, rn → ∞, and suppose Ṽn →P V0, where V0 is

positive definite. If

M̃∗n(θ̃
∗
n) ≥ sup

θ∈Θ
M̃∗n(θ)− oP(1),

then θ̃
∗
n − θ̂n = oP(1).

Proof of Lemma A.6. It suffi ces to show that every δ > 0 admits a positive constant c∗δ such

that

P

M̃∗n(θ̂n)− sup
θ∈Θ\Θ̂δ

n

M̃∗n(θ) > c∗δ

→ 1, (A.4)

where Θ̂δ
n = {θ ∈ Θ : ||θ − θ̂n|| ≤ δ}. The process M̃∗n satisfies

M̃∗n(θ) = M̂∗n(θ)− M̂n(θ)− 1

2
(θ − θ̂n)′Ṽn(θ − θ̂n), M̂∗n(θ) =

1

n

n∑
i=1

mn(z∗i,n,θ).

It follows from Pollard (1989, Theorem 4.2) that

sup
θ∈Θ
|M̂∗n(θ)− M̂n(θ)| = OP(

√
n−1E[m̄n(z)2]) = OP(r−1/6

n ) = oP(1).

As a consequence, for any δ > 0,

M̃∗n(θ̂n)− sup
θ∈Θ\Θ̂δ

n

M̃∗n(θ) =
1

2
inf

θ∈Θ\Θ̂δ

n

(θ − θ̂n)′Ṽn(θ − θ̂n) + oP(1),

so (A.2) is satisfied with c∗δ = δ2λmin(V0 + V′0)/8.

A.7.2.2 Local Behavior of M̃n

Because

M̃n(θ) = E∗[M̃∗n(θ)] =
1

n

n∑
i=1

m̃n(zi,θ) = −1

2
(θ − θ̂n)′Ṽn(θ − θ̂n),

we have the following result about Q̃n.

Lemma A.7 Suppose rn →∞, Ṽn →P V0, and suppose θ̂n →P θ0, where θ0 is an interior point

of Θ. Then, for any finite K > 0,

sup
||s||≤K

|Q̃n(s)−
(
−1

2
s′V0s

)
| →P 0.
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Proof of Lemma A.7. Uniformly in s with ||s|| ≤ K, we have:

|Q̃n(s)−
(
−1

2
s′V0s

)
| ≤ 1

2

∣∣∣s′(Ṽn −V0)s
∣∣∣+

1

2

∣∣s′V0s
∣∣ 1(θ̂n + sr−1

n /∈ Θ) ≤ K2oP(1),

where the last equality uses Ṽn →P V0 and P(θ̂n + sr−1
n /∈ Θ)→ 0.

A.7.2.3 Rate of Convergence

Lemma A.8 Suppose Condition CRA(iii) holds, θ̂n−θ0 = OP(r−1
n ) = oP(1), and suppose Ṽn →P

V0, where V0 is positive definite. If θ̃
∗
n − θ̂n = oP(1) and if

M̃∗n(θ̃
∗
n) ≥ sup

θ∈Θ
M̃∗n(θ)− oP(r−2

n ),

then θ̃
∗
n − θ̂n = OP(r−1

n ).

Proof of Lemma A.8. For any δ > 0 and any positive integer C, P[rn||θ̃
∗
n − θ̂n|| > 2C+1] is

no greater than

P[sup
θ∈Θ

M̃∗n(θ)− M̃∗n(θ̃
∗
n) ≥ δr−2

n ] + P[||Ṽn −V0|| > δ] + P[||θ̃∗n − θ̂n|| > δ/4]

+P[rn||θ̂n − θ0|| > 2C ]

+
∑

j≥C,2j+1≤δrn

P

[
sup

2j−1<rn||θ−θ̂n||≤2j ,rn||θ̂n−θ0||≤2C ,||Ṽn−V0||≤δ
M̃∗n(θ)− M̃∗n(θ̂n) ≥ −δr−2

n

]
.

By assumption, the probabilities on the first line go to zero for any δ > 0 and the probability on

the second line can be made arbitrarily small by making C large. As a consequence, it suffi ces to

show that the sum on the last line can be made arbitrarily small (for large n) by making δ > 0

small and C large.

To do so, let δ > 0 be small enough so that Condition CRA(iii) holds and

inf
||V−V0||≤δ

λmin(V + V′) > λmin(V0 + V′0)/2.

Then, if ||Ṽn −V0|| ≤ δ, we have, for any integer pair (j, C) with j ≥ C :

M̃n(θ̂n)− sup
2j−1<rn||θ−θ̂n||≤2j

M̃n(θ)− δr−2
n ≥ 22jc∗(δ, C)r−2

n

where

c∗(δ, C) =
1

32
λmin(V0 + V′0)− 2−2Cδ.
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Choosing C large enough that c∗(δ, C) > c∗ > 0 for some c∗ > 0 and using the fact that

M̃∗n(θ)− M̃∗n(θ̂n)− M̃n(θ) + M̃n(θ̂n) = M̂∗n(θ)− M̂∗n(θ̂n)− M̂n(θ) + M̂n(θ̂n),

we therefore have:

∑
j≥C,2j+1≤δrn

P

[
sup

2j−1<rn||θ−θ̂n||≤2j ,rn||θ̂n−θ0||≤2C ,||Ṽn−V0||≤δ
M̃∗n(θ)− M̃∗n(θ̂n) ≥ −δr−2

n

]

≤
∑

j≥C,2j+1≤δrn

P

[
sup

2j−1<rn||θ−θ̂n||≤2j ,rn||θ̂n−θ0||≤2C
{M̂∗n(θ)− M̂∗n(θ̂n)− M̂n(θ) + M̂n(θ̂n)} ≥ 22jc∗r−2

n

]

≤
∑

j≥C,2j+1≤δrn

P

[
sup

rn||θ−θ̂n||≤2j ,rn||θ̂n−θ0||≤2C
||M̂∗n(θ)− M̂∗n(θ̂n)− M̂n(θ) + M̂n(θ̂n)|| ≥ 22jc∗r−2

n

]

≤
∑

j≥C,2j+1≤δrn

r2
nE
[
suprn||θ−θ0||≤2j+1,rn||θ′−θ0||≤2C ||M̂∗n(θ)− M̂∗n(θ′)− M̂n(θ) + M̂n(θ′)||

]
22jc∗

,

where the last inequality uses the Markov inequality.

Under Condition CRA(iii), qn sup0≤δ′≤δ E[d̄δ
′
n (z)2/δ′] = O(1) and Pollard (1989, Theorem 4.2)

can be used to show that the sum on the last line is bounded by a constant multiple of

∑
j≥C,2j+1≤δrn

r2
n

√
E[d̄

2j+1/rn
n (z)2]

22j
≤
√

2qn sup
0≤δ′≤δ

E[d̄δ
′
n (z)2/δ′]

∑
j≥C

1

23j/2
,

which can be made arbitrarily small by making C large.

A.7.2.4 Weak Convergence

To show that G̃∗n  P G0, it suffi ces to show finite-dimensional conditional weak convergence in

probability and stochastic equicontinuity.

Lemma A.9 Suppose Conditions CRA(iii) and CRA(iv) hold, θ̂n − θ0 = OP(r−1
n ) = oP(1), and

suppose sup||s||≤K |Ĝn(s) + Qn(s)| = oP(
√
n) for every finite K > 0. Then G̃∗n converges to G0 in

the sense of conditional weak convergence in probability of finite-dimensional projections.

Proof of Lemma A.9. Because G̃∗n(s) = n−1/2
∑n

i=1 ψ̂n(z∗i,n; s), where

ψ̂n(z; s) =
√
rnqn[mn(z, θ̂n + sr−1

n )−mn(z, θ̂n)− M̂n(θ̂n + sr−1
n ) + M̂n(θ̂n)]1(θ̂n + sr−1

n ∈ Θ),
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the result follows from the Cramér-Wold device and the Berry-Esseen inequality if it can be shown

that, for any s, t ∈ Rd,

E∗[ψ̂n(z∗; s)ψ̂n(z∗; t)] =
1

n

n∑
i=1

ψ̂n(zi; s)ψ̂n(zi; t)→P C0(s, t)

and

n−1/2E∗[|ψ̂n(z∗; s)|3] =
1

n3/2

n∑
i=1

|ψ̂n(zi; s)|3 →P 0.

Let s, t ∈ Rd be given and suppose without loss of generality that θ̂n + sr−1
n , θ̂n + tr−1

n ∈ Θ.

Because rn(θ̂n − θ0) = OP(1), we have:

Q̂n(s) = r2
n[M̂n(θ̂n + sr−1

n )− M̂n(θ̂n)]1(θ̂n + sr−1
n ∈ Θ)

= {Ĝn[rn(θ̂n − θ0) + s] +Qn[rn(θ̂n − θ0) + s]} − {Ĝn[rn(θ̂n − θ0)] +Qn[rn(θ̂n − θ0)]}

= oP(
√
n)

and, using E[d̄δnn (z)4] = o(q−3
n rn) (for δn = O(r−1

n )) and Pollard (1989, Theorem 4.2),

rnqnE∗[{mn(z∗, θ̂n + sr−1
n )−mn(z∗, θ̂n)}{mn(z∗, θ̂n + tr−1

n )−mn(z∗, θ̂n)}]− Ĉn(s, t)

= rnqn
1

n

n∑
i=1

{mn(zi, θ̂n + sr−1
n )−mn(zi, θ̂n)}{mn(zi, θ̂n + tr−1

n )−mn(zi, θ̂n)} − Ĉn(s, t)

= oP(rnqnn
−1/2

√
q−3
n rn) = oP(1),

where

Ĉn(s, t) = rnqn E[{mn(z,θ + sr−1
n )−mn(z,θ)}{mn(z,θ + tr−1

n )−mn(z,θ)}]
∣∣
θ=θ̂n

= C0(s, t) + oP(1).

Using these facts and the representation

ψ̂n(z; s) =
√
rnqn[mn(z, θ̂n + sr−1

n )−mn(z, θ̂n)]− n−1/2Q̂n(s),

we have:

E∗[ψ̂n(z∗; s)ψ̂n(z∗; t)]

= rnqnE∗[{mn(z∗, θ̂n + sr−1
n )−mn(z∗, θ̂n)}{mn(z∗, θ̂n + tr−1

n )−mn(z∗, θ̂n)}]− n−1Q̂n(s)Q̂n(t)

= C0(s, t) + oP(1).
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and, using E[d̄δnn (z)3] = o(q−2
n ) (for δn = O(r−1

n )),

n−1/2E∗[|ψ̂n(z∗; s)|3] =
1

n3/2

n∑
i=1

|ψ̂n(zi; s)|3

≤ 8n−1/2r3/2
n q3/2

n

1

n

n∑
i=1

|mn(zi, θ̂n + sr−1
n )−mn(zi, θ̂n)|3 + 8n−2|Q̂n(s)|3

= oP(n−1/2r3/2
n q3/2

n q−2
n ) + oP(n−1/2) = oP(1),

as was to be shown.

Lemma A.10 Suppose Conditions CRA(iii) and CRA(v) hold and suppose θ̂n − θ0 = OP(r−1
n ) =

oP(1). Then, for any finite K > 0 and for any positive ∆n with ∆n = o(1),

sup
||s−t||≤∆n

||s||,||t||≤K

|G̃∗n(s)− G̃∗n(t)| →P 0.

Proof of Lemma A.10. Let K > 0 be given. Proceeding as in the proof of Kim and Pollard

(1990, Lemma 4.6) and using qnδ−1
n E[d̄δnn (z)2] = O(1) (for δn = O(r−1

n )) along with the fact that

θ̂n − θ0 = OP(r−1
n ), it suffi ces to show that, for every finite k > 0,

qnrn1{rn||θ̂n − θ0|| ≤ k} sup
||s−t||≤∆n

||s||,||t||≤K

1

n

n∑
i=1

d̂n(z∗i,n; s, t)2

≤ qnrn sup
||s−t||≤∆n

||s||,||t||≤K+k

1

n

n∑
i=1

dn(z∗i,n; s, t)2 →P 0,

where

d̂n(z; s, t) = |mn(z, θ̂n + sr−1
n )−mn(z, θ̂n + tr−1

n )|/2 = dn(z; rn(θ̂n − θ0) + s, rn(θ̂n − θ0) + t).

Let k > 0 be given. For any C > 0 and any s, t ∈ Rd with ||s||, ||t|| ≤ K + k,

qnrn
1

n

n∑
i=1

dn(z∗i,n; s, t)2 ≤ qnrn
1

n

n∑
i=1

d̄(K+k)r−1n
n (z∗i,n)21{qnd̄(K+k)r−1n

n (z∗i,n) > C}

+CrnE[dn(z; s, t)]

+Crn
1

n

n∑
i=1

{dn(zi,n; s, t)− E[dn(z; s, t)]}

+Crn
1

n

n∑
i=1

{dn(z∗i,n; s, t)− E∗[dn(z∗; s, t)]},
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and therefore

qnrnE

 sup
||s−t||≤∆n

||s||,||t||≤K+k

1

n

n∑
i=1

dn(z∗i,n; s, t)2

 ≤ qnrnE

[
1

n

n∑
i=1

d̄(K+k)r−1n
n (z∗i,n)21{qnd̄(K+k)r−1n

n (z∗i,n) > C}
]

+Crn sup
||s−t||≤∆n

||s||,||t||≤K+k

E[dn(z; s, t)]

+CrnE

 sup
||s−t||≤∆n

||s||,||t||≤K+k

| 1
n

n∑
i=1

{dn(zi,n; s, t)− E[dn(z; s, t)]}|


+CrnE

 sup
||s−t||≤∆n

||s||,||t||≤K+k

| 1
n

n∑
i=1

{dn(z∗i,n; s, t)− E∗[dn(z∗; s, t)]}|

 .
For large n, the first term on the majorant side can be made arbitrarily small by making C

large. Also, for any fixed C, the second term tends to zero because ∆n → 0. Finally, Pollard (1989,

Theorem 4.2) can be used to show that for fixed C and for large n, each of the last two terms is

bounded by a constant multiple of

rnn
1/2

√
E[d̄

(K+k)r−1n
n (z)2] =

√
K + kr−1

n

√
qnE[d̄

(K+k)r−1n
n (z)2/({K + k}r−1

n )] = O(r−1
n ) = o(1),

which gives the result.

A.7.3 Proof of Theorem A.3

A.7.3.1 Consistency

Without loss of generality, assume P[rn|θ̂ − θ0| ≤ C] = 1 for some fixed constant C. Write

V̄n,kl(θ) = E[Ṽn,kl(θ)]. Consider the following decomposition

Ṽ NDn,kl(θ̂n) = V̄ NDn,kl(θ0) +
[
Ṽ NDn,kl(θ0)− V̄ NDn,kl(θ0)

]
+R1,n +R2,n,

where

R1,n = V̄ NDn,kl(θ̂n)− V̄ NDn,kl(θ0)

R2,n = Ṽ NDn,kl(θ̂n)− Ṽ NDn,kl(θ0)− V̄ NDn,kl(θ̂n) + V̄ NDn,kl(θ0).

By definition,

V̄ NDn,kl(θ) = − 1

4ε2n

[
Mn(θ + εnek + εnel)−Mn(θ − εnek + εnel)

−Mn(θ + εnek − εnel) +Mn(θ − εnek − εnel)
]
.
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Using (A.3),∣∣∣∣Mn(θ0 + εnek + εnel)−Mn(θ0) +
ε2n
2

(ek + el)
′Vn(ek + el)

∣∣∣∣ ≤ o(r−1
n εn + ε2n)

where we use Ṁn = o(r−1
n ) and M̈n = o(1). Then,

V̄ NDn,kl(θ0) =
1

4

[
(ek + el)

′Vn(ek + el)− (ek − el)
′Vn(ek − el)

]
+ o(r−1

n ε−1
n + 1)

= e′kVnel + o(r−1
n ε−1

n + 1).

By condition CRA(ii), we have Vn → V0. Therefore, V̄ND
n,kl(θ0) converges to e′kV0el = V0,kl.

It remains to show Ṽ NDn,kl(θ0) − V̄ NDn,kl(θ0) = oP(1), R1,n = oP(1), and R2,n = oP(1). First,

note that Ṽ NDn,kl(θ0) − V̄ NDn,kl(θ0) is mean zero and its variance is bounded by a constant multiple of

ε−4
n n−1E[d̄2εn

n (z)2] = O(n−1q−1
n ε−3

n ). Then, Ṽ NDn,kl(θ0)− V̄ NDn,kl(θ0) = OP((εnrn)−3/2) = oP(1).

Next, using (A.3),

Mn(θ̂n + εn[ek + el])−Mn(θ0 + εn[ek + el])

= −1

2
(θ̂n − θ0 + εn[ek + el])

′Vn(θ̂n − θ0 + εn[ek + el]) +
ε2n
2

(ek + el)
′Vn(ek + el) + o(r−1

n εn + ε2n)

≤ C(‖θ̂ − θ0‖2 + εn‖θ̂ − θ0‖) + o(r−1
n εn + ε2n),

and therefore R1,n = OP(r−2
n ε−2

n + ε−1
n r−1

n ) + o(r−1
n ε−1

n + 1) = oP(1).

Finally, by adding and subtracting M̂n(θ0)−Mn(θ0) to the left-hand side of R2,n, it suffi ces to

analyze

ε−2
n sup
|θ−θ0|≤Cr−1n +2εn

∣∣∣M̂n(θ)− M̂n(θ0)− {Mn(θ)−Mn(θ0)}
∣∣∣ .

Letting tn = Cr−1
n + 2εn, and applying the maximal inequality in Pollard (1989, Theorem 4.2),

ε−2
n E sup

|θ−θ0|≤tn

∣∣∣M̂n(θ)− M̂n(θ0)− {Mn(θ)−Mn(θ0)}
∣∣∣

≤ Cε−2
n n−1/2(E|d̄tnn (z)|2)1/2

≤ Cε−2
n n−1/2q−1/2

n (r−1
n + εn)1/2 = O((εnrn)−3/2).

This implies that R2,n = oP(1).
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A.7.3.2 Approximate Mean Squared Error

Define V̌ND
n = ṼND

n (θ0). Since Ṽ NDn,kl = V̌ NDn,kl + R1,n + R2,n, our first goal is to show that R1,n =

oP(ε2n) +OP(r−1
n ) and R2,n = oP(r

−3/2
n ε

−3/2
n ). For θ,ϑ ∈ Θδ

0, using a Taylor approximation,

Mn(θ)−Mn(ϑ)

= (θ − ϑ)′
∂

∂θ
Mn(ϑ)− 1

2
(θ − ϑ)′Vn(θ − ϑ)

+
1

6

∑
j1,j2,j3

∂3Mn(ϑ)

∂θj1∂θj2∂θj3
(θj1 − ϑj1)(θj2 − ϑj2)(θj3 − ϑj3)

+
1

24

∑
j1,j2,j3,j4

∂4Mn(ϑ+ ξ)

∂θj1∂θj2∂θj3∂θj4
(θj1 − ϑj1)(θj2 − ϑj2)(θj3 − ϑj3)(θj4 − ϑj4) (A.5)

where ξ is a mean-value between 0 and θ − ϑ. Then,

Mn(θ̂n + εn[ek + el])−Mn(θ0)−Mn(θ0 + εn[ek + el]) +Mn(θ0)

= (θ̂n − θ0)′
∂

∂θ
Mn(θ0)− 1

2
(θ̂n − θ0)′Vn(θ̂n − θ0)− εn(ek + el)

′Vn(θ̂n − θ0)

+
1

6

∑
j1,j2,j3

∂3Mn(θ0)

∂θj1∂θj2∂θj3
e′j1(θ̂n − θ0)e′j2(θ̂n − θ0)e′j3(θ̂n − θ0)

+
εn
2

∑
j1,j2,j3

∂3Mn(θ0)

∂θj1∂θj2∂θj3
e′j1(ek + el)e

′
j2(θ̂n − θ0)e′j3(θ̂n − θ0)

+
ε2n
2

∑
j1,j2,j3

∂3Mn(θ0)

∂θj1∂θj2∂θj3
e′j1(ek + el)e

′
j2(ek + el)e

′
j3(θ̂n − θ0)

+
ε3n
6

∑
j1,j2,j3

∂3Mn(θ0)

∂θj1∂θj2∂θj3
e′j1(ek + el)e

′
j2(ek + el)e

′
j3(ek + el)

+
1

24

∑
j1,j2,j3,j4

∂4Mn(θ0 + ξ1)

∂θj1∂θj2∂θj3∂θj4
e′j1(θ̂n − θ0 + εn[ek + el])e

′
j2(θ̂n − θ0 + εn[ek + el])

× e′j3(θ̂n − θ0 + εn[ek + el])e
′
j4(θ̂n − θ0 + εn[ek + el])

− ε4n
24

∑
j1,j2,j3,j4

∂4Mn(θ0 + ξ2)

∂θj1∂θj2∂θj3∂θj4
e′j1(ek + el)e

′
j2(ek + el)e

′
j3(ek + el)e

′
j4(ek + el)
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where ξ1 and ξ2 are also mid-points as ξ. Using uniform convergence of fourth derivatives, the last

two lines equal

=
1

24

∑
j1,j2,j3,j4

∂4Mn(θ0)

∂θj1∂θj2∂θj3∂θj4
e′j1(θ̂n − θ0 + εn[ek + el])e

′
j2(θ̂n − θ0 + εn[ek + el])

× e′j3(θ̂n − θ0 + εn[ek + el])e
′
j4(θ̂n − θ0 + εn[ek + el])

− ε4n
24

∑
j1,j2,j3,j4

∂4Mn(θ0)

∂θj1∂θj2∂θj3∂θj4
e′j1(ek + el)e

′
j2(ek + el)e

′
j3(ek + el)e

′
j4(ek + el) + oP(ε4n)

where we use ‖θ̂n − θ0‖ = oP(εn). By expanding the terms,

1

24

∑
j1,j2,j3,j4

∂4Mn(θ0)

∂θj1∂θj2∂θj3∂θj4
e′j1(θ̂n − θ0 + εn[ek + el])e

′
j2(θ̂n − θ0 + εn[ek + el])

× e′j3(θ̂n − θ0 + εn[ek + el])e
′
j4(θ̂n − θ0 + εn[ek + el])

=
1

24

∑
j1,j2,j3,j4

∂4Mn(θ0)

∂θj1∂θj2∂θj3∂θj4
e′j1(θ̂n − θ0)e′j2(θ̂n − θ0)e′j3(θ̂n − θ0)e′j4(θ̂n − θ0)

+
εn
6

∑
j1,j2,j3,j4

∂4Mn(θ0)

∂θj1∂θj2∂θj3∂θj4
e′j1(ek + el)e

′
j2(θ̂n − θ0)e′j3(θ̂n − θ0)e′j4(θ̂n − θ0)

+
ε2n
2

∑
j1,j2,j3,j4

∂4Mn(θ0)

∂θj1∂θj2∂θj3∂θj4
e′j1(ek + el)e

′
j2(ek + el)e

′
j3(θ̂n − θ0)e′j4(θ̂n − θ0)

+
ε3n
4

∑
j1,j2,j3,j4

∂4Mn(θ0)

∂θj1∂θj2∂θj3∂θj4
e′j1(ek + el)e

′
j2(ek + el)e

′
j3(ek + el)e

′
j4(θ̂n − θ0)

+
ε4n
24

∑
j1,j2,j3,j4

∂4Mn(θ0)

∂θj1∂θj2∂θj3∂θj4
e′j1(ek + el)e

′
j2(ek + el)e

′
j3(ek + el)e

′
j4(ek + el).

Then, because

− 4ε2n

[
V̄ NDn,kl(θ̂n)− V̄ NDn,kl(θ0)

]
= Mn(θ̂n + εn[ek + el])−Mn(θ0)−Mn(θ0 + εn[ek + el]) +Mn(θ0)

−Mn(θ̂n + εn[ek − el]) +Mn(θ0) +Mn(θ0 + εn[ek − el])−Mn(θ0)

−Mn(θ̂n − εn[ek − el]) +Mn(θ0) +Mn(θ0 − εn[ek − el])−Mn(θ0)

+Mn(θ̂n − εn[ek + el])−Mn(θ0)−Mn(θ0 − εn[ek + el]) +Mn(θ0),
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we have

− 4ε2n

[
V̄ NDn,kl(θ̂n)− V̄ NDn,kl(θ0)

]
= ε2n

∑
j1,j2,j3

∂3Mn(θ0)

∂θj1∂θj2∂θj3
e′j1(ek + el)e

′
j2(ek + el)e

′
j3(θ̂n − θ0)

− ε2n
∑

j1,j2,j3

∂3Mn(θ0)

∂θj1∂θj2∂θj3
e′j1(ek − el)e

′
j2(ek − el)e

′
j3(θ̂n − θ0)

+ ε2n
∑

j1,j2,j3,j4

∂4Mn(θ0)

∂θj1∂θj2∂θj3∂θj4
e′j1(ek + el)e

′
j2(ek + el)e

′
j3(θ̂n − θ0)e′j4(θ̂n − θ0)

− ε2n
∑

j1,j2,j3,j4

∂4Mn(θ0)

∂θj1∂θj2∂θj3∂θj4
e′j1(ek − el)e

′
j2(ek − el)e

′
j3(θ̂n − θ0)e′j4(θ̂n − θ0) + oP(ε4n)

= OP(ε2nr
−1
n ) + oP(ε4n)

where we use r−1
n = o(εn). Note that the term OP(ε2nr

−1
n ) is independent of εn after divided by ε2n.

Therefore, R1,n = oP(ε2n) +OP(r−1
n ).

For term R2,n, consider

ε−2
n

[
M̂n(θ̂n + εne)− M̂n(θ0 + εne)−Mn(θ̂n + εne) +Mn(θ0 + εne)

]
for some d-dimensional vector e. It suffi ces to show

ε−2
n sup
‖s−t‖≤∆n

‖s‖,‖t‖≤C

∣∣∣M̂n(θ0 + εns)− M̂n(θ0 + εnt)−Mn(θ0 + εns) +Mn(θ0 + εnt)
∣∣∣ = oP(r−3/2

n ε−3/2
n )

for ∆n = o(1). Note that this is almost identical to the statement in Lemma A.8, except that rn
in Lemma A.8 is replaced by ε−1

n . Doing the same calculation,

ε−2
n sup
‖s−t‖≤∆n

‖s‖,‖t‖≤C

∣∣∣M̂n(θ0 + εns)− M̂n(θ0 + εnt)−Mn(θ0 + εns) +Mn(θ0 + εnt)
∣∣∣

≤ ε−2
n r−2

n (rnεn)1/2oP(1) = oP(r−3/2
n ε−3/2

n ).

Now, we calculate the constants for leading bias and variance. Using (A.5),

E[V̌ NDn,kl] = V̄ NDn,kl(θ0)

=
1

2
e′kVnel +

ε2n
6

(
∂4Mn(θ0)

∂θ3
k∂θl

+
∂4Mn(θ0)

∂θk∂θ
3
l

)
.

Thus, the constant for the leading bias is

Bkl =
1

6
lim
n→∞

(
∂4Mn(θ0)

∂θ3
k∂θl

+
∂4Mn(θ0)

∂θk∂θ
3
l

)
=

1

6

(
∂4M0(θ0)

∂θ3
k∂θl

+
∂4M0(θ0)

∂θk∂θ
3
l

)
.
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Next, consider the variance of V̌ NDn,kl. To save space, write

mni(ε1, ε2) = mn(zi,θ0 + ε1ek + ε2el)

Recall that

V̌ NDn,kl = − 1

4ε2nn

n∑
i=1

[mni(εn, εn)−mni(εn,−εn)−mni(−εn, εn) +mni(−εn,−εn)]

and

V[Ṽ NDn,kl(θ0)] =
1

16ε4nn
V (mni(εn, εn)−mni(εn,−εn)−mni(−εn, εn) +mni(−εn,−εn))

=
1

16ε4nn
E
[
{mni(εn, εn)−mni(εn,−εn)−mni(−εn, εn) +mni(−εn,−εn)}2

]
− 1

n
[V̄ND

n,kl(θ0)]2

From the above calculation, the second term in the last equation is O(n−1). By condition CRA(iv)

ε−1
n qnE[{mn(z,θ0 + sεn)−mn(z,θ0)}{mn(z,θ0 + tεn)−mn(z,θ0)}]→ C0(s, t).

We have

lim
n→∞

ε−1
n qnE

[
{mni(εn, εn)−mni(εn,−εn)−mni(−εn, εn) +mni(−εn,−εn)}2

]
= 2C0(ek + el, ek + el) + 2C0(ek − el, ek − el)− 4C0(ek + el, ek − el)− 4C0(ek + el,−ek + el)

where we use C0(s,−s) = 0 and C0(s, t) = C0(−s,−t). Then,

V[Ṽ NDn,kl(θ0)] =
1

r3
nε

3
n

[Vkl + o(1)] +O(n−1)

where Vkl = 1
8 [C0(ek+el, ek+el)+C0(ek−el, ek−el)−2C0(ek+el, ek−el)−2C0(ek+el,−ek+el)].

A.7.4 Proof of Corollary MS

It suffi ces to verify that Condition MS implies Condition CRA0.

Condition CRA0(i). The manageability assumption can be verified using the same argument

as in Kim and Pollard (1990). Note that the function |mMS(z,θ)| is bounded by unity in this
example, and thus finite second moment condition holds. Arguing as in Manski (1985), we can

show that θ0 uniquely maximizes M0(θ) over the parameter set. Well-separatedness follows from

unique maximum, compactness of the parameter space, and continuity of the function M0(θ).

Condition CRA0(ii). Conditions MS(iii) and MS(iv) imply this condition.

Condition CRA0(iii). Uniform manageability can be verified using the same argument as in
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Kim and Pollard (1990). Note dδ0(z) = sup‖θ−θ0‖≤δ |1(x1 + x′2θ ≥ 0) − 1(x1 + x′2θ0 ≥ 0)|. The
condition sup0<δ′≤δ E[d̄δ

′
0 (z)]/δ′ <∞ is verified in Abrevaya and Huang (2005).

Condition CRA0(iv). Since dδ0(z)2 = dδ0(z), E[dδn0 (z)3] = O(δn) and E[dδn0 (z)4] = O(δn), which

implies the first condition. As noted in Abrevaya and Huang (2005),

CMS0 (s, t) = E[min{|x′2s|, |x′2t|}1{sgn(x′2s) = sgn(x′2t)}fx1|x2(−x′2θ0|x2)].

From this representation, it follows that CMS0 (s, s) + CMS0 (t, t) − 2CMS0 (s, t) > 0 for s 6= t. Using

2xy = x2 + y2 − (x− y)2, it suffi ces to show for δn = O(r−1
n ),

sup
θ∈Θδn

0

∣∣rnE|m(z1,θ + s/rn)−m(z1,θ + t/rn)|2 − L0(s− t)
∣∣ = o(1)

for L0 defined in Corollary MS. We have

E|mMS(z,θ1)−mMS(z,θ2)|2

= E1(x1 + x′2θ1 ≥ 0 > x1 + x′2θ2) + E1
(
x1 + x′2θ2 ≥ 0 > x1 + x′2θ1

)
= E

[
{Fx1|x2(−x′2θ2|x2)− Fx1|x2(−x′2θ1|x2)}1

(
x′2θ2 < x′2θ1

)]
+ E

[
{Fx1|x2(−θ

′
1x2|x2)− Fx1|x2(−x′2θ2|x2)}1

(
x′2θ1 < x′2θ2

)]
= E[fx1|x2(−x′2θ0|x2)x′2(θ1 − θ2)1

(
x′2θ2 < x′2θ1

)
]

+ E[fx1|x2(−x′2θ0|x2)x′2(θ1 − θ2)1
(
x′2θ1 < x′2θ2

)
] +R

where θ1 = θ + s/rn, θ2 = θ + t/rn, and

R = E
[
{Fx1|x2(−x′2θ2|x2)− Fx1|x2(−x′2θ0|x2)− fx1|x2(−x′2θ0|x2)x′2(−θ2 + θ0)}1(x′2θ2 < x′2θ1)

]
− E

[
{Fx1|x2(−x′2θ1|x2)− Fx1|x2(−x′2θ0|x2)− fx1|x2(−x′2θ0|x2)x′2(−θ1 + θ0)}1(x′2θ2 < x′2θ1)

]
+ E

[
{Fx1|x2(−x′2θ1|x2)− Fx1|x2(−x′2θ0|x2)− fx1|x2(−x′2θ0|x2)x′2(−θ1 + θ0)}1(x′2θ1 < x′2θ2)

]
− E

[
{Fx1|x2(−x′2θ2|x2)− Fx1|x2(−x′2θ0|x2)− fx1|x2(−x′2θ0|x2)x′2(−θ2 + θ0)}1(x′2θ1 < x′2θ2)

]
.

By continuous differentiability of fx1|x2 with bounded derivative,

|R| ≤ 4 sup
x1,x2

∣∣∣f (1)
x1|x2(x1|x2)

∣∣∣ sup
θ∈Θδn

0

‖θ − θ0 + (s + t)r−1
n ‖2E‖x2‖2 = o(r−1

n ).

Then,

rnE|mMS(z,θ + s/rn)−mMS(z,θ + t/rn)|2

= E[fx1|x2(−x′2θ0|x2)x′2(−t + s)1(x′2t < x′2s)] + E[fx1|x2(−x′2θ0|x2)x′2(−s + t)1(x′2s < x′2t)] + o(1)

= E[fx1|x2(−x′2θ0|x2)|x′2s− x′2t|] + o(1).
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Since the remainder term is uniformly small in θ ∈ Θδn
0 , the verification of Condition CRA0(iv) is

complete.

Condition CRA0(v). The first part easily follows from d̄δ0(z) ≤ 1, while the second part follows

from the above calculation for L0.

A.7.5 Proof of Lemma MS

A.7.5.1 Consistency

For consistency, we use Conditions MS and K(i)-(iii), E‖x2‖6 <∞, hn → 0, and nh3
n →∞. Recall

that ṼMS
n = ṼMS

n (θ̂n), set V̄MS
n (θ) = E[ṼMS

n (θ)], and note that

ṼMS
n = ṼMS

n (θ0) + [V̄MS
n (θ̂

MS

n )− V̄MS
n (θ0)] + [ṼMS

n − ṼMS
n (θ0)− V̄MS

n (θ̂
MS

n ) + V̄MS
n (θ0)].

Consistency of ṼMS
n then follows from the following four results:

V̄MS
n (θ0) = VMS

0 + o(1), (A.6)

ṼMS
n (θ0)− V̄MS

n (θ0) = oP(1), (A.7)

V̄MS
n (θ̂

MS

n )− V̄MS
n (θ0) = oP(1), (A.8)

ṼMS
n − ṼMS

n (θ0)− V̄MS
n (θ̂

MS

n ) + V̄MS
n (θ0) = OP(n−5/6h−5/2

n ). (A.9)

Equation (A.6) holds because

− E
[
Ṽ MSn (θ0)

]
= h−2

n E
[
x2x

′
2(2y − 1)K̇

(
x′β0/hn

)]
= h−1

n E
[
x2x

′
2

∫ [
1− 2Fu|x1,x2(−vhn|vhn − x′2θ0,x2)

]
K̇(v)fx1|x2(vhn − x′2θ0|x2)dv

]
= −2E

[
x2x

′
2

∫
F

(1)
u|x1,x2(−ξ|ξ − x′2θ0,x2)vK̇(v)fx1|x2(vhn − x′2θ0|x2)dv

]

where ξ is a mean value between vhn and 0. By boundedness of fx1|x2(v|x2) and F (1)
u|x1,x2(−v|v −

x′2θ0,x2) and continuity with respect to v, the dominated convergence theorem implies∫
x2x

′
2

∫
2F

(1)
u|x1,x2(−ξ|ξ − x′2θ0,x2)vK̇(v)fx1|x2(vhn − x′2θ0|x2)dvdFx2(x2)

→ 2E
[
x2x

′
2F

(1)
u|x1,x2(0| − x′2θ0,x2)fx1|x2(−x′2θ0|x2)

] ∫
vK̇(v)du = VMS

0

where we use
∫
vK̇(v)dv = −1.

Equation (A.7) follows directly because the variance of V[ṼMS
n (θ0)] = O(n−1h−3

n ), as shown

below.
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For Equation (A.8),

V̄MS
n (θ)

= h−2
n

∫
x2x

′
2

∫
{1− 2Fu|x1,x2(−x′β0|x1,x2)}K̇({x1 + x′2θ}/hn)fx1|x2(x1|x2)dx1dFx2(x2)

= h−1
n

∫
x2x

′
2

∫
{1− 2Fu|x1,x2(−vhn|vhn − x′2θ0,x2)}K̇(v + x′2(θ − θ0)h−1

n )

× fx1|x2(vhn − x′2θ0|x2)dvdFx2(x2)

= −2

∫
x2x

′
2

∫
vF

(1)
u|x1,x2(−ζ|ζ − x′2θ0,x2)K̇(v + x′2(θ − θ0)h−1

n )

× fx1|x2(vhn − x′2θ0|x2)dvdFx2(x2).

where ζ lies between vhn and 0, and does not depend on θ. Then,

∥∥V̄MS
n,kl(θ)− V̄MS

n,kl(θ0)
∥∥ ≤ C‖θ − θ0‖h−1

n

(∫
B(v)dv

)
E‖x2‖3

where we use boundedness of F (1)
u|x, fx1|x2 , and Assumption K(ii). Then, by ‖θ̂

MS

n −θ0‖ = OP(n−1/3) =

oP(hn), which establishes the result.

Finally, we verify Equation (A.9). Using Pollard (1989, Theorem 4.2), it suffi ces to show

E

[
sup

|θ−θ0|≤Cn−1/3

∣∣∣∣K̇ (x1 + x′2θ

hn

)
− K̇

(
x1 + x′2θ0

hn

)∣∣∣∣2 ‖x2x
′
2‖2
]

= O(n−2/3h−1
n ).

By the assumed Lipschitz condition on K̇,

sup
|θ−θ0|≤Cn−1/3

∣∣∣∣K̇ (x1 + x′2θ

hn

)
− K̇

(
x1 + x′2θ0

hn

)∣∣∣∣ ≤ CB(x′β0/hn)‖x2‖h−1
n n−1/3,

and therefore

E

[
sup

|θ−θ0|≤Cn−1/3

∣∣∣∣K̇ (x1 + x′2θ

hn

)
− K̇

(
x1 + x′2θ0

hn

)∣∣∣∣2 ‖x2x
′
2‖2
]

≤ Cn−2/3h−2
n E

[
B(x′β0/hn)2‖x2‖6

]
≤ Cn−2/3h−1

n sup
x1,x2

fx1|x2(x1|x2)

(∫
B(v)2dv

)
E‖x2‖6,

which verifies the final result.
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A.7.5.2 Approximate Mean Squared Error

First we show that ‖V̄MS
n (θ̂

MS

n )−V̄MS
n (θ0)‖ = oP(h2

n)+OP(n−1/3) for Equation (A.8) above. Changing

variables and using a Taylor expansion, we have

V̄MS
n (θ) = −h−2

n E
[
x2x

′
2

∫
{1− 2Fu|x1,x2(−x′β0|x1,x2)}K̇

(
x1 + x′2θ

hn

)
fx1|x2(x1|x2)dx1

]
= 2h−1

n

∫
x2x

′
2

∫
(vhn − x′2(θ − θ0))F

(1)
u|x1,x2(0| − x′2θ0,x2)K̇(v)

× fx1|x2(−x′2θ0|x2)dvdFx2(x2)

+ 2h−1
n

∫
x2x

′
2

∫
|vhn − x′2(θ − θ0)|2F (1)

u|x1,x2(0| − x′2θ0,x2)K̇(v)

× f (1)
x1|x2(−x′2θ0|x2)dvdFx2(x2)

+ h−1
n

∫
x2x

′
2

∫
{vhn − x′2(θ − θ0)}3F (1)

u|x1,x2(0| − x′2θ0,x2)K̇(v)

× f (2)
x1|x2(ξ1,n − x′2θ0|x2)dvdFx2(x2)

+ h−1
n

∫
x2x

′
2

∫
|vhn − x′2(θ − θ0)|2F (2)

u|x1,x2(0| − x′2θ0,x2)K̇(v)

× fx1|x2(−x′2θ0|x2)dvdFx2(x2)

+ h−1
n

∫
x2x

′
2

∫
{vhn − x′2(θ − θ0)}3F (2)

u|x1,x2(0| − x′2θ0,x2)K̇(v)

× f (1)
x1|x2(ξ2,n − x′2θ0|x2)dvdFx2(x2)

+
h−1
n

3

∫
x2x

′
2

∫
{vhn − x′2(θ − θ0)}3F (3)

u|x1,x2(−ξ3,n|ξ3,n − x′2θ0,x2)K̇(v)

× fx1|x2(vhn − x′2θ|x2)dvdFx2(x2)

where ξ1, ξ2 and ξ3 lie between vhn − x′2(θ − θ0) and 0.

Using
∫
vK̇(v)dv = 1,

∫
K̇(v)dv = 0, and

∫
v2K̇(v)dv = 0,

V̄MS
n (θ) = 2

∫
F

(1)
u|x1,x2(0| − x′2θ0,x2)fx1|x2(−x′2θ0|x2)x2x

′
2dFx2(x2)

− 4(θ − θ0)′
∫

x2F
(1)
u|x1,x2(0| − x′2θ0,x2)f

(1)
x1|x2(−x′2θ0|x2)x2x

′
2dFx2(x2)

+ h2
n

∫ ∫
v3K̇(v)F

(1)
u|x1,x2(0| − x′2θ0,x2)f

(2)
x1|x2(ξ1 − x′2θ0|x2)x2x

′
2dvdFx2(x2)

− 2(θ − θ0)′
∫

x2F
(2)
u|x1,x2(0| − x′2θ0,x2)fx1|x2(−x′2θ0|x2)x2x

′
2dFx2(x2)

+ h2
n

∫
x2x

′
2

∫
v3K̇(v)F

(2)
u|x1,x2(0| − x′2θ0,x2)f

(2)
x1|x2(ξ2 − x′2θ0|x2)dvdFx2(x2)

+
h2
n

3

∫
x2x

′
2

∫
v3K̇(v)F

(3)
u|x1,x2(−ξ3|ξ3 − x′2θ0,x2)fx1|x2(vhn − x′2θ|x2)dvdFx2(x2)

+O(hn‖θ − θ0‖+ ‖θ − θ0‖2 + h−1
n ‖θ − θ0‖3)
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where we use boundedness and continuity of derivatives of Fu|x1,x2 and fx1|x2 and E‖x2‖6 <∞.
For θ → θ0 as n→∞, we have

lim
n→∞

∫
x2x

′
2

∫
v3K̇(v)F

(1)
u|x1,x2(0| − x′2θ0,x2)f

(2)
x1|x2(ξ1 − x′2θ0|x2)dvdFx2(x2)

=

∫
v3K̇(v)dv

∫
F

(1)
u|x1,x2(0| − x′2θ0,x2)f

(2)
x1|x2(−x′2θ0|x2)x2x

′
2dFx2(x2),

lim
n→∞

∫
x2x

′
2

∫
v3K̇(v)F

(2)
u|x1,x2(0| − x′2θ0,x2)f

(2)
x1|x2(ξ2 − x′2θ0|x2)dvdFx2(x2)

=

∫
v3K̇(v)dv

∫
F

(2)
u|x1,x2(0| − x′2θ0,x2)f

(2)
x1|x2(−x′2θ0|x2)x2x

′
2dFx2(x2),

lim
n→∞

∫
x2x

′
2

∫
v3K̇(v)F

(3)
u|x1,x2(−ξ3|ξ3 − x′2θ0,x2)fx1|x2(vhn − x′2θ|x2)dvdFx2(x2)

=

∫
v3K̇(v)dv

∫
F

(3)
u|x1,x2(0| − x′2θ0,x2)fx1|x2(−x′2θ0|x2)x2x

′
2dFx2(x2).

Because P[|θ̂n − θ0| ≤ Cn−1/3] → 1, we have ‖V̄MS
n (θ̂n) − V̄MS

n (θ0)‖ = oP(h2
n) + OP(n−1/3). Note

that the term OP(n−1/3) does not depend on hn.

Next, we derive the leading bias and variance of ṼMS
n (θ0). Specifically, we show that

V̄ MSn,kl(θ0) = V MS0,kl + h2
n (−Bkl + o(1))

and

V[Ṽ MSn,kl(θ0)] =
1

nh3
n

(Vkl + o(1))

where Bkl and Vkl, 1 ≤ l, k ≤ d, are defined in the statement of Lemma MS.
For the bias, a Taylor expansion gives

V̄MS
n (θ0)−VMS

0

= 2hn

∫
F

(1)
u|x1,x2(0| − x′2θ0,x2)x2x

′
2f

(1)
x1|x2(−x′2θ0|x2)dFx2(x2)

∫
v2K̇(v)dv

+ h2
n

∫
x2x

′
2F

(1)
u|x1,x2(0| − x′2θ0,x2)

∫
v3K̇(v)f

(2)
x1|x2(ξ1 − x′2θ0|x2)dvdFx2(x2)

+ hn

∫
F

(2)
u|x1,x2(0| − x′2θ0,x2)x2x

′
2fx1|x2(−x′2θ0|x2)dFx2(x2)

∫
v2K̇(v)dv

+ h2
n

∫
x2x

′
2F

(2)
u|x1,x2(0| − x′2θ0,x2)

∫
f

(1)
x1|x2(ξ2 − x′2θ0|x2)v3K̇(v)dvdFx2(x2)

+
h2
n

3

∫
x2x

′
2

∫
F

(3)
u|x1,x2(−ξ3|ξ3 − x′2θ0,x2)fx1|x2(vhn|x2)v3K̇(v)dvdFx2(x2)

where ξ1, ξ2 and ξ3 denote mean-values between 0 and vhn. Boundedness of f
(s)
x1|x2(v|x2) and
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F
(s)
u|x1,x2(−v|v + x1,x2), k = 1, 2, 3, and continuity of these functions with respect to v imply that∫

x2x
′
2F

(1)
u|x1,x2(0| − x′2θ0,x2)

∫
v3K̇(v)f

(2)
x1|x2(ξ1 − x′2θ0|x2)dvdFx2(x2)

→
∫

x2x
′
2F

(1)
u|x1,x2(0| − x′2θ0,x2)f

(2)
x1|x2(−x′2θ0|x2)dFx2(x2)

∫
v3K̇(v)dv,

∫
x2x

′
2F

(2)
u|x1,x2(0| − x′2θ0,x2)

∫
f

(1)
x1|x2(ξ2 − x′2θ0|x2)v3K̇(v)dvdFx2(x2)

→
∫

x2x
′
2F

(2)
u|x1,x2(0| − x′2θ0,x2)f

(1)
x1|x2(−x′2θ0|x2)dFx2(x2)

∫
v3K̇(v)dv,

∫
x2x

′
2

∫
F

(3)
u|x1,x2(−ξ3|ξ3 − x′2θ0,x2)fx1|x2(vhn|x2)v3K̇(v)dvdFx2(x2)

→
∫

x2x
′
2F

(3)
u|x1,x2(0| − x′2θ0,x2)fx1|x2(−x′2θ0|x2)dFx2(x2)

∫
v3K̇(v)dv.

Therefore, because
∫∞
−∞ v

2K̇(v)dv = 0,

V̄ MSn,kl(θ0) = V MS0,kl + h2
n (Bkl + o(1))

with Bkl the (k, l)-th element of

B =

∫
x2x

′
2

[
F

(1)
u|x1,x2(0| − x′2θ0,x2)f

(2)
x1|x2(−x′2θ0|x2)

+ F
(2)
u|x1,x2(0| − x′2θ0,x2)f

(1)
x1|x2(−x′2θ0|x2)

+
1

3
F

(3)
u|x1,x2(0| − x′2θ0,x2)fx1|x2(−x′2θ0|x2)

]
dFx2(x2)

∫
v3K̇(v)dv.

Finally, the approximate variance is obtained by noting that

E[Ṽ MSn,kl(θ0)2] =
1

nh4
n

E
[
K̇

(
x′β0

hn

)
e′kx2x

′
2el

]2

and

1

hn
E
[
K̇

(
x′β0

hn

)
e′kx2x

′
2el

]2

=

∫
(e′kx2x

′
2el)

2

∫
K̇(v)2fx1|x2(vhn − x′2θ0|x2)dvdFx2(x2)

→
∫

(e′kx2x
′
2el)

2fx1|x2(−x′2θ0|x2)dFx2(x2)

∫
K̇(v)2dv

where the last line follows by dominated convergence theorem. Since E[Ṽ MSn,kl(θ0)] = O(1),

V[Ṽ MSn,kl(θ0)] =
1

nh3
n

[∫
(e′kx2x

′
2el)

2fx1|x2(−x′2θ0|x2)dFx2(x2)

∫
K̇(v)2dv + o(1)

]
.
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A.7.6 Proof of Corollary CMS

We verify that Condition CMS implies Condition CRA. Set qn = bdn.

Condition CRA(i). For uniform manageability, as shown for maximum score estimator, the

class {y1{x1 + x′2θ ≥ 0} : θ ∈ Θ} has a polynomial bound on the covering number uniform
in discrete probability measures and Ln(·) does not depend on θ. See, e.g., van der Vaart and
Wellner (1996) for details. We can take m̄n(z) = |Ln(w)| and E[L2

n(w)] ≤ Cb−dn , which implies

qnE[m̄n(z)2] = O(1).

For uniform convergence of Mn(θ) to M0(θ),

Mn(θ) =

∫
E[ψ(x1,x2,w){fx1(x1|x2,w)}−11{x1 + x′2θ ≥ 0}|w = vbn]L(v)fw(vbn)dv

=

∫ ∫ ∫ ∞
−x′2θ

ψ(x,x2,vbn)dxdFx2(x2|vbn)fw(vbn)L(v)dv

=

∫
ϕ1(vbn;θ)L(v)dv.

Using supθ∈Θ |ϕ1(w;θ)− ϕ1(0;θ)| ≤ C‖w‖ε for w close to 0,

sup
θ∈Θ
|Mn(θ)−M0(θ)| ≤ sup

θ∈Θ

∫
|ϕ1(vbn;θ)− ϕ1(0;θ)||L(v)|dv

≤ Cbεn
∫
‖v‖ε|L(v)|dv = o(1).

Well-separatedness follows from uniqueness of maximizer, compactness of the parameter space,

and continuity of M0(θ) = E[y1{x1 + x′2θ ≥ 0}|w = 0]. Uniqueness of maximizer follows from

Honoré and Kyriazidou (2000, Lemmas 6 and 7), compactness of Θ is assumed, and continuity

follows from differentiability of M0(·) shown below.

Condition CRA(ii). By definition,

M0(θ) = E[ψ(x1,x2,w){fx1(x1|x2,w)}−11{x1 + x′2θ ≥ 0}|w = 0]

and

Mn(θ) =

∫
E[ψ(x1,x2,w){fx1(x1|x2,w)}−11{x1 + x′2θ ≥ 0}|w = vbn]L(v)fw(vbn)dv.

Since E[ψ(x1,x2,w){fx1(x1|x2,w)}−11{x1 + x′2θ ≥ 0}|w] =
∫ ∫∞
−x′2θ

ψ(x,x2,w)dxdFx2(x2|w), we

have
∂

∂θ
Mn(θ) =

∫ ∫
x2ψ(−x′2θ,x2,vbn)dFx2|w(x2|vbn)fw(vbn)L(v)dv,

∂

∂θ
M0(θ) =

∫
x2ψ(−x′2θ,x2,0)dFx2|w(x2|0)fw(0),
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∂2

∂θ∂θ′
Mn(θ) = −

∫ ∫
x2x

′
2ψ

(1)(−x′2θ,x2,vbn)dFx2|w(x2|vbn)fw(vbn)L(v)dv,

∂2

∂θ∂θ′
M0(θ) = −

∫
x2x

′
2ψ

(1)(−x′2θ,x2,0)dFx2|w(x2|0)fw(0),

where ψ(s)(x1,x2,w) = ds

dxs1
ψ(x1,x2,w), s ∈ Z, and we use |ψ(x1,x2,w) + ψ(1)(x1,x2,w)| ≤ C for

all (x1,x2,w) ∈ S,
∫
‖x2‖2dFx2|w(x2|v) ≤ C for all v with ‖v‖ ≤ η, fw(·) is bounded around 0,

and
∫
|L(v)|dv <∞, to invoke dominated convergence theorem.

Because the functionV(w;θ) =
∫

x2x
′
2ψ

(1)(−x′2θ,x2,w)dFx2|w(x2|w)fw(w) satisfies ‖V(w;θ)−
ϕ(0;θ)‖ ≤ C‖w‖ε for all θ ∈ Θδ

0,

sup
θ∈Θδ

0

∣∣∣∣∂[Mn(θ)−M0(θ)]

∂θ∂θ′

∣∣∣∣ ≤ sup
θ∈Θδ

0

∫
‖V(vbn;θ)−V(0;θ)‖|L(v)|dv

≤ Cbεn
∫
‖v‖ε|L(v)|dv = o(1).

For ∂Mn(θ0)/∂θ,

∂

∂θ
Mn(θ0) =

∫
ϕ2(vbn)L(v)dv = ϕ2(0) + bPn

∑
|`=P

∫
v`∂`ϕ2(ṽ)L(v)dv

where we use multi-index notation,
∫

v`L(v)dv = 0 for 0 < |`| < P , and ṽ lies between vbn

and 0. Honoré and Kyriazidou (2000) show that, for any (d0, d3) ∈ {0, 1}2, E[A(d0, d3)|X, α,w =

0] > E[(B(d0, d3)|X, α,w = 0] if and only if x1 + x′2θ0 > 0, which implies E[A(d0, d3)|x1 =

−x′2θ0,X, α,w = 0] = E[B(d0, d3)|x1 = −x′2θ0,X, α,w = 0]. Then,

ψ(−x′2θ0,x2,0)

= E[A(Y0, Y3)−B(Y0, Y3)|x1 = −x′2θ0,x2,w = 0]fx1(−x′2θ0|x2,0)

=
∑

d0,d3∈{0,1}
Pr(Y0 = d0, Y3 = d3|x1 = −x′2θ0,x2,w = 0)fx1(−x′2θ0|x2,0)

×
{
E[A(d0, d3)|x1 = −x′2θ0,x2,w = 0]− E[B(d0, d3)|x1 = −x′2θ0,x2,w = 0]

}
=

∑
d0,d3∈{0,1}

Pr(Y0 = d0, Y3 = d3|x1 = −x′2θ0,x2,w = 0)fx1(−x′2θ0|x2,0)

× E[E[A(d0, d3)−B(d0, d3)|x1 = −x′2θ0,X,w = 0, α]|x1 = −x′2θ0,x2,w = 0]

= 0

which implies ϕ2(0) = 0. Finally, bPn = o((nbdn)−1/3) implies that 3
√
nqn‖∂Mn(θ0)/∂θ‖ = o(1)

holds.

Positive definiteness of VCMS
0 is directly imposed in Condition CMS.

Condition CRA(iii). Uniform manageability follows from the class {y1{x1 + x′2θ ≥ 0} : θ ∈ Θ}
having a polynomial bound on the uniform covering number, since Ln(·) does not depend on θ.
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See, e.g., van der Vaart and Wellner (1996) for details. For this example,

d̄δn(z) = sup
‖θ−θ0‖≤δ

1{x′2θ0 < −x1 ≤ x′2θ}|Ln(w)|+ sup
‖θ−θ0‖≤δ

1{x′2θ < −x1 ≤ x′2θ0}|Ln(w)|.

Conditional on (x2,w), x1 has bounded Lebesgue density and for bn suffi ciently small,

E[d̄δn(z)2] ≤ CE[‖x2‖Ln(w)2]δ ≤ Cδb−dn

by change of variables. The constant C does not depend on δ, and therefore qn sup0<δ′≤δ E[d̄δ
′
n (z)2/δ′] =

O(1) holds.

Condition CRA(iv). Note that d̄δn(z)3 = dδn(z)|Ln(w)|2 and d̄δn(z)3 = dδn(z)|Ln(w)|3. Do-

ing a similar calculation as above, we have q2
nE[d̄δnn (z)3] = O(δn) = o(1) and q3

nr
−1
n E[d̄δnn (z)4] =

O(r−1
n δn) = o(1).

As in the Maximum Score example, CCMS0 (s, s) + CCMS0 (t, t) − 2CCMS0 (s, t) > 0 follows from its

representation

CCMS0 (s, t) = E[min{|x′2s|, |x′2t|}fx1|x2,w(−x′2θ0|x2,0)1{sgn(x′2s) = sgn(x′2t)}|w = 0]fw(0).

Now we verify the last condition.

{mCMS
n (z,θ + δns)−mCMS

n (z,θ)}{mCMS
n (z,θ + δnt)−mCMS

n (z,θ)}

= {1(x′2(θ + δns) ≥ −x1)− 1(x′2θ ≥ −x1)}{1(x′2(θ + δnt) ≥ −x1)− 1(x′2θ ≥ −x1)}|Ln(w)|2

= 1(δn min{x′2s,x′2t} ≥ −x1 − x′2θ > 0)1{sgn(x′2s) = 1 = sgn(x′2t)}|Ln(w)|2

+ 1(δn max{x′2s,x′2t} < −x1 − x′2θ ≤ 0)1{sgn(x′2s) = −1 = sgn(x′2t)}|Ln(w)|2

= 1(δn min{|x′2s|, |x′2t|} ≥ −x1 − x′2θ > 0)1{sgn(x′2s) = sgn(x′2t)}|Ln(w)|2

and

qnδ
−1
n E[{mCMS

n (z,θ + δns)−mCMS
n (z,θ)}{mCMS

n (z,θ + δnt)−mCMS
n (z,θ)}]

= q−1
n δ−1

n

∫ ∫
{Fx1|x2,w(−x′2θ|x2,w)− Fx1|x2,w(−x′2θ − δn min{|x′2s|, |x′2t|}|x2,w)}

× 1{sgn(x′2s) = sgn(x′2t)}dFx2|w(x2|w)fw(w)L(w/bn)dw

= δ−1
n

∫ ∫
{Fx1|x2,w(−x′2θ|x2,vbn)− Fx1|x2,w(−x′2θ − δn min{|x′2s|, |x′2t|}|x2,vbn)}

× 1{sgn(x′2s) = sgn(x′2t)}dFx2|w(x2|vbn)fw(vbn)L(v)dv

=

∫ ∫
min{|x′2s|, |x′2t|}fx1|x2,w(−x′2θ + δ̃n|x2,vbn)

× 1{sgn(x′2s) = sgn(x′2t)}dFx2|w(x2|vbn)fw(vbn)L(v)dv
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where δ̃n lies between 0 and −δn min{|x′2s|, |x′2t|}. Then,∣∣∣qnδ−1
n E[{mCMS

n (z,θ + δns)−mCMS
n (z,θ)}{mCMS

n (z,θ + δnt)mCMS
n (z,θ)}]

−
∫ ∫

min{|x′2s|, |x′2t|}fx1|x2,w(−x′2θ0|x2,vbn)

× 1{sgn(x′2s) = sgn(x′2t)}dFx2|w(x2|vbn)fw(vbn)L(v)dv
∣∣∣

≤ C‖θ − θ0‖ε sup
w∈W

E[min{|x′2s|, |x′2t|}2‖x2‖Bf (−x′2θ0,x2)|w]

∫
|L(v)|dv = O(δεn)

as θ ∈ θδn0 . By dominated convergence theorem,

lim
n→∞

∫ ∫
min{|x′2s|, |x′2t|}fx1|x2,w(−x′2θ0|x2,vbn)

× 1{sgn(x′2s) = sgn(x′2t)}dFx2|w(x2|vbn)fw(vbn)L(v)dv
∣∣∣

= E[min{|x′2s|, |x′2t|}fx1|x2,w(−x′2θ0|x2,0)1{sgn(x′2s) = sgn(x′2t)}|w = 0]fw(0)

= CCMS0 (s, t)

and this convergence occurs uniformly on Θδn
0 because it is independent of θ. Finally,

sup
θ∈Θδn

0

|qnE[{mn(z,θ + δns)−mn(z,θ)}{mn(z,θ + δnt)−mn(z,θ)}/δn]− CCMS0 (s, t)| = o(1),

as desired.

Condition CRA(v). The first condition follows from qnd̄
δ
n(z) ≤ supv |L(v)|.

The second condition follows from the calculation similar to the covariance kernel calculation.

A.7.7 Proof of Lemma CMS

A.7.7.1 Consistency

Define V̄CMS
n (θ) = E[ṼCMS

n (θ)]. It suffi ces to show ‖V̄CMS
n (θ̂

CMS

n ) − VCMS
0 ‖ = oP(1) and ‖ṼCMS

n −
V̄CMS
n (θ̂

CMS

n )‖ = oP(1).

For the first requirement, changing variables, using a Taylor expansion, and using the fact that
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∫
K̇(v)dv = 0, we have

−V̄CMS
n (θ) = h−2

n E
[
yK̇

(
x1 + x′2θ

hn

)
x2x

′
2Ln(w)

]
= h−1

n

∫
E
[∫

ψ(vhn − x′2θ,x2,w)K̇(v)dvx2x
′
2

∣∣∣∣w] fw(w)Ln(w)dw

=

∫
E
[∫

ψ(1)(ϑ− x′2θ0,x2,w)vK̇(v)dvx2x
′
2

∣∣∣∣w] fw(w)Ln(w)dw

− h−1
n (θ − θ0)′

∫
E
[∫

ψ(1)(ϑ− x′2θ0,x2,w)K̇(v)dvx2x2x
′
2

∣∣∣∣w] fw(w)Ln(w)dw,

where ϑ lies in between 0 and vhn. By boundedness of ψ(1), E[‖x2‖3|w] ≤ C for w ∈ W, and∫
|K̇(v)|dv < ∞, the last term is o(1) for θ = θ0 + o(hn). By continuous differentiability of ψ(1)

with respect to its first argument and boundedness of the derivative,∣∣∣∣∫ E
[∫
{ψ(1)(ϑ− x′2θ0,x2,w)− ψ(1)(−x′2θ0,x2,w)}vK̇(v)dvx2x

′
2

∣∣∣∣w] fw(w)Ln(w)dw

∣∣∣∣
≤ C

∫
E
[(

hn

∫
v2|K̇(v)|dv + ‖x2‖‖θ − θ0‖

)
‖x2‖2

∣∣∣∣w] fw(w)|Ln(w)|dw = o(1).

Thus, for θ = θ0 + o(hn),

V̄CMS
n (θ) = −

∫
vK̇(v)dv

∫
E[ψ(1)(−x′2θ0,x2,w)x2x

′
2|w]fw(w)Ln(w)dw + o(1)

= VCMS
0 + o(1).

Using ‖θ̂CMSn − θ0‖ = OP( 3
√
nbdn) = oP(hn), it follows that V̄CMS

n (θ̂
CMS

n )−VCMS
0 = oP(1).

To verify ṼCMS
n − V̄CMS

n (θ̂
CMS

n ) = oP(1), it suffi ces to show that, for any δn = O(r−1
n ),

sup
|θ−θ0|≤δn

∥∥∥ṼCMS
n (θ)− ṼCMS

n (θ0)− V̄CMS
n (θ) + V̄CMS

n (θ0)
∥∥∥+

∥∥∥ṼCMS
n (θ0)− V̄CMS

n (θ0)
∥∥∥ = oP(1).

It can be shown that ‖ṼCMS
n (θ0) − V̄CMS

n (θ0)‖ = oP(1) easily because below we calculate the con-

vergence rate of the variance, that is, V[ṼCMS
n (θ0)] = O(n−1h−3

n b−dn ). For the rest, Pollard (1989,

Theorem 4.2) implies that it is enough to verify

n−1h−4
n E

[
sup

|θ−θ0|≤δn

∣∣∣∣K̇ (x1 + x′2θ

hn

)
− K̇

(
x1 + x′2θ0

hn

)∣∣∣∣2 ‖x2‖4|Ln(w)|2
]

= o(1).

By the Lipschitz condition on K̇,∣∣∣∣K̇ (x1 + x′2θ

hn

)
− K̇

(
x1 + x′2θ0

hn

)∣∣∣∣ ≤ h−1
n ‖x2‖‖θ − θ0‖B

(
x1 + x′2θ0

hn

)
.
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Then,

n−1h−4
n E

[
sup

|θ−θ0|≤δn

∣∣∣∣K̇ (x1 + x′2θ

hn

)
− K̇

(
x1 + x′2θ0

hn

)∣∣∣∣2 ‖x2‖2|Ln(w)|2
]

≤ n−1h−3
n (h−1

n δn)2E
[∫

B(v)2fx1(vhn|x2,w)dv‖x2‖6|Ln(w)|2
]

≤ o(1)n−1h−3
n b−dn

∫
B(v)2dv

∫
E[‖x2‖6|w = vbn]L(v)dv = o(1).

A.7.7.2 Approximate Mean Squared Error

First we calculate the order of bias. Changing variables and using a Taylor approximation, we

obtain:

V̄CMS
n (θ0) = −h−2

n

∫
E
[
ψ(x1,x2,w){fx1(x1|x2,w)}−1K̇

(
x1 + x′2θ0

hn

)
x2x

′
2

∣∣∣∣w] fw(w)Ln(w)dw

= −
∫
vK̇(v)dv

∫
E[ψ(1)(−x′2θ0,x2,w)x2x

′
2|w]fw(w)Ln(w)dw

− hn
∫
v2K̇(v)dv

∫
E[ψ(2)(−x′2θ0,x2,w)x2x

′
2|w]fw(w)Ln(w)dw

− h2
n

∫
E[

∫
ψ(3)(ϑ− x′2θ0,x2,w)K̇(v)dvx2x

′
2|w]fw(w)Ln(w)dw

where ϑ lies between 0 and vhn. Using
∫
vK̇(v)dv = −1,

∫
v2K̇(v) = 0, and boundedness of ψ(3),

V̄CMS
n (θ0) =

∫
V(w;θ0)Ln(w)dw +O(h2

n) =
∂2

∂θ∂θ′
MCMS
n (θ0) +O(h2

n).

Finally, for the variance, changing variables and using a Taylor approximation, we obtain:

V[Ṽ CMSn,kl(θ0)] =
1

nh4
n

E

[
K̇

(
x1 + x′2θ0

hn

)2

(e′kx2x
′
2el)

2|Ln(w)|2
]
− 1

n
[V̄ CMSn,kl(θ0)]2

=
1

nh3
n

E
[∫

K̇2(v)fx1(vhn − x′2θ0|x2,w)dv(e′kx2x
′
2el)

2|Ln(w)|2
]

+O(n−1)

≤ C

nh3
n

∫
K̇2(v)dv

∫
E[‖x2‖4|w]fw(w)|Ln(w)|2dw +O(n−1)

= O(n−1h−3
n b−dn ),

for all (k, l) elements of ṼCMS
n (θ0).

A.7.8 Proof of Theorem ID

Let

Z∗n(x) = F̂ ∗n(x)− F̂n(x) + f̂n(x0)(x− x0) + f̃ (1)
n (x0)(x− x0)2/2
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and define

ŝ∗n(a) = sup
s≥0

{
s : Z∗n(s)− as = sup

x≥0
[Z∗n(x)− ax]

}
,

b = sup
x≥0

[Z∗n(x)− ax] .

Denote the LCM of a function f restricted on I by LIf . Since linear functions are concave,

ŝ∗n(a) < x⇒ Z∗n(x)− ax− b < 0

⇒ L[0,∞)Z∗n(x) ≤ ax+ b.

Now, for contradiction, suppose that the left-derivative of L[0,∞)Z∗n(x) is strictly greater than a.

Since L[0,∞)Z∗n(x) is concave, its derivative, denoted by DL[0,∞)Z∗n(·), satisfies DL[0,∞)Z∗n(x̃) > a

for x̃ ≤ x. By definition, L[0,∞)Z∗n(ŝ∗n(a)) = aŝ∗n(a) + b and the derivative condition implies

L[0,∞)Z∗n(x) > ax+ b, which is a contradiction and thus proving DL[0,∞)Z∗n(x) = f̃∗n(x) ≤ a.
Now,

f̃∗n(x) < a⇒ L[0,∞)Z∗n(s) < as+ b for s ≥ x

⇒ ŝ∗n(a) < x.

For the first implication, by definition,

lim
ε↓0

L[0,∞)Z∗n(s− ε)− L[0,∞)Z∗n(s)

−ε = f̃∗n(s) < a for s ≥ x.

Then, there exist η > 0 such that a − η > f̃∗n(s) and ε0 > 0 such that −[L[0,∞)Z∗n(s − ε) −
L[0,∞)Z∗n(s)]/ε < a− η for 0 < ε < ε0. Then,

L[0,∞)Z∗n(s) < ε(a− η) + L[0,∞)Z∗n(s− ε)

≤ ε(a− η) + a(s− ε) + b

= as− εη + b

< as+ b.

Therefore, we have

ŝ∗n(a) < x ⇐⇒ f̃∗n(x) < a.

Then,

P∗
[
n1/3[f̃∗n(x0)− f̂n(x0)] < t

]
= P∗

[
ŝ∗n

(
f̂n(x0) + n−1/3t

)
< x0

]
.
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Recall that ŝ∗n(a) is the maximizer of {Z∗n(s)− as : s ∈ [0,∞)}.

P∗
[
ŝ∗n

(
f̂n(x0) + n−1/3t

)
< x0

]
= P∗

[
argmax
x∈[0,∞)

{
Z∗n(x)− [f̂n(x0) + n−1/3t]x

}
< x0

]

where the argmax functional picks the largest value if the set of the maximizers consists of more

than one element.

Letting x = x0 + n−1/3s where s is the free variable,

argmax
x∈[0,∞)

{
Z∗n(x)− [f̂n(x0) + n−1/3t]x

}
= argmax

x0+n−1/3s

{
Z∗n(x0 + n−1/3s)− [f̂n(x0) + n−1/3t][x0 + n−1/3s]

}
= x0 + n−1/3 argmax

s∈[−n1/3x0,∞)

{
Z∗n(x0 + n−1/3s)− [f̂n(x0) + n−1/3t][x0 + n−1/3s]

}
Shifting and scaling does not change the location of maximizer so

argmax
s

{
Z∗n(x0 + n−1/3s)− [f̂n(x0) + n−1/3t][x0 + n−1/3s]

}
= argmax

s

{
n2/3

[
Z∗n(x0 + n−1/3s)−Z∗n(x0)− f̂n(x0)n−1/3s

]
− ts

}
Thus,

P∗
[

argmax
x∈[0,∞)

{
Z∗n(x)− [f̂n(x0) + n−1/3t]x

}
< x0

]

= P∗
[

argmax
s∈[−n1/3x0,∞)

{
n2/3

[
Z∗n(x0 + n−1/3s)−Z∗n(x0)− f̂n(x0)n−1/3s

]
− ts

}
< 0

]
.

Now we want to establish weak convergence in probability of{
n2/3

[
Z∗n(x0 + n−1/3s)−Z∗n(x0)− f̂n(x0)n−1/3s

]
− ts : s ∈ S

}
(A.10)

with any compact S ⊂ R.
Note that

n2/3
[
Z∗n(x0 + n−1/3s)−Z∗n(x0)− f̂n(x0)n−1/3s

]
= n2/3

[(
F̂ ∗n − F̂n

)
(x0 + n−1/3s)−

(
F̂ ∗n − F̂n

)
(x0)

]
+

1

2
f̃ (1)
n (x0)s2.

Theorem 3.2 (i) in Sen, Banerjee, and Woodroofe (2010) implies that

n2/3
[(
F̂ ∗n − F̂n

)
(x0 + n−1/3s)−

(
F̂ ∗n − F̂n

)
(x0)

]
 P W(f(x0)s)
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as stochastic process indexed by s ∈ S.
Then, the sequence of stochastic processes in (A.10) weakly converges in probability to

W(f(x0)s) +
1

2
f (1)(x0)s2 − ts.

As noted in Problem 3.2.5 of van der Vaart and Wellner (1996),

argmax
s

{
W(f(x0)s) +

1

2
f (1)(x0)s2 − ts

}
=d |4f(x0){f (1)(x0)}−2|1/3 argmax

s

{
W(s)− s2

}
− t/|f (1)(x0)|.

Therefore, provided that

ŝ∗n = argmax
s

{
n2/3

[
Z∗n(x0 + n−1/3s)−Z∗n(x0)− f̂n(x0)n−1/3s

]
− ts : s ∈ S

}
is OP∗(1), the argmax continuous mapping theorem implies

P∗
[
n1/3[f̃∗n(x0)− f̂n(x0)] < t

]
→P P

[
|4f(x0)f (1)(x0)|1/3 argmax

s

{
W(s)− s2

}
< t

]
.

Now to show ŝ∗n = OP∗(1), define

ĝ∗n = argmax
s

{
Z∗n(s+ x0)−Z∗n(x0)− f̂n(x0)s− tsn−1/3

}
= argmax

s

{
F̂ ∗n(s+ x0)− F̂n(s+ x0) + f̃ (1)

n (x0)s2/2− tsn−1/3
}
.

By definition, ĝ∗n = n−1/3ŝ∗n, so we want to show n1/3ĝ∗n = OP∗(1).

Modifying the proofs of Lemmas A.6—A.8 with M̂∗n(θ) = F̂ ∗n(θ+ x0), M̂n(θ) = F̂n(θ+ x0), and

M̃∗n(θ) = F̂ ∗n(θ+x0)− F̂n(θ+x0)+ f̃
(1)
n (x0)θ2/2−tθn−1/3 (no need to center the objective function

at M̂n(θ0)), it can be shown that n1/3ĝ∗n = OP∗(1) with probability approaching one.

A.8 Rule-of-Thumb Bandwidth Selection

We provide details on the rule-of-thumb (ROT) bandwidth selection rules used in the simulations

reported for the Maximum Score Estimation and Isotonic Density estimation examples.

A.8.1 Maximum Score Estimation

To construct a ROT bandwidth in this example, we choose a reference model involving finite

dimensional parameters and calculate/approximate the corresponding leading constants entering

the approximate MSE of ṼMS
n (example-specific plug-in estimate) for the case of Maximum Score

estimation, and of ṼND
n (generic numerical derivative estimate).
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Specifically, we assume u|x ∼ Normal(0, σ2
u(x)) and x1|x2 ∼ Normal(µ1, σ

2
1) , where we will

specify some parametric specification on σ2
u(x) = σ2

u(x1,x2). Then, in this reference model,

F
(1)
u|x1,x2(0| − x′2θ0,x2) = − 1

σu(−x′2θ0,x2)
φ(0),

F
(2)
u|x1,x2(0| − x′2θ0,x2) =

1

σ2
u(−x′2θ0,x2)

φ(1)(0) = 0,

F
(3)
u|x1,x2(0| − x′2θ0,x2) = − 1

σ3
u(−x′2θ0,x2)

φ(2)(0)

−σ
(2)
u (−x′2θ0,x2)σu(−x′2θ0,x2)− 2{σ(1)

u (−x′2θ0,x2)}2
σ3
u(−x′2θ0,x2)

φ(0),

where σ(s)
u (x1, ·) = dsσu(x1, ·)/dxs1, and

fx1|x2(−x′2θ0|x2) =
1

σ1
φ

(
−x′2θ0 − µ1

σ1

)
,

f
(1)
x1|x2(−x′2θ0|x2) =

1

σ2
1

φ(1)

(
−x′2θ0 − µ1

σ1

)
=

x′2θ0 + µ1

σ3
1

φ

(
−x′2θ0 − µ1

σ1

)
,

f
(2)
x1|x2(−x′2θ0|x2) =

1

σ3
1

φ(2)

(
−x′2θ0 − µ1

σ1

)
=

((
x′2θ0 + µ1

σ1

)2

− 1

)
1

σ3
1

φ

(
−x′2θ0 − µ1

σ1

)
.

A.8.1.1 Plug-in Estimator ṼMS
n

Given our reference model, we need to estimate

Bkl = −E
[
e′kx2x

′
2el

(
F

(1)
u|x1,x2(0| − x′2θ0,x2)f

(2)
x1|x2(−x′2θ0|x2)

+
1

3
F

(3)
u|x1,x2(0| − x′2θ0,x2)fx1|x2(−x′2θ0|x2)

)]
µ3(K̇)

where µp(K) =
∫
vpK(u)dv. Define

B̂kl = − 1

n

n∑
i=1

e′kx2ix
′
2iel

{
F̂

(1)
u|x1,x2(0| − x′2iθ̂n,x2i)f̂

(2)
x1|x2(−x′2iθ̂n|x2i)

+
1

3
F̂

(3)
u|x1,x2(0| − x′2iθ̂n,x2i)f̂x1|x2(−x′2iθ̂n|x2i)

}
µ3(K̇)

where the preliminary estimators θ̂n, F̂
(1)
u|x1,x2(·), F̂

(2)
u|x1,x2(·), f̂x1|x2(·) and f̂

(2)
x1|x2(·) are constructed

using maximum likelihood for the parametric reference model (i.e., heteroskedastic Probit), to-

gether with a flexible parametric specification for σ2
u(x) = γ ′p(x) with p(x) denoting a polynomial

expansion.
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Similarly, the higher order variance is

Vkl = E
[
(e′kx2x2el)

2fx1|x2(−x′2θ0|x2)
] ∫

K̇(v)2dv,

and, given our reference model, a ROT estimate is

V̂kl =

∫
K̇(v)2dv

1

n

n∑
i=1

(e′kx2ix2iel)
2f̂x1|x2(−x′2iθ̂n|x2i).

A.8.1.2 Numerical Differentiation Estimator ṼND
n

The bias constant is

Bkl =
1

6

(
∂4M0(θ0)

∂θ3
k∂θl

+
∂4M0(θ0)

∂θk∂θ
3
l

)
Given our reference model,

∂4M0(θ0)

∂θ3
k∂θl

= −2E
[
(e′kx2)3e′lx2F

(3)
u|x1,x2(0| − x′2θ0,x2)fx1|x2(−x′2θ0|x2)

]
+ 6E

[
(e′kx2)3e′lx2F

(2)
u|x1,x2(0| − x′2θ0,x2)f

(1)
x1|x2(−x′2θ0|x2)

]
− 6E

[
(e′kx2)3e′lx2F

(1)
u|x1,x2(0| − x′2θ0,x2)f

(2)
x1|x2(−x′2θ0|x2)

]
,

and similarly for ∂4M0(θ0)/∂θk∂θ
3
l . Then, we can estimate the bias constant by

B̂kl =
1

n

n∑
i=1

[
(e′kx2i)

3e′lx2i + (e′lx2i)
3e′kx2i

]
×
[

1

3
F̂

(3)
u|x1,x2(0| − x′2iθ̂n,x2i)f̂x1|x2(−x′2iθ̂n|x2i) + F̂

(1)
u|x1,x2(0| − x′2iθ̂n,x2i)f̂

(2)
x1|x2(−x′2iθ̂n|x2i)

]

where F̂ (1)
ε|z,x2 , F̂

(3)
ε|z,x2 , f̂z|x2 , f̂

(2)
z|x2 , etc., are as discussed above.

Finally, the variance constant is

Vkl =
1

8
[C0(ek + el, ek + el) + C0(ek − el, ek − el)− 2C0(ek + el, ek − el)− 2C0(ek + el,−ek + el)]

C0 is defined in Corollary MS. Recall that C0(s, t) = [L0(s) + L0(t)− L0(s− t)]/2. Then,

Vkl =
1

16
[2L0(ek) + 2L0(el)− L0(ek + el)− L0(−ek + el)]

with L0(s) = E
[
|x′2s|fx1|x2(−x′2θ0|x2)

]
. Then, we can estimate the variance constant by

V̂kl =
1

16

1

n

n∑
i=1

[
2
∣∣x′2iek∣∣+ 2

∣∣x′2iel∣∣− ∣∣x′2i(ek + el)
∣∣− ∣∣x′2i(−ek + el)

∣∣] f̂x1|x2(−x′2iθ̂n|x2i).
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A.8.2 Isotonic Density Estimation

Here we briefly outline the calculations leading to a ROT bandwidth selector for derivative of

density estimators, which are used to construct an estimate of the drift in this example. The

reference model is z ∼ Exponential(λ) where λ will be estimated from the data.

A.8.2.1 Plug-in Estimator ṼMS
n

The plug-in estimator is the usual kernel density estimator. Assuming we use the second-order ker-

nel, the leading bias term is h2f (3)(x0)/2
∫
u2K(u)du and the leading variance term is n−1h−3f(x0)

∫
K̇2(u)du.

For the ROT bandwidth, we take f(x) = exp(−x/λ)/λ and K(u) = φ(u) and we use Integrated

MSE (IMSE) as the criterion. That is, we minimize

h4

∫ {
f (3)(x)

}2
dx

(∫
u2K(u)du

)2

/4 +

∫
K̇2(u)du/nh3

with respect to h. Then,
∫
u2K(u)du = 1,

∫
K̇2(u)du = 1

4
√
π
,
∫ {

f (3)(x)
}2
dx = (2λ7)−1. Thus,

the IMSE equals
h4

8λ7 +
1

4
√
πnh3

and the minimizer is

ĥAMSE = λ

(
3

2
√
π

)1/7

n−1/7.

A.8.2.2 Numerical Differentiation Estimator ṼND
n

The numerical differentiation estimator is

M0(x0 + h) +M0(x0 − h)− 2M0(x0)

h2
,

and we take M0(x) = F (x). Then, the bias constant is

1

12

d4

dx4
F (x)|x=x0 =

f (3)(x0)

12
.

The variance constant is 2f(x0). As in the plug-in estimator case, we take the IMSE, which equals

h4

122

∫ {
f (3)(x)

}2
dx+

2

nh3
=

h4

288λ7 +
2

nh3

and the ROT bandwidth is

ĥAMSE = λ (432)1/7 n−1/7.
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Table 1: Simulations, Maximum Score Estimator, 95% Confidence Intervals.

(a) n = 1, 000, S = 2, 000, B = 2, 000

DGP 1 DGP 2 DGP 3
h, ε Coverage Length h, ε Coverage Length h, ε Coverage Length

Standard
0.639 0.475 0.645 0.480 0.640 0.247

m-out-of-n
m = dn1/2e 0.998 1.702 0.997 1.754 0.999 1.900

m = dn2/3e 0.979 1.189 0.979 1.223 0.985 0.728

m = dn4/5e 0.902 0.824 0.894 0.839 0.904 0.447

Plug-in: ṼMS
n

0.7 · hMSE 0.434 0.941 0.501 0.406 0.947 0.513 0.105 0.904 0.256

0.8 · hMSE 0.496 0.946 0.503 0.464 0.952 0.516 0.120 0.917 0.260

0.9 · hMSE 0.558 0.951 0.506 0.522 0.951 0.518 0.135 0.930 0.267

1.0 · hMSE 0.620 0.954 0.510 0.580 0.952 0.522 0.150 0.941 0.273

1.1 · hMSE 0.682 0.959 0.515 0.638 0.955 0.526 0.165 0.948 0.281

1.2 · hMSE 0.744 0.961 0.522 0.696 0.959 0.532 0.180 0.958 0.288

1.3 · hMSE 0.806 0.962 0.531 0.754 0.960 0.539 0.195 0.966 0.296

hAMSE 0.385 0.938 0.499 0.367 0.941 0.510 0.119 0.917 0.260

ĥAMSE 0.446 0.947 0.509 0.415 0.949 0.518 0.155 0.941 0.275

Num Deriv: ṼND
n

0.7 · εMSE 0.980 0.912 0.431 0.904 0.891 0.422 0.203 0.864 0.216

0.8 · εMSE 1.120 0.922 0.442 1.033 0.897 0.432 0.232 0.888 0.228

0.9 · εMSE 1.260 0.929 0.460 1.163 0.909 0.448 0.261 0.904 0.238

1.0 · εMSE 1.400 0.939 0.484 1.292 0.919 0.469 0.290 0.917 0.248

1.1 · εMSE 1.540 0.943 0.514 1.421 0.928 0.497 0.319 0.928 0.257

1.2 · εMSE 1.680 0.948 0.549 1.550 0.932 0.531 0.348 0.939 0.265

1.3 · εMSE 1.820 0.955 0.590 1.679 0.935 0.568 0.377 0.947 0.274

εAMSE 0.483 0.878 0.410 0.476 0.871 0.412 0.216 0.877 0.221

ε̂AMSE 0.518 0.877 0.414 0.513 0.884 0.418 0.368 0.932 0.269

Notes:
(i) Panel Standard refers to standard nonparametric bootstrap, Panel m-out-of-n refers to m-out-of-n nonpara-
metric bootstrap with subsample m, Panel Plug-in: ṼMS

n refers to our proposed bootstrap-based implemented using
the example-specific plug-in drift estimator, and Panel Num Deriv: ṼND

n refers to our proposed bootstrap-based
implemented using the generic numerical derivative drift estimator.
(ii) Column “h, ε”reports tuning parameter value used or average across simulations when estimated, and Columns
“Coverage”and “Length”report empirical coverage and average length of bootstrap-based 95% percentile confidence
intervals, respectively.
(iii) hMSE and εMSE correspond to the simulation MSE-optimal choices, hAMSE and εAMSE correspond to the AMSE-optimal
choices, and ĥAMSE and ε̂AMSE correspond to the ROT feasible implementation of ĥAMSE and ε̂AMSE described in the
supplemental appendix.
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Table 2: Simulations, Isotonic Density Estimator, 95% Confidence Intervals.

(a) n = 1, 000, S = 2, 000, B = 2, 000

DGP 1 DGP 2 DGP 3
h, ε Coverage Length h, ε Coverage Length h, ε Coverage Length

Standard
0.828 0.146 0.808 0.172 0.821 0.155

m-out-of-n
m = dn1/2e 1.000 0.438 0.995 0.495 0.998 0.452

m = dn2/3e 0.989 0.314 0.979 0.360 0.989 0.328

m = dn4/5e 0.953 0.235 0.937 0.274 0.948 0.248

Plug-in: ṼID
n

0.7 · hMSE 0.264 0.955 0.157 0.202 0.947 0.183 0.209 0.957 0.165

0.8 · hMSE 0.302 0.954 0.157 0.231 0.946 0.182 0.239 0.952 0.165

0.9 · hMSE 0.339 0.951 0.156 0.260 0.944 0.181 0.269 0.949 0.164

1.0 · hMSE 0.377 0.949 0.154 0.289 0.941 0.180 0.299 0.948 0.163

1.1 · hMSE 0.415 0.940 0.151 0.318 0.938 0.178 0.329 0.944 0.161

1.2 · hMSE 0.452 0.934 0.147 0.347 0.934 0.176 0.359 0.939 0.158

1.3 · hMSE 0.490 0.922 0.142 0.376 0.928 0.173 0.389 0.935 0.155

hAMSE 0.380 0.949 0.154 0.300 0.940 0.180 0.333 0.943 0.161

ĥAMSE 0.364 0.950 0.155 0.290 0.941 0.180 0.401 0.930 0.154

Num Deriv: ṼND
n

0.7 · εMSE 0.726 0.954 0.158 0.527 0.947 0.183 0.554 0.952 0.165

0.8 · εMSE 0.830 0.956 0.159 0.602 0.947 0.182 0.633 0.950 0.164

0.9 · εMSE 0.933 0.956 0.160 0.678 0.944 0.181 0.712 0.949 0.163

1.0 · εMSE 1.037 0.956 0.159 0.753 0.942 0.180 0.791 0.948 0.162

1.1 · εMSE 1.141 0.955 0.159 0.828 0.940 0.179 0.870 0.946 0.161

1.2 · εMSE 1.244 0.956 0.160 0.904 0.936 0.177 0.949 0.943 0.160

1.3 · εMSE 1.348 0.960 0.163 0.979 0.935 0.176 1.028 0.940 0.159

εAMSE 0.927 0.956 0.160 0.731 0.943 0.180 0.812 0.948 0.162

ε̂AMSE 0.888 0.956 0.159 0.708 0.943 0.181 0.978 0.942 0.159

Notes:
(i) Panel Standard refers to standard nonparametric bootstrap, Panel m-out-of-n refers to m-out-of-n nonpara-
metric bootstrap with subsample m, Panel Plug-in: ṼID

n refers to our proposed bootstrap-based implemented using
the example-specific plug-in drift estimator, and Panel Num Deriv: ṼND

n refers to our proposed bootstrap-based
implemented using the generic numerical derivative drift estimator.
(ii) Column “h, ε”reports tuning parameter value used or average across simulations when estimated, and Columns
“Coverage”and “Length”report empirical coverage and average length of bootstrap-based 95% percentile confidence
intervals, respectively.
(iii) hMSE and εMSE correspond to the simulation MSE-optimal choices, hAMSE and εAMSE correspond to the AMSE-optimal
choices, and ĥAMSE and ε̂AMSE correspond to the ROT feasible implementation of ĥAMSE and ε̂AMSE described in the
supplemental appendix.
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