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Two new stationarity tests are proposed+ Both tests can be viewed as generaliza-
tions of existing stationarity tests and dominate these in terms of local asymptotic
power+ Improvements are achieved by accommodating stationary covariates+ A
Monte Carlo investigation of the small sample properties of the tests is con-
ducted, and an empirical illustration from international finance is provided+

1. INTRODUCTION

Let yt be an observed univariate time series generated by

yt 5 m t
y 1 vt

y, t 5 1, + + + ,T, (1)

wherem t
y is deterministic component andvt

y is an unobserved error process
with initial condition v1

y 5 u1
y and generating mechanism

Dvt
y 5 ~12 uL!ut

y, t 5 2, + + + ,T, (2)

whereut
y is a stationaryI ~0! process+ ~In this paper, a process is said to beI ~0!

if its partial sum process converges weakly to a Brownian motion+!
The problem of testing the null hypothesisH0 : u 5 1 againstH1 : u , 1 has

attracted considerable attention in the literature, as has the closely related prob-
lem of testing for parameter constancy in the “local-level” unobserved compo-
nents model+ Pertinent references include LaMotte and McWorther~1978!,
Nyblom and Mäkeläinen~1983!, Nyblom ~1986!, Nabeya and Tanaka~1988!,
Tanaka~1990!, Kwiatkowski, Phillips, Schmidt, and Shin~1992!, Saikkonen
and Luukkonen~1993a, 1993b!, Choi ~1994!, and Leybourne and McCabe
~1994!+ ~For a review, see Stock, 1994+! UnderH0, vt

y 5 ut
y andyt is a ~trend-!

stationary process, whereasyt is an integrated process with a random walk–
type nonstationarity under the alternative hypothesis+ For this reason, tests of
H0 are often referred to as stationarity tests+ The cited papers differ somewhat
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with respect to the assumptions on the underlying stationary processut
y and the

form of the deterministic componentm t
y+ On the other hand, all previous stud-

ies~of which the author is aware! have been concerned with the situation where
yt is observed in isolation+ Specifically, all previously devised tests have ex-
ploited only the information contained inyt when testingH0+

In applications, it is extremely rare that individual time series are observed
in isolation+ As a consequence, it seems reasonable to ask whether more pow-
erful stationarity tests can be obtained be utilizing the information contained in
related time series+ To fix ideas, suppose ak-vector time seriesxt of covariates
is observed, whose generating mechanism is

xt 5 m t
x 1 ut

x, t 5 1, + + + ,T, (3)

wherem t
x is deterministic component andut

x is an unobserved stationaryI ~0!
process+ Moreover, suppose the deterministic componentsm t

y andm t
x arepth-

order polynomial trends; that is, suppose

m t
y 5 (

i50

p

bi
y t i, m t

x 5 (
i50

p

bi
x t i, (4)

where $bi
y : 0 # i # p% # R and $bi

x : 0 # i # p% # Rk are unknown
parameters+

The present paper proposes two new tests that exploit the information con-
tained in the covariatesxt when testing the null hypothesis thatyt is ~trend-!
stationary+ Both tests are valid under mild moment and memory conditions on
ut 5 ~ut

y,ut
x'!' and enjoy optimality properties in the special case whereut is

Gaussian white noise+ The tests can be viewed as generalizations of existing
univariate stationarity tests, and the new tests dominate their univariate coun-
terparts in terms of asymptotic local power whenever the zero-frequency cor-
relation betweenut

y and ut
x is nonzero+ ~When the zero-frequency correlation

equals zero, the new tests coincide with their univariate counterparts+! In fact,
substantial power gains can be achieved if an appropriate set of covariatesxt

can be found+ The paper therefore provides an affirmative answer to the ques-
tion posed in the beginning of the previous paragraph+ Results complementary
to those obtained here can be found in Hansen~1995! and Elliott and Jansson
~2003!+ These papers demonstrate the usefulness of covariates in the context of
testing for an autoregressive unit root+

Section 2 derives the tests and establishes their asymptotic optimality prop-
erties in the special case where the underlying innovation sequence is Gaussian
white noise+ In Section 3, the tests are extended to accommodate general sta-
tionary errors by means of nonparametric corrections+ Section 4 shows how the
tests can be applied to test the null hypothesis that a vector integrated process
is cointegrated with a prespecified cointegration vector and presents an empir-
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ical illustration+ Finally, Section 5 offers a few concluding remarks, and all proofs
are collected in the Appendix+

2. TESTING WITH WHITE NOISE ERRORS

Let ~ yt , xt
'!' be generated by~1!–~4! and supposeut ; i+i+d+ N ~0,S!, where

S 5 Ssyy sxy
'

sxy Sxx
D

is a known, positive definite matrix~partitioned in conformity withut !+ Con-
sider the problem of testing

H0 : u 5 1 vs+ H1 : u , 1+

This problem is that of testing whether the~permanent! component
~1 2 u!(s51

t21 us
y is absent from the following permanent-transitory decomposi-

tion of yt :

yt 5 m t
y 1 ~12 u! (

s51

t21

us
y 1 ut

y+

To see how the use of stationary covariatesxt facilitates the testing problem,
consider the seriesyt 2 sxy

' Sxx
21xt , whose permanent-transitory decomposi-

tion is

yt 2 sxy
' Sxx

21xt 5 m t
y+x 1 ~12 u! (

s51

t21

us
y 1 ut

y+x,

wherem t
y+x 5 m t

y 2 sxy
' Sxx

21 m t
x andut

y+x 5 ut
y 2 sxy

' Sxx
21ut

x+ Becausext is station-
ary, the transformationyt 2 sxy

' Sxx
21xt does not affect the permanent compo-

nent+ On the other hand, Var~ut
y+x! 5 ~1 2 r2!Var~ut

y!, so the transformation
reduces the variance of the transitory component by a fractionr2, wherer2 5
syy

21sxy
' Sxx

21sxy is the squared coefficient of multiple correlation computed
from S+ The covariatesxt can therefore be used to attenuate the transitory com-
ponent ofyt without affecting the permanent component+ As a consequence, the
use of covariates makes it easier to detect the permanent component ofyt if it
is present, thereby leading to improvements in power relative to the case where
the covariates are ignored+ The remainder of this section makes these heuristic
ideas more precise+

2.1. Point Optimal Invariant Tests

Define b 5 ~b0
y, + + + ,bp

y,b0
x' , + + + ,bp

x'!' and for anyt 5 1, + + + ,T, let

zt 5 Syt

xt
D, vt 5Svtyut

xD, dt 5S dt
y 0

0 Ik J dt
xD,
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wheredt
y 5 dt

x 5 ~1, + + + , t p!'+ Using this notation, the model can be written as

zt 5 dt
'b 1 vt , t 5 1, + + + ,T+

The problem of testingH0 : u 5 1 vs+ H1 : u , 1 is invariant under the group of
transformations of the formzt r zt 1 dt

'b, b [ R~k11!~ p11!+ A maximal invari-
ant ismT 5 D4

' vec~z1, + + + , zT !, whereD4 is a matrix whose columns form an
orthonormal basis for the orthogonal complement of the column space of
~d1, + + + ,dT!'+ For anyu*, let

zt ~u
* ! 5 Syt ~u

* !

xt
D, dt ~u

* ! 5S dt
y~u* ! 0

0 Ik J dt
xD,

whereyt~u
*! satisfies the difference equationyt~u

*! 5 Dyt 1 u*yt21~u
*! with

initial condition y1~u
*! 5 y1 anddt

y~u* ! is defined analogously+ The probabil-
ity density ofmT is proportional to

expS2
1

2 (
t51

T

Ivt ~u;S!'S21 Ivt ~u;S!D,
where, for any u*,

Ivt ~u* ;S! 5 zt ~u
* ! 2 dt ~u

* !'S(
s51

T

ds~u
* !S21ds~u

* !'D21

3 S(
s51

T

ds~u
* !S21zs~u

* !D+
By the Neyman–Pearson lemma, the test that rejects for large values of

PT~ Nu! 5 PT~ Nu;S! 5 (
t51

T

Ivt ~1;S!'S21 Ivt ~1;S! 2 (
t51

T

Ivt ~ Nu;S!'S21 Ivt ~ Nu;S! (5)

is the most powerful invariant test ofu 51 against the specific alternativeu 5 Nu+
Theorem 1 characterizes the limiting distribution ofPT~ Nu! under a local-to-

unity reparameterization ofu and Nu in which l 5 T~1 2 u! $ 0 and Nl 5
T~1 2 Nu! . 0 are held constant asT increases without bound+ The limiting
representation ofPT~ Nu! involves the random functionalwP, the definition of
which is given next+

Let R [ @0,1!, l $ 0, and Nl . 0 be given+ Let OS102 be the~lower triangular!
Cholesky factor of the 23 2 matrix

OS 5 OS~R! 5S1 R

R 1D
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and for l [ $0, Nl%, define

Ul
l~r ! 5 OS2102SVl

l~r !

W~r !D, Dl ~r ! 5SDl
y~r ! 0

0 Dx~r !D OS2102',

where

Vl
l~r ! 5 V l~r ! 2 lE

0

r

exp~2l ~r 2 s!!V l~s! ds,

Dl
y~r ! 5 D y~r ! 2 lE

0

r

exp~2l ~r 2 s!!D y~s! ds,

V l~r ! 5 V~r ! 1 l *0
r V~s! ds, D y~r ! 5 Dx~r ! 5 ~1, + + + , r p!' , and ~V,W!' is a

Brownian motion with covariance matrixOS+ ~Here, and elsewhere, the depen-
dence ofUl

l and Dl on R is suppressed+! Finally, let R# 5 ~1 2 R2!2102 and
define

wP~l; Nl,R2!

5 2 Nl2R#
2E

0

1

V Nl
l~r !2 dr 1 2 NlR#

2SE
0

1

V Nl
l~r ! dVl~r ! 2 RE

0

1

V Nl
l~r ! dW~r !D

1 SE
0

1

D Nl~r ! dU Nl
l~r !D'SE

0

1

D Nl~r !D Nl~r !' drD21SE
0

1

D Nl~r ! dU Nl
l~r !D

2 SE
0

1

D0~r ! dU0
l~r !D'SE

0

1

D0~r !D0~r !' drD21SE
0

1

D0~r ! dU0
l~r !D+

THEOREM 1+ Let zt be generated by (1)–(4). Suppose ut ; i+i+d+ N~0,S!
and supposel 5 T~12 u! $ 0 and Nl 5 T~12 Nu! . 0 are fixed as T increases
without bound. Then PT~ Nu! rd wP~l; Nl,r2!.

Corresponding to any invariant~possibly randomized! test ofH0 : u 5 1 there
is a test functionfT :R~T2p21!~k11! r @0,1# such thatH0 is rejected with prob-
ability fT~m! whenevermT , the maximal invariant, equalsm+ For any givenu
and any suchfT, the probability of rejectingH0 is * fT~m! fT~m6u,S! dm, where
fT~{6u,S! denotes the probability density of the maximal invariant and the do-
main of integration isR~T2p21!~k11!+ A test fT is of level a [ ~0,1! if its size,
namely, * fT~m! fT~m61,S! dm, is less than or equal toa+ Similarly, a sequence
$fT% of test functions is said to be asymptotically of levela if

lim
Tr`

EfT~m! fT~m61,S! dm# a+

When limTr` on the left-hand side equals limTr` and the inequality is an
equality, $fT% is said to be asymptotically of sizea+
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The test statisticPT~ Nu! is point optimal invariant~POI! in the sense that the
power

EfT~m! fT~m6 Nu,S! dm

against the point alternativeu 5 Nu is maximized over all invariant tests of
level a by the test function 1~PT~ Nu! . cT

P~ Nu,a,S!!, where 1~{! is the indicator
function andcT

P~ Nu,a,S! is such that the test is of sizea+ This optimality re-
sult has an obvious asymptotic analogue+ Let the functioncP~{,{,{! be implic-
itly defined by the relation Pr~wP~0; Nl,r2! . cP~ Nl,a,r2!! 5 a+ The statistic
PT~ Nu! is asymptotically POI under local-to-unity asymptotics in the sense that
fT

P~mT ; Nl,a,S! 5 1~PT~1 2 T21 Nl! . cP~ Nl,a,r2!! maximizes

lim
Tr`

EfT~m! fT~m612 T21 Nl,S! dm

over all invariant tests asymptotically of levela; that is,

lim
Tr`

EfT~m! fT~m612 T21 Nl,S! dm

# lim
Tr`

EfT
P~mT ; Nl,a,S! fT~m612 T21 Nl,S! dm

whenever$fT% is asymptotically of levela+ Moreover, limTr` on the right-
hand side equals limTr` and is given by Pr~wP~ Nl; Nl,r2! . cP~ Nl,a,r2!!+

Theorem 2 of Saikkonen and Luukkonen~1993a! obtains an upper bound on
the asymptotic power function of any location and scale invariant stationarity
test in the univariate case+ Because scale invariance is not imposed, the result
stated here covers a larger class of tests than Theorem 2 of Saikkonen and Luuk-
konen~1993a! even in the univariate case+ ~The present paper obviates the need
to impose scale invariance by assuming thatS is known+! Moreover, the multi-
variate model studied here contains the univariate model of Saikkonen and Luuk-
konen~1993a! as a special case+

The functionpa~l;r2! 5 Pr~wP~l;l,r2! . cP~l,a,r2!! provides an upper
bound on the asymptotic power function of any invariant test asymptotically of
level a+ The bound is sharp in the sense that it can be attained for any givenl
by the testfT

P~mT ;l,a,S!+ Moreover, although no test statistic attains the up-
per bound uniformly inl, it turns out that it is possible to construct tests whose
power functions are very close to the bound+ The Gaussian power envelope
therefore constitutes a useful benchmark against which the power function of
any invariant test~asymptotically of levela! can be compared+
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The univariate counterpart ofPT~ Nu! is

PT
y~ Nu! 5 PT

y~ Nu;syy! 5 syy
21S(

t51

T

[vt
y~1!2 2 (

t51

T

[vt
y~ Nu!2D,

where

[vt
y~u* ! 5 yt ~u

* ! 2 dt
y~u* !'S(

s51

T

ds
y~u* ! ds

y~u* !'D21S(
s51

T

ds
y~u* !ys~u

* !D
for any u*+ Whenut

y ; i+i+d+ N ~0,syy!, the test that rejects for large values of
PT

y~ Nu! is more powerful against the specific alternativeu 5 Nu , 1 than any
other invariant test ofH0 based solely onyt , where invariance is with respect to
transformations of the formyt r yt 1 by

' dt
y, by [ Rp11+

When r2 5 0, the time seriesyt and xt are independent+ In that case, the
covariatesxt carry no information aboutyt , and the statisticsPT~ Nu! andPT

y~ Nu!
are equivalent+ In contrast, the rejection regions of the tests based on the
statisticsPT~ Nu! and PT

y~ Nu! differ wheneverr2 Þ 0+ These differences persist
asymptotically, asPT

y~ Nu! rd wP~l; Nl,0! under the assumptions of Theorem 1+
ComparingwP~l; Nl,0! and wP~l; Nl,r2!, the limiting distribution ofPT~ Nu! is
seen to depend on the covariatesxt only through the parameterr2+ As a con-
sequence, the “quality” of the covariates can be summarized by this scalar
parameter+

Figure 1 plotsp0+05~l;r2! for selected values ofr2 in the constant mean
~ p 5 0! case+ ~The curves were generated by taking 20,000 draws from the
distribution of the discrete approximation@based on 2,000 steps# to the limiting
random variables+! The lowest curve corresponds tor2 5 0 and therefore pro-
vides an upper bound on the~local asymptotic! power function of any invariant
univariate stationarity test+ An increase in the quality of the covariates~as mea-
sured byr2! leads to an increase in the level of the power envelope+ Indeed,
the difference between the power envelope and its univariate counterpart is quite
remarkable for most values ofr2+ For concreteness, consider the alternative
l 5 5, which corresponds to a moving average coefficientu of 0+975 whenT 5
200+ The univariate power envelope is 0+32, whereas the envelopes are 0+40
and 0+58 whenr2 equals 0+2 and 0+5, respectively+ Because they are upper
bounds, these power envelopes do not by themselves illustrate the power gains
attainable by feasible tests+ On the other hand, the evidence presented in Fig-
ure 1 clearly suggests that substantial power gains can be achieved by includ-
ing covariates in a stationarity test provided an appropriate set of covariates
can be found+ The power envelopes are lower in the linear trend~ p 5 1! case,
but the qualitative conclusion remains the same, as can be seen from Figure 2+

2.2. Locally Best Invariant Tests

Even asymptotically, the critical region of the test based onPT~1 2 T21 Nl!
depends on Nl+ As a consequence, no test is asymptotically uniformly most
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powerful ~with respect to the class of invariant tests! in the sense of Basawa
and Scott~1983!+ In such cases, tests based on weaker optimality concepts seem
worth considering+ One such concept, the concept of point optimality, justifies
the test based onPT~12 T21 Nl†!, where Nl† is a prespecified alternative against
which maximal power is desired+ As an alternative to that test, the present sec-
tion develops a test based on a Taylor series expansion ofPT~12 T21 Nl! around
Nl 5 0+ The resulting test can be implemented without specifying an alternative

in advance and enjoys certain local optimality properties+
Using simple algebra, it can be shown that

P̂T 5
]

] Nl
]PT~12 T21 Nl!* Nl50

5 2S1

0D'SS21T21 (
t51

T

Ivt ~1! Ivt ~1!'DS1

0D
and

\PT 5
1

2

]2

] Nl2 ]PT~12 T21 Nl!* Nl50
5 LT 1 T21P̂T ,

Figure 1. Power envelopes: 5% level tests, constant mean~ p 5 0!+
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where

LT 5 LT~S! 5 (
t51

T

FVt
'S* FVt 1S(

t51

T

dt S
** FVtD'S(

t51

T

dt S
21dt

'D21S(
t51

T

dt S
** FVtD,

S* 5 Ssyy+x
21 s xy'

s xy 0 D, S** 5S 0 s xy'

2s xy 0 D, (6)

FVt 5 T21 (s51
t21 Ivs~1;S!, syy+x 5 syy 2 sxy

' Sxx
21sxy, and s xy 5 2syy+x

21 Sxx
21sxy+

~The dependence of̂PT and \PT on S has been suppressed to achieve notational
economy, and the notation FVt recognizes the fact thatIvt~1;S! does not depend
on S+!

Under the assumptions of Theorem 1, T21 (t51
T Ivt ~1! Ivt ~1!' rp S+ As a con-

sequence, the limiting distribution ofP̂T is degenerate: P̂T rp 21+ On the other
hand, Theorem 2~a!, which follows, shows that under the same assumptions
the limiting distribution ofLT equals that of the random variablewL~l;r2!,
where, for any 0# R , 1,

Figure 2. Power envelopes: 5% level tests, linear trend~ p 5 1!+

64 MICHAEL JANSSON



wL~l;R2! 5E
0

1

EU l~r !' OS* EU l~r ! dr

1 SE
0

1

D~r ! OS** EU l~r ! drD'SE
0

1

D~r !D~r !' drD21

3 SE
0

1

D~r ! OS** EU l~r ! drD,
where

EU l~r ! 5 U0
l~r ! 2SE

0

r

D~s! dsD'SE
0

1

D~s!D~s!' dsDSE
0

1

D~s! dU0
l~s!D,

D~r ! 5 D0~r !, and

OS* 5 S12 R#
2R2 2R# R

2R# R 0 D, OS** 5S 0 2R# R

R# R 0 D+
The test that rejects for large values ofLT is asymptotically equivalent~in an

obvious sense! to the test that rejects for large values of the second-order Tay-
lor approximation toPT~1 2 T21 Nl!, namely, P̂T Nl 1 \PT Nl2+ This observation
suggests thatLT enjoys certain local optimality properties+ A sequence$fT% of
tests is asymptotically locally efficient~with respect to the class of invariant
tests asymptotically of sizea! in the sense of Basawa and Scott~1983! if it
maximizes

lim
Tr`

]

]l
EfT~m! fT~m612 T21l,S! dm*

l50

over all invariant tests asymptotically of sizea+ As Theorem 2~b! shows, any
invariant test~asymptotically of sizea! is asymptotically locally efficient ac-
cording to that definition+1 To obtain a nontrivial characterization of local op-
timality in the present context, the following alternative concept of asymptotic
local optimality is useful+ Let q* be the smallest integerq such that

lim
Tr`

E6 lT
~q!~m6S!6{fT~m61,S! dm. 0,

wherelT
~q!~m6S! 5 ]q log fT~m61 2 T21l,S!0]lq6l50+ An invariant test is said

to be asymptotically locally best invariant~LBI ! if it maximizes

lim
Tr`

]q*

]lq* EfT~m! fT~m612 T21l,S! dm*
l50

over all invariant tests asymptotically of the same size+ In regular cases where
partial derivatives of* log fT~m61 2 T21l,S!{fT~m61,S! dm with respect tol

STATIONARITY TESTING WITH COVARIATES 65



can be obtained by differentiating under the integral sign, this concept of local
asymptotic optimality agrees with that of Basawa and Scott~1983! when
q*51+ The testing problem studied here hasq*5 2 and as Theorem 2~c! shows,
LT is asymptotically LBI in the~stronger! sense defined here+2

THEOREM 2+ Let zt be generated by (1)–(4). Suppose ut ; i+i+d+ N~0,S!
and supposel 5 T~1 2 u! $ 0 is fixed as T increases without bound. Then

(a) LT rd wL~l;r2!.

If $fT% is asymptotically of sizea [ ~0,1!, then

(b)

lim
Tr`

]

]l
EfT~m! fT~m612 T21l,S! dm*

l50
5 0,

(c)

lim
Tr`

]2

]l2 E~fT~m! 2 fT
L~m;a,S!! fT~m612 T21l,S! dm*

l50
# 0,

wherefT
L~mT ;a,S! 5 1~LT . cL~a,r2!! and Pr~wL~0;r2! . cL~a,r2!! 5 a+

The univariate counterpart ofLT is

LT
y 5 LT

y ~syy! 5 syy
21 (

t51

T

~ ZVt
y!2,

where ZVt
y 5 T21 (s51

t21 [vsy~1!+ The statisticsLT and LT
y are equivalent if and

only if r2 5 0+ Moreover, LT
y
rd wL~l;0! under the assumptions of Theorem 2,

so the difference betweenLT andLT
y persists asymptotically wheneverr2 Þ 0+

As was the case with the power envelopes derived in the previous section, the
inclusion of covariates can have a substantial effect on the power properties of
the LBI test+ ~This will become apparent in Section 3+2+!

3. TESTING WITH WEAKLY DEPENDENT ERRORS

The analysis in the previous section proceeded under the restrictive assumption
that ut ; i+i+d+ N ~0,S!, whereS is known+ The optimality theory seems to de-
pend on the normality assumption+ On the other hand, it is straightforward to
construct feasible test statistics having limiting representations of the formwP

andwL under much less stringent assumptions onut + For instance, the follow-
ing assumption suffices+

A1+ ut 5 (i50
` Ci «t2i , where$«t : t [ Z% is i+i+d+ ~0, Ik11!, (i50

` Ci has full
rank, and(i51

` i 7Ci 7 , `, where7{7 is the Euclidean norm+
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3.1. Feasible Tests

Define the matrices

V 5 Svyy vxy
'

vxy Vxx
D5 lim

Tr`
T21 (

t51

T

(
s51

T

E~ut us
' !

and

G 5 Sgyy gyx

gxy Gxx
D5 lim

Tr`
T21 (

t52

T

(
s51

t21

E~ut us
' !,

where the partitioning is in conformity withut + Moreover, let r2 5
vyy

21vxy
' Vxx

21vxy be the squared coefficient of multiple correlation computed
from V, the long-run covariance matrix ofut + ~BecauseV 5 E~ut ut

'! whenut

is white noise, the present definition ofr2 is consistent with that of Section 2+!
Under A1 and local-to-unity asymptotics, LT~V! rd wL~l;r2!, so an “auto-

correlation robust” version ofLT can be obtained by employing the long-run
covariance matrixV in the definition of the test statistic+ Analogously, an auto-
correlation robust POI test can be based onPT~ Nu;V!+ In general, PT~ Nu;V!
suffers from “serial correlation bias” under A1+ Specifically, PT~ Nu;V! rd

wP~l; Nl,r2! 1 2 Nlvyy+x
21 gyy+x, wheregyy+x 5 gyy 2 vxy

' Vxx
21gxy+ Let

QT~ Nu;V,G! 5 PT~ Nu;V! 2 2T~12 Nu!vyy+x
21 gyy+x+ (7)

The statisticQT~ Nu;V,G! coincides withPT~ Nu;V! when ut is white noise, be-
causeG 5 0 in that case+ More generally, QT~ Nu;V,G! correctsPT~ Nu;V! for
serial correlation bias andQT~ Nu;V,G! rd wP~l; Nl,r2! under A1 and local-to-
unity asymptotics+

In most~if not all! applications, the tests based onLT~V! andQT~ Nu;V,G! are
infeasible becauseV andG are unknown+ It therefore seems natural to consider
the test statisticsZLT 5 LT~ ZV! and ZQT~ Nu! 5 QT~ Nu; ZV, ZG!, where

ZV 5 S [vyy [vxy
'

[vxy ZVxx
D

and

ZG 5 S [gyy [gyx

[gxy ZGxx
D

are estimators ofV andG, respectively+

THEOREM 3+ Let zt be generated by (1)–(4). Suppose A1 holds and sup-
posel 5 T~12 u! $ 0 and Nl 5 T~12 Nu! . 0 are fixed as T increases without
bound. If~ ZV, ZG! rp ~V,G!, then ZQT~ Nu! rd wP~l; Nl,r2! and ZLT rd wL~l;r2!+
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Conventional~possibly prewhitened! kernel estimators ofV andG ~e+g+, An-
drews, 1991; Andrews and Monahan, 1992! meet the consistency requirement
of Theorem 3+ Conditions under which VAR~1! prewhitened kernel estimators
are consistent are provided in Section 3+3+

The statistics

ZQT
y~ Nu! 5 QT

y~ Nu; [vyy, [gyy! 2 2T~12 Nu! [vyy
21 [gyy

and ZLT
y 5 LT

y ~ [vyy! are univariate counterparts ofZQT~ Nu! and ZLT , respectively+
Under the assumptions of Theorem 3, ZQT

y~ Nu! rd wP~l; Nl,0! and ZLT
y
rd

wL~l;0!+ The test statistic ZLT
y is well known ~e+g+, Kwiatkowski et al+, 1992!+

On the other hand, the semiparametric versionZQT
y~ Nu! of the univariate POI test

would appear to be new+

3.2. Asymptotic Power Properties

Saikkonen and Luukkonen~1993a! considered the constant mean case and found
that their test statisticER~1 2 70T !, which corresponds toZQT

y~1 2 70T !, has a
local asymptotic power function that is almost indistinguishable from the uni-
variate power envelope+ The choice Nl 5 7 produces a test that is asymptotically
0+50-optimal, level 0+05 in the sense of Davies~1969!+ In other words, l 5 7 is
the alternative for which the univariate power envelope for 5% level tests equals
0+50+ In the general case, it therefore seems natural to considerZQT~12 T21 Nl†!,
where Nl† is such that the test statistic is asymptotically 0+50-optimal, level 0+05+
Although computationally feasible, such a procedure seems cumbersome in view
of the fact that the power envelope for 5% level tests depends not only on the
order of the deterministic component in the model but also on the parameter
r2, which measures the quality of the covariates+ To construct test statistics that
are asymptotically 0+50-optimal, level 0+05 one would therefore have to use a
new Nl† for eachr2+ Fortunately, a much simpler approach yields very satisfac-
tory results+ The approach taken here is to use the sameNl† for all values ofr2+
The value of Nl† is chosen in such a way that the test is asymptotically 0+50-
optimal, level 0+05 in the worst case scenarior2 5 0, the case where the uni-
variate test is optimal+ This approach generates a test that has excellent power
properties~relative to the power envelope! whenr2 is low+ Moreover, ZQT dom-
inates its univariate counterpart for all values ofr2+ In fact, the test has a
power function that is very close to the power envelope even for nonzero val-
ues ofr2+

Figure 3 illustrates this in the constant mean case withr2 5 0+50+ In addi-
tion to the power envelope and the local asymptotic power ofZQT , Figure 3 also
plots the local power function of the LBI testZLT and the univariate testsZQT

y

and ZLT
y + Comparing ZQT to ZQT

y, it is seen that the inclusion of covariates can
lead to huge gains in power in cases where an appropriate set of covariates can
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be found+ The Pitman asymptotic relative efficiency~ARE! of ZQT with respect
to ZQT

y ~evaluated at power 0+50! is 1+65, implying that in large samples the
univariate test needs 65% more observations than the test using covariates to
have comparable power properties whenr2 5 0+50+ The case where covariates
are included is qualitatively similar to the univariate case in the sense that the
POI test dominates the LBI test for all but extremely small values ofl+ Indeed,
the inferiority ~as measured by the Pitman ARE! of the LBI test is somewhat
more pronounced when useful covariates are available+

Figure 4 presents results for the linear trend case+ The statistics ZQT and ZQT
y

use Nl† 5 12, the value that yields an asymptotically 0+50-optimal, level 0+05
test in the univariate case+ All power curves lie below the curves for the
constant mean case, but the pattern is the same as in Figure 3+ In particular,
the statistic ZQT has a power function that lies close to the envelope and far
above the power functions corresponding toZLT and ZQT

y+ For instance, the Pit-
man ARE of ZQT with respect to ZQT

y ~evaluated at power 0+50! is 1+82, indicat-
ing that the inclusion of covariates is even more beneficial in the linear trend
case than in the constant mean case+

Figure 3. Power curves, r2 5 0+5: 5% level tests, constant mean~ p 5 0!+
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Tables 1 and 2 give various critical values forZQT and ZLT for p [ $0,1%,
which seem to be the cases of empirical relevance+ In the case of ZQT , the crit-
ical values correspond to the recommended values ofNl†, namely, Nl† 5 7 when
p 5 0 and Nl† 5 12 whenp 5 1+ The critical values are presented forr2 in steps
of 0+1+ The recommendation is to use the critical value corresponding to[r2 5
[vyy
21 [vxy

' ZVxx
21 [vxy computed from ZV+ Interpolation can be used to obtain critical

values for values of [r2 between those given in the tables+
In general, point optimal and locally optimal tests may fail to be consistent

in curved statistical models~van Garderen, 2000!+ In view of the following fixed
parameter result, the tests based onZQT and ZLT are consistent if ZV and [gyy+x are
well behaved under fixed alternatives+

THEOREM 4+ Let zt be generated by (1)–(4). Suppose A1 holds and sup-
poseu , 1 and Nl 5 T~1 2 Nu! . 0 are fixed as T increases without bound. If
[gyy+x 5 op~T 2!, [vyy 5 op~T 2!, [vxy 5 op~T !, and ZVxx

21 5 Op~1!, then

lim
Tr`

Pr~ ZQT~ Nu! . c! 5 lim
Tr`

Pr~ ZLT . c! 5 1

for any c[ R.

Figure 4. Power curves, r2 5 0+5: 5% level tests, linear trend~ p 5 1!+
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3.3. Covariance Matrix Estimation

Under fairly general conditions, the requirements of Theorems 3 and 4 are met
by VAR~1! prewhitened kernel estimators with plug-in bandwidths+ These esti-
mators are defined as follows+

Table 1. Percentiles of ZLT and ZQT~1 2 70T !, constant mean case~ p 5 0!

ZLT ZQT~1 2 70T !

r2 90% 95% 97+5% 99% 90% 95% 97+5% 99%

0 0+348 0+458 0+589 0+748 21+969 20+973 0+055 1+451
0+1 0+362 0+484 0+622 0+804 21+938 20+854 0+244 1+588
0+2 0+382 0+516 0+652 0+867 21+880 20+787 0+361 1+663
0+3 0+404 0+571 0+725 0+940 21+887 20+694 0+345 1+968
0+4 0+444 0+621 0+797 1+059 21+989 20+761 0+460 2+049
0+5 0+493 0+701 0+924 1+216 22+146 20+740 0+575 2+110
0+6 0+572 0+838 1+124 1+541 22+518 20+964 0+448 2+249
0+7 0+665 0+999 1+337 1+812 23+079 21+458 0+028 2+058
0+8 0+942 1+430 1+930 2+583 24+821 22+813 20+841 1+216
0+9 1+750 2+736 3+743 5+126 29+932 27+054 24+650 21+805

Note: The percentiles were computed by generating 20,000 draws from the discrete time approximation~based
on 2,000 steps! to the limiting random variables+

Table 2. Percentiles of ZLT and ZQT~1 2 120T !, linear trend case~ p 5 1!

ZLT ZQT~1 2 120T !

r2 90% 95% 97+5% 99% 90% 95% 97+5% 99%

0 0+118 0+147 0+176 0+214 25+019 23+927 22+959 21+634
0+1 0+120 0+151 0+185 0+228 24+944 23+807 22+660 21+208
0+2 0+117 0+148 0+180 0+226 25+162 23+970 22+736 21+405
0+3 0+115 0+149 0+185 0+236 25+317 24+035 22+686 21+115
0+4 0+115 0+153 0+197 0+251 25+600 24+224 22+975 21+377
0+5 0+112 0+157 0+207 0+273 26+106 24+431 23+121 21+141
0+6 0+114 0+170 0+222 0+297 26+993 25+130 23+410 21+209
0+7 0+115 0+183 0+258 0+358 28+546 26+303 24+442 22+060
0+8 0+128 0+222 0+339 0+485 211+941 29+278 26+858 24+062
0+9 0+143 0+336 0+545 0+839 223+141 218+951 215+393 211+340

Note: The percentiles were computed by generating 20,000 draws from the discrete time approximation~based
on 2,000 steps! to the limiting random variables+
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For t 5 2, + + + ,T, let [vtPW 5 [vt 2 ZA [vt21, where ZA is a ~k 1 1! 3 ~k 1 1! matrix
and [vt 5 zt 2 dt

'~(s51
T dsds

'!21~(s51
T dszs!+ Define

ZS 5 T21 (
t51

T

[vt [vt' ,

ZL 5 ~T 2 1!21 (
t52

T

[vtPW [vt21
' ,

ZVPW 5 ~T 2 1!21 (
t52

T

(
s52

T

kS 6 t 2 s6

ZbT
D [vtPW [vsPW' ,

and

ZGPW 5 ~T 2 1!21 (
t53

T

(
s52

t21

kS 6 t 2 s6

ZbT
D [vtPW [vsPW' ,

wherek~{! is a kernel and$ ZbT% is a sequence of~possibly sample-dependent!
bandwidth parameters+ The proposed estimators ofV andG are

ZV 5 ~I 2 ZA!21 ZVPW~I 2 ZA' !21

and

ZG 5 ~I 2 ZA!21 ZGPW~I 2 ZA' !21 1 ~I 2 ZA!21 ZA ZS 2 ~I 2 ZA!21 ZL ZA'~I 2 ZA' !21,

respectively+ Consider the following assumption+

A2+

~i! k~0! 5 1, k~{! is continuous at zero, sups$06k~s!6 , `, and *0
` Ok~r ! dr , `,

where Ok~r ! 5 sups$r 6k~s!6 ~ for everyr $ 0!+
~ii ! ZbT 5 [aT bT , where [aT and bT are positive with [aT 1 [aT

21 5 Op~1! and bT
21 1

T2102bT 5 o~1!+
~iii ! T 102~ ZA 2 A! 5 Op~1! for someA such that~I 2 A! is nonsingular+
~iv! The matrixA in ~iii ! is block upper triangular+

Assumption A2~i! is discussed in Jansson~2002!, whereas Assumptions A2~ii !
and~iii ! are adapted from Andrews and Monahan~1992!+ Assumption A2~iv! is
helpful when studying the behavior ofZV and ZG under fixed alternatives+ When
ZA 5 0, ZV and ZG are standard kernel estimators and A2~iii ! and~iv! are trivially

satisfied+ A nondegenerate prewhitening matrix satisfying A2~iii ! is discussed
subsequently+

LEMMA 5 + Let zt be generated by (1)–(4). Suppose A1 and A2(i)–(iii) hold
and supposel 5 T~12 u! $ 0 and Nl 5 T~12 Nu! . 0 are fixed as T increases
without bound. Then~ ZV, ZG! rp ~V,G!.
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LEMMA 6 + Let zt be generated by (1)–(4). Suppose A1 and A2 hold and
supposeu , 1 and Nl 5 T~1 2 Nu! . 0 are fixed as T increases without bound.
Then [gyy+x 5 op~T 2!, [vyy 5 op~T 2!, [vxy 5 op~T !, and ZVxx

21 5 Op~1!.

Under local alternatives~i+e+, under the assumptions of Theorem 3 and Lemma
5!, A2~iii ! is satisfied by the least squares estimator

ZALS 5 S(
t52

T

[vt [vt21
' DS(

t52

T

[vt21 [vt21
' D21

+

On the other hand, standard cointegration arguments can be used to show that
the first column of ZALS converges at rateT to first unit vector inRk11 under
fixed alternatives~i+e+, under the assumptions of Theorem 4 and Lemma 6!+ As
a consequence, ZALS violates A2~iii ! under fixed alternatives+

An estimator ZA satisfying A2~iii ! under both local and fixed alternatives can
be obtained by modifying ZALS as follows+ Let ZMLS ZJLS ZMLS

21 be the Jordan de-
composition of ZALS+ Define ZA 5 ZMLS ZJ ZMLS

21, where ZJ is a Jordan matrix ob-
tained from ZJLS by dividing the diagonal elements of each Jordan block by
max~1,6m600+97!, wherem is the eigenvalue~real or complex! associated with
the Jordan block and6{6 denotes absolute value+ This adjustment preserves the
eigenvectors of ZALS and bounds the eigenvalues ofZA away from unity+ By con-
struction, ZA 5 ZALS whenever the eigenvalues ofZALS do not exceed 0+97+ More
generally, the properties of ZA are easily deduced once the properties ofZALS

have been established+ In particular, ZA satisfies A2~iii ! wheneverT 102~ ZALS 2
ALS! 5 Op~1! for someALS ~as is true under both local and fixed alternatives!,
whereas A2~iv! holds if the matrixALS is block upper triangular~as is the case
under fixed alternatives!+ Lemmas 5 and 6 therefore demonstrate the plausibil-
ity of the high-level assumptions onZV and ZG made in Theorems 3 and 4,
respectively+

3.4. Finite Sample Properties

To investigate the finite sample properties of the test statistics introduced in
Section 3+1, a small Monte Carlo experiment is conducted+ Samples of sizeT 5
200 are generated according to~1!–~4!+ The errorsut are generated by the bi-
variate model

Sut
y

ut
xD 5 Scyy~L! 0

r ~12 r2!102DS«t
y

«t
xD, (8)

where~«t
y,«t

x!' ; i+i+d+ N ~0, I2! andcyy~1! 5 1+ Two specifications ofcyy~L! are
considered:

cyy
AR~L! 5 ~12 a! (

i50

`

aiLi, a [ $20+8,20+5,20+2,0+2,0+5,0+8%
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and

cyy
MA~L! 5

1

11 b
~11 bL!, b [ $20+8,20+5,20+2,0,0+2,0+5,0+8%,

corresponding to an AR~1! and an MA~1! model forut
y, respectively+ In both

cases,

V 5 lim
Tr`

T21 (
t51

T

(
s51

T

E~ut us
' ! 5S1 r

r 1D+
In particular, the parameterr in ~8! is the correlation coefficient computed
from V+

The parametersV and G are estimated using VAR~1! prewhitened kernel
estimators+ Specifically, ZVPW and ZGPW are constructed using the quadratic spec-
tral kernel~which clearly satisfies Assumption A2~i!! along with a plug-in band-
width+ The value of the plug-in bandwidth is obtained by settingbT 5
1+3221{T 105 ~following Andrews, 1991! and [aT 5 max~min~ [aAR~1!~2!105,5!,0+05!,
where [aAR~1!~2! is computed from Andrews’s~1991! equation~6+4! ~with wa 5 1
for all a!+ Because 0+05 # [aT # 5 is imposed, A2~ii ! is automatically satisfied+
In particular, the condition [aT # 5 controls the behavior of the estimated band-
width under fixed alternatives, thereby circumventing the problems discussed
by Choi ~1994!+ Finally, the matrix ZA used in the prewhitening procedure was
computed by modifying the ordinary least squares~OLS! estimator in the man-
ner described in Section 3+3+

Tables 3 and 4 and 5 and 6 summarize the results for the constant mean and
linear trend cases, respectively+ The tables report the observed rejection rates
of 5% level tests implemented using critical values based on the estimate[r2

computed from ZV+ As was the case with the asymptotic analysis of Section 3+2,
the simulation evidence is favorable to the tests developed in this paper+ The
rejection rates of the new tests are quite similar to those of their univariate
counterparts under the null hypothesis+ No noticeable loss in power is observed
in the case where the covariates are uninformative~when r2 5 0!, whereas
substantial power gains are achieved in the cases where the covariates do carry
information aboutyt +

In addition to documenting the superiority of the new tests, the simulation
evidence also points out some problems with the small sample properties of
the new tests and their univariate counterparts+ Rejection rates under the null
tend to fall far short of the nominal level in the MA~1! model with 6b6 $ 0+5,
which leads to an unnecessary reduction in power when asymptotic critical val-
ues are used+ Likewise, power is very low in the AR~1! model with a 5 0+8,
especially so for the point optimal tests+ Moreover, the pattern exhibited by the
rejection rates in the AR~1! model witha 5 0+8 is rather peculiar+ In part, the
latter phenomenon appears to be due to imprecision of the estimates ofV and
G, because simulation results~not reported here! show that the power of the

74 MICHAEL JANSSON



infeasible tests using the true values ofV andG is monotonic inu+ It follows
from Theorem 4 that the low power in the AR~1! model witha 5 0+8 is a finite
sample phenomenon+ In an attempt to quantify the effect of a change in the
sample size for moderate values ofT, Tables 7 and 8 investigate the power

Table 3. Monte Carlo rejection rates~AR~1! model, 5% level tests, constant
mean, T 5 200!

ZLT ,r2 5 ZQT ,r2 5

a u ZLT
y ZQT

y 0 0+2 0+5 0+8 0 0+2 0+5 0+8

20+8 1 6+0 2+1 5+9 5+9 6+3 8+1 2+0 1+8 1+6 1+0
0+975 31+1 22+6 30+8 35+9 43+5 59+7 22+4 28+3 39+9 63+6
0+950 58+7 55+8 58+5 64+9 70+3 79+8 55+0 66+8 81+5 95+8
0+925 75+2 77+4 74+8 78+1 82+0 87+2 76+4 85+5 94+3 99+5
0+900 83+4 88+6 83+1 85+4 87+3 91+0 88+2 92+9 97+8 99+9

20+5 1 5+1 3+9 5+1 5+4 5+0 5+1 4+2 1+8 3+3 2+4
0+975 31+0 28+6 30+9 34+7 42+6 59+7 27+8 28+3 51+7 81+7
0+950 60+2 64+1 60+0 63+2 69+3 79+7 63+7 66+8 87+5 99+1
0+925 75+9 82+3 75+7 77+2 82+2 88+2 81+7 85+5 96+5 100+0
0+900 84+2 91+1 84+0 85+7 88+3 92+8 91+0 92+9 99+1 100+0

20+2 1 5+0 4+5 5+0 5+4 4+7 4+6 4+4 4+6 4+8 4+3
0+975 31+9 31+7 31+2 34+0 42+0 58+1 31+2 37+6 53+9 84+3
0+950 59+7 65+1 59+2 62+0 68+8 78+3 64+5 73+1 88+8 99+2
0+925 75+4 82+7 75+0 76+9 80+9 86+9 82+3 88+7 97+4 99+9
0+900 83+6 91+0 83+5 84+9 87+6 91+0 90+5 95+0 99+3 100+0

0+2 1 5+1 5+0 5+3 4+5 4+3 4+0 5+1 4+2 4+2 4+3
0+975 30+7 30+1 30+2 32+7 41+1 55+4 29+2 36+5 52+1 83+0
0+950 59+1 64+1 58+4 59+5 65+7 72+5 63+0 71+4 86+2 98+5
0+925 73+6 80+9 72+8 73+9 76+9 77+7 80+3 87+2 95+4 99+6
0+900 81+1 89+3 80+7 81+0 81+5 78+7 88+6 93+4 98+2 98+9

0+5 1 4+8 3+9 4+7 4+7 5+2 4+9 4+0 3+5 3+8 4+4
0+975 28+3 26+2 27+8 31+8 39+1 55+4 25+1 32+5 48+3 77+6
0+950 53+2 56+4 52+3 56+1 62+2 71+1 54+9 65+0 81+4 96+5
0+925 64+9 72+8 63+8 67+2 70+4 73+9 70+1 79+5 90+3 96+0
0+900 69+5 79+2 68+2 69+9 71+3 71+1 75+4 81+6 88+2 88+1

0+8 1 3+6 1+3 3+8 3+7 4+1 6+1 1+5 1+6 1+5 2+4
0+975 18+0 6+6 17+0 20+3 28+7 49+9 6+3 9+6 19+0 45+8
0+950 24+6 6+3 22+2 27+0 36+2 56+8 5+7 8+8 18+6 49+9
0+925 16+3 2+7 15+1 18+0 26+3 50+3 2+5 3+8 7+3 27+8
0+900 11+2 2+3 10+2 12+3 19+3 40+3 2+0 2+5 3+8 13+0

Note: Based on 5,000 Monte Carlo replications+
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Table 4. Monte Carlo rejection rates~MA ~1! model, 5% level tests, constant
mean, T 5 200!

ZLT , r2 5 ZQT , r2 5

b u ZLT
y ZQT

y 0 0+2 0+5 0+8 0 0+2 0+5 0+8

20+8 1 0+0 0+0 0+0 0+0 0+0 0+0 0+0 0+0 0+0 0+0
0+975 0+1 0+0 0+1 0+4 1+3 5+4 0+0 0+0 0+0 0+3
0+950 6+5 1+5 6+4 8+8 13+8 28+8 1+4 2+6 4+3 13+3
0+925 19+2 10+1 19+2 23+8 32+2 47+3 9+6 13+2 20+0 40+3
0+900 32+5 22+6 32+2 36+9 45+6 58+7 22+0 27+6 39+7 63+7

20+5 1 0+7 0+1 0+7 0+3 0+6 0+7 0+2 0+0 0+0 0+0
0+975 13+3 8+0 13+4 16+5 22+8 39+8 7+7 10+3 14+7 31+1
0+950 40+9 36+5 40+7 45+0 53+2 66+7 35+9 43+5 59+1 84+8
0+925 60+3 60+8 59+7 62+8 69+7 78+4 60+1 67+7 82+5 97+1
0+900 71+9 75+9 71+6 73+7 79+0 85+2 75+3 81+9 92+7 99+4

20+2 1 3+7 3+1 3+8 3+7 3+8 3+2 3+3 3+0 2+6 2+2
0+975 28+8 26+9 28+5 31+4 40+0 55+4 26+2 32+0 48+2 78+2
0+950 56+9 61+0 56+6 60+4 68+2 76+2 60+7 69+9 86+0 98+8
0+925 73+4 80+6 73+0 75+9 81+2 85+8 79+9 87+2 96+3 99+9
0+900 82+4 89+4 82+0 83+7 87+7 90+1 89+0 94+2 99+0 100+0

0 1 5+2 5+0 5+3 5+0 4+5 4+2 5+3 4+3 4+1 4+3
0+975 31+4 31+0 30+9 34+3 40+3 56+4 30+2 38+2 54+1 84+0
0+950 60+3 65+9 59+7 62+4 67+5 75+9 64+7 73+8 88+6 99+1
0+925 75+1 82+5 74+8 76+4 79+4 83+2 82+0 88+6 96+7 99+9
0+900 83+1 90+9 82+6 84+4 85+4 86+7 90+3 94+6 98+8 100+0

0+2 1 4+3 3+7 4+2 3+7 4+2 4+5 3+7 3+1 3+3 3+6
0+975 28+1 26+7 28+1 30+3 38+8 56+2 26+5 32+1 48+5 79+9
0+950 56+1 60+6 55+6 58+3 65+4 74+8 59+8 69+1 85+7 98+5
0+925 70+4 78+7 69+9 72+5 76+6 80+6 77+7 85+8 95+0 99+7
0+900 78+9 87+6 78+0 79+8 81+7 82+2 87+0 92+5 98+2 99+4

0+5 1 1+7 0+9 1+7 2+0 2+8 5+8 0+8 0+8 1+0 2+1
0+975 19+1 14+6 19+0 24+1 36+1 58+4 14+4 19+6 35+5 76+0
0+950 45+4 44+5 44+8 51+7 62+3 76+8 43+3 55+6 77+1 98+1
0+925 60+9 65+8 60+6 65+3 72+7 82+0 64+2 75+6 91+8 99+8
0+900 68+4 77+4 67+7 72+1 76+9 83+8 75+8 84+9 95+9 99+4

0+8 1 1+0 0+3 1+1 1+2 2+9 6+9 0+4 0+3 0+6 2+3
0+975 14+7 8+8 14+4 20+7 34+7 57+5 8+4 14+5 31+5 75+6
0+950 41+4 36+6 40+2 46+8 59+5 75+9 35+4 46+8 72+9 98+1
0+925 56+2 56+6 55+3 60+1 70+7 81+5 54+3 67+3 88+2 99+7
0+900 63+3 67+0 62+5 66+9 76+0 84+3 63+8 77+3 93+5 99+7

Note: Based on 5,000 Monte Carlo replications+
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against the~fixed! alternativeu 5 0+9 for T [ $200,300,400,500% in the AR~1!
model witha 5 0+8+ As the sample size increases, power increases in all cases
but remains disappointingly low in the case of the point optimal test+ Indeed,
even in samples of sizeT 5 500 the point optimal test fails to dominate the

Table 5. Monte Carlo rejection rates~AR~1! model, 5% level tests, linear trend,
T 5 200!

ZLT , r2 5 ZQT , r2 5

a u ZLT
y ZQT

y 0 0+2 0+5 0+8 0 0+2 0+5 0+8

20+8 1 7+4 0+5 7+4 7+7 9+5 11+9 0+4 0+3 0+1 0+0
0+975 16+1 1+9 16+0 18+9 24+8 37+5 1+8 2+9 4+7 6+7
0+950 39+9 13+2 39+3 43+8 52+8 66+3 13+0 19+9 33+5 57+7
0+925 59+9 36+0 59+1 65+1 73+6 83+1 35+0 46+1 66+8 90+0
0+900 73+9 57+1 73+5 78+7 85+0 91+0 55+7 68+8 85+3 97+7

20+5 1 5+6 2+4 5+7 5+6 5+5 6+1 2+5 2+1 1+7 0+6
0+975 14+4 8+0 14+2 15+7 20+7 33+9 7+5 10+7 18+6 36+6
0+950 35+3 28+4 34+8 41+0 51+1 64+4 27+5 40+1 61+3 91+5
0+925 57+3 54+1 56+8 63+7 71+4 80+7 53+2 68+8 86+2 99+2
0+900 72+6 73+2 72+3 77+5 83+0 89+8 72+0 84+8 95+6 99+9

20+2 1 5+5 4+1 5+5 5+2 4+9 4+9 4+0 3+4 3+1 3+0
0+975 14+0 10+7 13+7 14+7 19+9 32+0 10+5 14+9 26+0 53+8
0+950 36+3 33+9 36+0 40+0 48+8 62+5 33+0 45+1 69+6 96+1
0+925 58+4 60+1 57+9 61+9 70+3 79+8 59+0 72+4 90+5 99+7
0+900 73+0 77+4 72+5 76+5 82+1 89+2 76+6 86+9 97+2 100+0

0+2 1 4+7 4+4 4+5 4+6 5+3 5+0 4+1 3+9 4+6 3+8
0+975 12+8 10+6 12+7 13+4 20+3 31+5 10+1 16+1 29+3 52+9
0+950 32+5 33+3 32+1 36+4 47+1 58+0 32+3 44+5 69+0 94+9
0+925 53+0 56+3 52+0 55+9 65+6 71+5 54+4 68+4 89+2 99+4
0+900 65+4 72+0 64+7 69+2 76+0 78+6 70+5 82+1 95+9 99+9

0+5 1 4+4 3+2 4+4 4+2 5+4 5+2 3+6 3+2 3+3 3+2
0+975 11+1 8+6 11+2 11+8 17+2 30+3 8+7 12+6 21+7 42+6
0+950 27+7 25+5 26+9 30+8 38+9 53+6 25+1 35+1 56+7 86+5
0+925 43+6 44+2 42+8 47+8 54+6 65+8 41+6 54+5 77+0 96+1
0+900 55+3 58+0 53+5 56+9 61+6 71+1 54+0 66+0 84+0 96+0

0+8 1 2+9 0+7 2+8 3+7 4+2 7+5 0+7 0+7 0+9 0+9
0+975 6+3 1+2 6+2 8+4 13+5 29+4 1+2 2+1 4+1 11+0
0+950 11+8 1+6 11+3 15+4 23+5 43+3 1+8 2+5 5+8 22+0
0+925 11+2 0+8 11+0 13+9 21+6 44+2 1+3 1+2 2+5 12+9
0+900 7+0 0+3 7+5 9+1 15+0 35+8 0+6 0+4 0+7 3+4

Note: Based on 5,000 Monte Carlo replications+
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Table 6. Monte Carlo rejection rates~MA ~1! model, 5% level tests, linear
trend, T 5 200!

ZLT , r2 5 ZQT , r2 5

b u ZLT
y ZQT

y 0 0+2 0+5 0+8 0 0+2 0+5 0+8

20+8 1 0+0 0+0 0+0 0+0 0+0 0+1 0+0 0+0 0+1 0+0
0+975 0+0 0+0 0+0 0+0 0+0 0+4 0+0 0+0 1+8 0+0
0+950 0+1 0+0 0+1 0+2 1+2 5+1 0+0 0+0 12+8 0+0
0+925 1+1 0+1 1+1 2+2 5+7 16+5 0+0 0+0 32+0 1+1
0+900 5+2 0+3 5+0 7+6 47+4 29+8 0+3 0+7 47+8 8+3

20+5 1 0+4 0+0 0+4 5+2 0+6 0+7 0+0 0+0 0+0 0+0
0+975 2+2 0+2 2+2 3+0 5+3 12+0 0+3 0+5 0+7 1+4
0+950 13+1 5+1 12+9 16+1 25+4 41+2 4+8 7+2 15+3 36+7
0+925 31+7 20+5 31+5 35+7 47+3 62+3 19+7 26+8 45+5 79+0
0+900 49+1 39+9 48+7 52+3 63+0 77+3 39+2 50+2 72+0 95+5

20+2 1 3+7 2+5 3+7 3+4 3+9 3+3 2+3 2+1 1+8 1+1
0+975 10+8 7+4 10+7 12+5 16+2 28+0 7+0 11+0 18+6 38+3
0+950 30+6 27+4 30+1 35+8 44+5 58+9 26+7 38+0 61+1 92+3
0+925 52+3 52+5 51+4 57+8 66+4 77+5 51+0 65+9 87+2 99+4
0+900 68+4 73+0 67+7 72+6 80+1 87+0 71+9 82+2 96+0 100+0

0 1 4+7 4+0 4+9 5+2 4+9 4+5 4+1 4+3 3+8 3+8
0+975 12+7 10+7 12+5 14+9 20+5 31+0 10+3 16+1 27+6 56+1
0+950 34+1 34+2 33+3 38+5 47+9 59+9 33+2 46+6 69+5 96+5
0+925 56+0 60+0 55+1 59+6 67+5 75+6 58+5 71+5 89+8 99+7
0+900 70+8 77+4 70+1 73+5 78+6 84+3 75+8 86+1 96+7 100+0

0+2 1 3+4 2+9 3+5 4+0 4+2 4+7 2+8 2+6 2+3 2+5
0+975 9+7 7+9 9+6 13+7 17+7 30+6 7+7 13+9 23+0 46+0
0+950 29+9 28+8 29+6 36+3 44+2 57+3 27+5 41+3 62+5 92+9
0+925 50+6 52+8 50+1 55+4 63+2 71+7 51+8 66+9 85+6 99+2
0+900 65+6 71+0 65+0 69+2 74+6 79+8 69+9 82+0 94+1 99+9

0+5 1 0+9 0+3 1+0 1+7 3+3 6+3 0+3 0+7 0+6 1+6
0+975 4+0 1+7 3+6 6+9 14+1 32+5 1+7 4+6 9+9 38+6
0+950 17+2 11+9 16+7 23+7 38+4 59+2 11+5 20+9 44+2 90+2
0+925 34+2 29+9 33+4 40+9 56+2 73+3 28+8 43+0 71+9 98+8
0+900 48+0 46+3 46+5 54+8 67+7 81+0 44+5 61+4 87+2 99+8

0+8 1 0+4 0+0 0+5 1+0 2+8 6+5 0+1 0+1 0+4 1+3
0+975 1+9 0+4 2+0 4+6 13+3 33+0 0+5 1+8 6+9 36+7
0+950 11+3 4+9 11+0 19+3 35+7 58+9 4+8 12+8 37+1 90+5
0+925 25+1 16+1 24+2 35+3 53+9 74+3 15+3 32+0 65+9 98+9
0+900 37+4 29+0 36+3 47+4 65+3 82+4 27+6 47+8 81+6 99+8

Note: Based on 5,000 Monte Carlo replications+
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locally optimal test+ As a consequence, the locally optimal test is likely to be
superior to the point optimal test in cases where the time series is believed to
be highly persistent under the null hypothesis+

4. COINTEGRATION TESTING WITH A PRESPECIFIED
COINTEGRATION VECTOR

An example of the applicability of the tests proposed in this paper can be ob-
tained from the theory of cointegrated time series+ Suppose~Yt ,Xt

'!' is a~k11!-
vector integrated process generated by the cointegrated system

Yt 5 m t
Y 1 c 'Xt 1 ut

Y,

DXt 5 Dm t
X 1 ut

X,

whereYt is a scalar, Xt is a k-vector, m t
Y andm t

X are deterministic components,
and~ut

Y,ut
X'!' satisfies A1+ Settingyt 5 Yt 2 c 'Xt , m t

y 5 m t
Y 2 c 'm t

X, xt 5 DXt ,
and m t

x 5 m t
X, the cointegration model reduces to~1!–~4! with ~ut

y,ut
x'!' 5

Table 7. Monte Carlo rejection rates~AR~1! model, a 5 0+8, u 5 0+9, 5%
level tests, constant mean!

ZLT , r2 5 ZQT , r2 5

T ZLT
y ZQT

y 0 0+2 0+5 0+8 0 0+2 0+5 0+8

200 10+1 2+1 9+0 12+3 19+9 39+0 1+9 2+4 4+5 12+5
300 26+3 9+1 22+8 27+4 34+7 53+2 7+9 10+4 15+0 30+8
400 42+3 22+6 38+8 41+7 47+4 62+0 21+1 24+2 30+0 51+6
500 53+3 37+8 49+9 52+1 57+6 69+6 34+4 38+8 48+0 70+7

Note: Based on 5,000 Monte Carlo replications+

Table 8. Monte Carlo rejection rates~AR~1! model, a 5 0+8, u 5 0+9, 5%
level tests, linear trend!

ZLT , r2 5 ZQT , r2 5

T ZLT
y ZQT

y 0 0+2 0+5 0+8 0 0+2 0+5 0+8

200 6+6 0+3 6+9 8+6 14+3 35+0 0+3 0+4 0+7 2+9
300 14+0 0+7 13+0 15+4 23+0 46+0 1+0 1+2 2+5 12+2
400 21+1 2+5 19+6 24+1 33+3 54+8 2+2 3+8 6+9 23+6
500 31+9 6+0 29+1 31+6 39+3 61+8 5+9 8+1 12+5 36+7

Note: Based on 5,000 Monte Carlo replications+
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~ut
Y,ut

X'!' andu 5 1+ In this context, the null hypothesisu 5 1 is the hypothesis
that ~Yt ,Xt

'!' is cointegrated with cointegrating vector~1, 2c '!', whereas the
alternativeu , 1 is the hypothesis that~Yt ,Xt

'!' is not cointegrated+
In many applications, the~potentially! cointegrating vector~1,2c '!' is known

a priori from economic theory~e+g+, Horvath and Watson, 1995; Zivot, 2000!+3

In such cases, the null hypothesis that~Yt ,Xt
'!' is cointegrated with cointegrat-

ing vector ~1, 2c '!' is invariably tested by applying a univariate stationarity
test to the seriesYt 2 c 'Xt , thereby discarding the potentially useful informa-
tion contained in the seriesDXt + As indicated by the results of the previous
sections, this empirical practice may lead to a dramatic and unnecessary reduc-
tion in power in situations where the zero-frequency correlation betweenDXt

andYt 2 c 'Xt is nonzero+ In economic applications, such nonzero correlations
are the rule rather than the exception+4 When interpreted as tests of the null
hypothesis of cointegration with a prespecified cointegrating vector, the station-
arity tests proposed in the present paper therefore seem much more attractive
than their univariate counterparts currently used in empirical work+

As an illustration, the tests are used to examine the relevance of long-run
purchasing power parity~PPP!+ Specifically, the bilateral intercountry relation-
ship between the United States, the domestic country, and the United King-
dom, the foreign country, is considered+ The aim is to test the following version
of the PPP hypothesis~e+g+, Froot and Rogoff, 1995!:

st 5 b0 1 b1 t 1 cDpt
D 1 cFpt

F 1 ut , (9)

wherest is the logarithm of domestic currency price of a unit of foreign ex-
change, pt

D andpt
F are the logarithms of the price indices in the domestic and

foreign countries, and ut is a stationary error term capturing deviations from
PPP+ In this setup, a rejection of the null hypothesis of cointegration is inter-
preted as evidence against long-run PPP+ Upon imposing the symmetry and pro-
portionality restrictioncD 5 2cF 5 1, the problem reduces to that of testing
whether the real exchange ratest 2 pt

D 1 pt
F is ~trend-!stationary+ The data

consist ofst 2 pt
D 1 pt

F and~Dpt
D ,Dpt

F!, where the inflation ratesDpt
D andDpt

F

serve as covariates+
The tests are implemented using quarterly data from the Global Financial

Database~GFD!+ The exchange rate data is from GFD series __GBP_D, and
the price series are consumer price indices+ Prices for the United States and the
United Kingdom are from GFD series CPUSAM and CPGBRM, respectively+
When implementing the tests, the nuisance parameters are estimated in the same
way as in the Monte Carlo experiment of Section 3+4+ The linear trend version
of the test statistics is used+ In other words, p 5 1 is imposed+5 Two sample
periods are considered+ One sample period, covering the period from January
1900 through January 2001, spans the twentieth century, whereas the other sam-
ple period, covering January 1974 through January 2001, corresponds to the
period of the recent float+ Table 9 summarizes the results+
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In agreement with other studies~e+g+, Culver and Papell, 1999; Kuo and
Mikkola, 1999!, the tests fail to reject the null hypothesis of stationarity when
the covariates are ignored+ The tests using covariates, in contrast, provide mixed
evidence regarding the validity of long-run PPP+ The locally optimal test based
on ZLT rejects the null at the 5% level in both cases, whereas the point optimal
test based on ZQT fails to reject in both cases+ To the extent that the stationary
component ofst 2 pt

D 1 pt
F might be well approximated by a highly persistent

autoregressive process~e+g+, Engel, 2000; Kuo and Mikkola, 1999!, the fact
that ZQT fails to reject is to be expected in view of the simulation results re-
ported in Section 3+4+ The estimates [r2 are large, suggesting that substantial
power gains are achieved by using covariates, which in turn might explain why
the ZLT test reaches different conclusions than the univariate tests+

5. CONCLUSION

The tests proposed here enable researchers to utilize the information contained
in related~stationary! time series when testing the null hypothesis of stationar-
ity+ Substantial power gains can be achieved by doing so+ The new tests are
easy to implement and are applicable whenever a set of stationary covariates is
available+ In particular, they are useful when testing the null hypothesis that a
vector integrated process is cointegrated with a prespecified cointegrating vec-
tor, because an obvious set of covariates is available in that case+

NOTES

1+ In fact, the conclusion of Theorem 2~b! holds whenever$fT% is asymptotically of levela+
2+ An alternative sufficient condition for the conclusion of Theorem 2~c! is that$fT% is asymp-

totically of level a anda # Pr~wL~0;r2! . E~wL~0;r2!!!+
3+ The stationarity tests considered here cannot be used to test the null hypothesis of cointegra-

tion if the ~potentially! cointegrating vector is unknown+ For that testing problem, Shin ~1994!,
Choi and Ahn~1995!, and Nyblom and Harvey~2000! propose consistent tests, whereas Jansson
~2003! derives a Gaussian power envelope and develops~nearly! efficient tests+

Table 9. Tests of long-run PPP

Univariate Tests Using Covariates

Sample ZLT
y ZQT

y ZLT ZQT [r2

1,900+1–2,001+1 0+081 28+788 0.170 26+795 0+514
~0+147! ~23+927! (0.159) ~24+529!

1,974+1–2,001+1 0+019 29+728 0.283 220+012 0+830
~0+147! ~23+927! (0.255) ~212+150!

Note: Numbers in parentheses are 5% critical values+
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4+ In part, this is the raison d’[etre of the huge literature on efficient inference in cointegrated
systems~e+g+, Phillips and Hansen, 1990; Phillips, 1991; Saikkonen, 1991, 1992; Park, 1992; Stock
and Watson, 1993!+

5+ Empirical tests of long-run PPP are typically conducted using the constant mean versions of
the univariate stationarity tests+ The reasons for not imposingb1 5 0 in ~9! are twofold+ First, as
pointed out to the author by Maurice Obstfeld, the presence of a deterministic trend component in
~9! cannot be ruled out on theoretical grounds+ Indeed, a simple Harrod–Balassa–Samuelson model
~e+g+, Obstfeld and Rogoff, 1996, Chap+ 4! in which the differential between productivity growth in
tradables and nontradables differs between the home and foreign countries might produce a non-
zerob1 in ~9!+ Second, the real exchange rate appears to have a nonconstant mean, suggesting that
b1 should be unrestricted in~9!+
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APPENDIX

The proofs of Theorems 1–4 make use of Lemma 7, which shows how functional
laws for sample moments of the transformed datazt~ Nu! anddt~ Nu! can be deduced from
functional laws forzt anddt + Because these preliminary results might be of independent
interest, they are presented in greater generality than needed for the proofs of
Theorems 1–4+
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In Lemma 7 and elsewhere in the Appendix, {{} denotes the integer part of the argu-
ment, and all functions are understood to be CADLAG functions defined on the unit
interval ~equipped with the Skorohod topology!+

LEMMA 7 + Let $FTt : 0 # t # T,T $ 1% and $~gTt
' , hTt

' !' : 1 # t # T,T $ 1% be trian-
gular arrays of (vector) random variables with FT0 5 0 for all T. Let l . 0 be given and
define FTt~l ! 5 DFTt 1 ~1 2 T21l !FT, t21~l !, gTt~l ! 5 DgTt 1 ~1 2 T21l !gT, t21~l !, and
hTt~l ! 5 DhTt 1 ~12 T21l !hT, t21~l ! with initial conditions FT0~l ! 5 FT0, gT1~l ! 5 gT1,
and hT1~l ! 5 hT1.

(a) Suppose

1
FT, {T{}

T21 (
t51

{T{}

gTt2 rd SF~{!

G~{!D, (A.1)

where F and G are continuous. Then

1
FT, {T{}~l !

gT, {T{}2 gT, {T{}~l !

T21 (
t51

{T{}

gTt~l ! 2 rd 1
Fl ~{!

lGl ~{!

Gl ~{!
2 (A.2)

jointly with (A.1), where Fl ~r ! 5 F~r ! 2 l *0
r exp~2l ~r 2 s!!F~s! ds and Gl ~r ! 5

G~r ! 2 l *0
r exp~2l ~r 2 s!!G~s! ds.

(b) Suppose

1
T21 (

t51

{T{}

hTt
'

T21 (
t51

{T{}

FTt hTt
'

T22 (
t52

{T{}S(
i51

t21

gTiDhTt
'
2 rd 1

H~{!'

E
0

{

F~s! dH~s!' 1 GFH ~{!

E
0

{

G~s! dH~s!' 1 GGH~{!
2 (A.3)

jointly with (A.1), where H,GFH, andGGH are continuous and H is a semimartin-
gale. Then

1
T21 (

t51

{T{}

FTt hTt~l !'

T21 (
t51

{T{}

FTt~l !hTt
'

T21 (
t51

{T{}

FTt~l !hTt~l !'

T21 (
t51

{T{}

~gTt 2 gTt~l !!hTt
'

T21 (
t51

{T{}

~gTt 2 gTt~l !!hTt~l !'

2 rd 1
E

0

{

F~s! dHl ~s!' 1 GFH ~{!

E
0

{

Fl ~s! dH~s!' 1 GFH ~{!

E
0

{

Fl ~s! dHl ~s!' 1 GFH ~{!

lSE
0

{

Gl ~s! dH~s!' 1 GGH~{!D
lSE

0

{

Gl ~s! dHl ~s!' 1 GGH~{!D
2 (A.4)

jointly with (A.1)–(A.3), where Hl ~r ! 5 H~r ! 2 l *0
r exp~2l ~r 2 s!!H~s! ds.
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Proof of Lemma 7. For t 5 0, + + + ,T, FTt~l ! can expressed as

FTt~l ! 5 FTt 2 lT 21 (
i51

t21

~12 T21l !t212iFTi +

This relation can be restated as follows:

FT, {Tr}~l ! 5 FT, {Tr}2 l ~12 T21l !{Tr}21E
0

{Tr}0T

~12 T21l !2{Ts}FT, {Ts} ds, r [ @0,1# +

Now, limTr`sup0#r#16~1 2 T21l !{Tr} 2 exp~2lr !65 0 andFT, {T{}rd F~{!, whereF is
continuous, so

FT, {T{}~l ! rd F~{! 2 l exp~2l{!E
0

{

exp~ls!F~s! ds5 Fl ~{!

by the continuous mapping theorem+
Next, using summation by parts,

gTt 2 gTt~l ! 5 lGT, t21~l !, (A.5)

for t 5 1, + + + ,T, whereGTt 5 T21 (i51
t gTi andGTt~l ! 5 DGTt 1 ~1 2 T21l !GT, t21~l !

with initial conditions GT0~ l ! 5 GT0 5 0+ A second application of the proof of
FT, {T{}~l ! rd Fl ~{! yieldsGT, {T{}~l ! rd Gl ~{!+ Moreover, using Billingsley~1999, Theo-
rem 13+4!, max1#t#T7GTt~l ! 2 GT, t21~l !7 rd 0, so

gT, {T{}2 gT, {T{}~l ! 5 lGT, {T{}~l ! 2 l ~GT, {T{}~l ! 2 GT, {T{}21~l !! rd lGl ~{!,

as claimed+
Finally, using~GT, {T{}, gT, {T{} 2 gT, {T{}~l !! rd ~G~{!, lGl ~{!!, the continuous mapping

theorem~CMT!, and the relation*0
r Gl ~s! ds5 G~r ! 2 l *0

r exp~2l ~r 2 s!!G~s! ds,

T21 (
t51

{T{}

gTt~l ! 5 GT, {T{}2 T21 (
t51

{T{}

~gTt 2 gTt~l !! rd G~{! 2 lE
0

{

Gl ~s! ds5 Gl ~{!+

The proof of part~a! is completed by noting that the convergence results in the preced-
ing displays hold jointly with~A+1!+

Using the assumption onT21 (t51
{T{} FTt hTt

' , part ~a!, and CMT,

T21 (
t51

{T{}

FTt hTt~l !' 5 T21 (
t51

{T{}

FTt hTt
' 2 T21 (

t51

{T{}

FTt~hTt 2 hTt~l !!'

rd E
0

{

F~s! dH~s!' 1 GFH ~{! 2 lE
0

{

F~s!Hl ~s!' ds

5E
0

{

F~s! dHl ~s!' 1 GFH ~{!+
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Next,

T21 (
t51

{T{}

FTt~l !hTt
'

5 T21 (
t51

{T{}

FTt hTt
' 2 lSST21 (

t51

{T{}

FTt~l !DHT, {T{}
' 2 T21 (

t51

{T{}

FTt~l !HTt
' D

rd E
0

{

F~s! dH~s!' 1 GFH ~{! 2 lSSE
0

{

Fl ~s! dsDH~{!' 2E
0

{

Fl ~s!H~s!' dsD
5E

0

{

Fl ~s! dH~s!' 1 GFH ~{!,

where the equalities follow from summation by parts and integration by parts, respectively+
This result, part ~a!, and CMT can be used to show that

T21 (
t51

{T{}

FTt~l !hTt~l !' 5 T21 (
t51

{T{}

FTt~l !hTt
' 2 T21 (

t51

{T{}

FTt~l !~hTt 2 hTt~l !!'

rd E
0

{

Fl ~s! dH~s!' 1 GFH ~{! 2 lE
0

{

Fl ~s!Hl ~s!' ds

5E
0

{

Fl ~s! dHl ~s!' 1 GFH ~{!+

Similar reasoning yields

1 T21 (
t51

{T{}

~gTt 2 gTt~l !!hTt
'

T21 (
t51

{T{}

~gTt 2 gTt~l !!hTt~l !'2 5 l 1 T21 (
t51

{T{}

GT, t21~l !hTt
'

T21 (
t51

{T{}

GT, t21~l !hTt~l !'2
rd l 1 E0

{

Gl ~s! dH~s!' 1 GGH~{!

E
0

{

Gl ~s! dHl ~s!' 1 GGH~{!2 +
The convergence results in the preceding displays hold jointly with~A+1!–~A+3!+ n

Proof of Theorems 1 and 2.The proof proceeds under the assumptions of Theo-
rem 3, strengthening A1 only when necessary+ Define V andG as in Section 3+ Let

CT 5 Svyy
102 0'

0 Vxx
102D J diag~T2102, + + + ,T2~ p1102! !+
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Because limTr`max0#i#psup0#r#16T2i {Tr} i 2 r i 6 5 0 andV102 5 V0
102 V̆102, where

V0 5 Svyy 0'

0 Vxx
D, V̆ 5S1 d '

d Ik
D, d 5 Vxx

2102vxyvyy
2102,

it follows from Lemma 7 that

lim
Tr`

sup
0#r#1

7T 102CT d{Tr}
† ~l ! 2 D̆l ~r !7 5 0, (A.6)

wheredt
†~l ! 5 dt~1 2 T21l !{V2102',

D̆l ~r ! 5 SDl
y~r ! 0'

0 Ik J Dx~r !D V̆2102',

andDl
y~r ! andDx~r ! are defined as in the text+

Standard weak convergence results~e+g+, Phillips and Solo, 1992; Phillips, 1988;
Hansen, 1992! for linear processes can be used to show that the following hold jointly:

T2102 (
t51

{T{}

ut rd V0
102SV~{!

W̆~{!D, (A.7)

T21 (
t52

{T{}S(
s51

t21

usDut
'rd V0

102E
0

{SV~r !

W̆~r !D dSV~r !

W̆~r !D'V0
102'1 G 'E

0

{

dr, (A.8)

where ~V,W̆ '!' is a Brownian motion with covariance matrix̆V+ By ~A+7!, Lemma 7,
and the relationvt

y 5 T21l (s51
t21 us

y 1 ut
y, simple algebra yields

T2102 (
t51

{T{}

vt
†~l ! rd Ŭl

l~{! 5 V̆2102SVl
l~{!

W̆~{! D, (A.9)

wherevt
†~l ! 5 V2102~zt~1 2 T21l ! 2 dt~1 2 T21l !'b! andVl

l is defined in terms ofV
as in the text+ Similarly, using~A+7!, ~A+8!, and Lemma 7, the following results can be
verified:

(
t51

T

~vt
†~0! 2 vt

†~ Nl!!'~vt
†~0! 2 vt

†~ Nl!! rd Nl2r#
2E

0

1

V Nl
l~r !2 dr, (A.10)

(
t51

T

~vt
†~0! 2 vt

†~ Nl!!'vt
†~0!

rd Nlr#
2SE

0

1

V Nl
l~r ! dVl~r ! 2E

0

1

V Nl
l~r ! dW̆~r !'d 1 vyy

21gyy+xD, (A.11)

wherer# 5 ~1 2 r2!2102, r 5 ~vyy
21vxy

' Vxx
21vxy!

102, andgyy+x 5 gyy 2 vxy
' Vxx

21gxy+
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The limiting distributions ofPT~ Nu;V! andLT~V! do not depend onk, the dimension
of xt + The remainder of the proof proceeds under the assumption thatk 5 1 andd 5
7d7 5 r, because these assumptions simplify the algebra without leading to a loss of
generality+ When k 5 1 andd 5 r, the processes̆Dl , Ŭl andW̆ coincide with the pro-
cessesDl , Ul andW defined in the text~with R 5 r!+ Now,

PT~ Nu;V! 5 (
t51

T

Ivt
†~0!' Ivt

†~0! 2 (
t51

T

Ivt
†~ Nl!' Ivt

†~ Nl!,

where Ivt
†~l ! 5 vt

†~l ! 2 dt
†~l !'~(s51

T ds
†~l ! ds

†~l !' !21~(s51
T ds

†~l !vs†~l !!+ By the algebra
of OLS, ~A+6!, and~A+9!,

(
t51

T

Ivt
†~l !' Ivt

†~l ! 2 (
t51

T

vt
†~l !'vt

†~l !

5 2SCT (
t51

T

dt
†~l !vt

†~l !D'SCT (
t51

T

dt
†~l ! dt

†~l !'CT
'D21SCT (

t51

T

dt
†~l !vt

†~l !D
rd 2SE

0

1

Dl ~r ! dUl
l~r !D'SE

0

1

Dl ~r !Dl ~r !' drD21SE
0

1

Dl ~r ! dUl
l~r !D

for l [ $0, Nl%+ Using this along with~A+10! and~A+11! and the relation

(
t51

T

vt
†~0!'vt

†~0! 2 (
t51

T

vt
†~ Nl!'vt

†~ Nl!

5 2(
t51

T

~vt
†~0! 2 vt

†~ Nl!!'~vt
†~0! 2 vt

†~ Nl!! 1 2 (
t51

T

~vt
†~0! 2 vt

†~ Nl!!'vt
†~0!,

it follows that

PT~ Nu;V! rd wP~l; Nl,r2! 1 2 Nlvyy+x
21 gyy+x+

Becausegyy+x 5 0 andS 5 V under the assumptions of Theorem 1, the proof of that
theorem is now complete+

Next, LT~V! can be written asLT
* ~V! 1 LT

**~V!, where

LT
* ~V! 5 (

t51

T

FVt
†' V̆* FVt

†,

LT
**~V! 5 S(

t51

T

dt
† V̆** FVt

†D'S(
t51

T

dt
†dt

†'D21S(
t51

T

dt
† V̆** FVt

†D,
FVt
† 5 T21 (s51

t21 Ivs†~0!, dt
† 5 dt

†~0!, V̆* 5 V102'V*V102, andV̆** 5 V102'V**V102+ When
k 5 1, V̆* and V̆** coincide with OS* and OS** defined in the text+

The resultLT~V! rd wL~l;r2! now follows from simple algebra and the fact that
T2102 (t51

{T{}; FVt
†
rd EU l~{! under the assumptions of Theorem 3, where EU l is defined as

in the text~with R 5 r!+ In particular, Theorem 2~a! follows becauseS 5 V under the
assumptions of Theorem 2+
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Under the assumptions of Theorem 2, integrals such as

EfT~m! fT~m612 T21l,S! dm

can be differentiated with respect tol by differentiating under the integral sign+ As a
consequence,

* ]

]l
EfT~m! fT~m612 T21l,S! dm*

l50
* 5 *EfT~m! l ~1! ~m6S! fT~m61,S! dm*

# E6 l ~1! ~m6S!6 fT~m61,S! dm

# SE l ~1! ~m6S!2fT~m61,S! dmD102

5 ~Var0~P̂T !!102,

where Var0~{! denotes the variance underH0+ The first inequality uses6fT 6 # 1 and the
modulus inequality for integrals, the second inequality uses the Cauchy–Schwarz in-
equality, and the last equality uses* l ~1!~m6S! fT~m61,S! dm 5 0 and the fact that
l ~1!~mT 6S! differs from P̂T by an additive constant+ Using the fact thatut is Gaussian
white noise, it is easy to show that limTr`Var0~P̂T! 5 0+ Therefore, the limTr` of the
left-hand side of the preceding display is zero, as claimed in Theorem 2~b!+

For anyT, let EfT
L~mT ;a,S! 5 1~LT . IcT

L~a,S!!, where IcT
L~a,S! is such that

E EfT
L~mT ;a,S! fT~m61,S! dm5EfT~m! fT~m61,S! dm+

By the Neyman–Pearson lemma and the fact thatl ~2!~mT 6S! 2 2T21l ~1!~mT 6S! differs
from 2LT by an additive constant,

E~fT~m! 2 EfT
L~m;a,S!!~l ~2! ~m6S! 2 2T21l ~1! ~m6S!! fT~m61,S! dm# 0+

Moreover, for any sequence$hT% of bounded functions,

]2

]l2 EhT~m! fT~m612 T21l,S! dm*
l50

5EhT~m!~l ~2! ~m6S! 1 l ~1! ~m6S!2! fT~m61,S! dm

5EhT~m!~l ~2! ~m6S! 2 2T21l ~1! ~m6S!! fT~m61,S! dm1 o~1!,
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where the second equality uses* l ~1!~m6S!2fT~m61,S! dm5 o~1!+ Combining the pre-
ceding displays, it follows that

lim
Tr`

]2

]l2 E~fT~m! 2 EfT
L~m;a,S!! fT~m612 T21l,S! dm*

l50
# 0+

The proof of 2~c! can be completed by showing that

lim
Tr`

]2

]l2 E~ EfT
L~m;a,S! 2 fT

L~m;a,S!! fT~m612 T21l,S! dm*
l50

# 0,

which, because$ EfT
L~{;a,S! 2 fT

L~{;a,S!% is bounded, holds if

lim
Tr`

E0~~ EfT
L~mT ;a,S! 2 fT

L~mT ;a,S!!~l ~2! ~mT 6S! 2 2T21l ~1! ~mT 6S!!! # 0,

where E0~{! denotes expectation underH0+ Now, using E0~ l ~1!~mT 6S!! 5 0 and
E0~l ~2!~mT 6S!! 5 2Var0~P̂T! and the fact thatl ~2!~mT 6S! 2 2T21l ~1!~mT 6S! differs from
2LT by an additive constant,

l ~2! ~mT 6S! 2 2T21l ~1! ~mT 6S! 5 2LT
m 2 Var0~P̂T !,

whereLT
m 5 LT 2 E0~LT!+ Using this relation and limTr`Var0~P̂T! 5 0,

lim
Tr`

E0~~ EfT
L~mT ;a,S! 2 fT

L~mT ;a,S!!~l ~2! ~mT 6S! 2 2T21l ~1! ~mT 6S!!!

5 2 lim
Tr`

E0~~ EfT
L~mT ;a,S! 2 fT

L~mT ;a,S!!LT
m!+

Because$fT% is asymptotically of levela, it can be shown~using Theorem 2~a!! that
limTr` IcT

L~a,S! 5 cL~a,r2!+ Therefore, EfT
L~mT ;a,S! 2 fT

L~mT ;a,S! rp 0+ More-
over, $LT

m% is uniformly integrable underH0, so

lim
Tr`

E0~~ EfT
L~mT ;a,S! 2 fT

L~mT ;a,S!!LT
m! 5 0,

as was to be shown+ n
Proof of Theorem 3. The proof of Theorems 1 and 2~a! carries over to the case

whereV and G are replaced with consistent estimators if the following analogues of
equations~A+6! and~A+9!–~A+11! can be established:

sup
0#r#1

7T 102CT Zd{Tr}
† ~l ! 2 D̆l ~r !7rp 0, (A.12)

T2102 (
t51

{T{}

[vt
†~l ! rd Ŭl

l~{! 5 V̆2102SVl
l~{!

W̆~{! D, (A.13)

(
t51

T

~ [vt
†~0! 2 [vt

†~ Nl!!'~ [vt
†~0! 2 [vt

†~ Nl!! rd Nl2r#
2E

0

1

V Nl
l~r !2 dr, (A.14)

(
t51

T

~ [vt
†~0! 2 [vt

†~ Nl!!' [vt
†~0!

rd Nlr#
2SE

0

1

V Nl
l~r ! dVl~r ! 2E

0

1

V Nl
l~r ! dW̆~r !'d 1 vyy

21gyy+xD, (A.15)
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where Zdt
†~l ! 5 dt~1 2 T21l !{ ZV2102' and [vt

†~l ! 5 ZV2102~zt~1 2 T21l ! 2 dt~1 2
T21l !'b!+

Now,

sup
0#r#1

7T 102CT Zd{Tr}
† ~l ! 2 D̆l ~r !7

# sup
0#r#1

~7T 102CT~ Zd{Tr}
† ~l ! 2 d{Tr}

† ~l !!71 7T 102CT d{Tr}
† ~l ! 2 D̆l ~r !7!

5 sup
0#r#1

7T 102CT d{Tr}
† ~l !~V102' ZV2102' 2 Ik11!71 o~1!

# sup
0#r#1

7T 102CT d{Tr}
† ~l !7{7V102' ZV2102' 2 Ik1171 o~1!

5 op~1!,

where the first inequality uses the triangle inequality, the first equality uses the relation
Zdt
†~l ! 5 dt

†~l !V102' ZV2102' and ~A+6!, the second inequality uses the properties of7{7,
and the last equality uses~A+6! and the assumptionZV rp V+

Similar reasoning establishes~A+13!–~A+15!+ n
Proof of Theorem 4. By the properties of seemingly unrelated regressions, Ivt~1; ZV!

does not depend onZV:

S Ivty~1; ZV!

Ivtx~1; ZV!D 5 S Ivty~1!

Ivtx~1!D5 Svtyut
xD2 1S(

s51

T

ds
yvsyD'S(

s51

T

ds
yds

y'D21

dt
y

S(
s51

T

ds
xus

x'D'S(
s51

T

ds
xds

x'D21

dt
x2

becausedt
y~1! 5 dt

y 5 dt
x+ Partition FVt 5 T21 (s51

t21 Ivt ~1; ZV! after the first row as
~ FVt

y, FVt
x'!'+

Under the assumptions of Theorem 4, it follows from standard results for linear pro-
cesses that

T21 (
t51

T

FVt
x FVt

y 5 Op~1! (A.16)

and

T2102 Iv{T{}
y

rd ~12 u!vyy
102Wd~{!, (A.17)

where

Wd~r ! 5 W~r ! 2SE
0

1

D y~s!W~s! dsD'SE
0

1

D y~s!D y~s!' dsD21

D y~r !,

W is a Wiener process, andD y is defined as in the text+ By ~A+17! and CMT,

T22 (
t51

T

~ FVt
y!2 rd ~12 u!2vyyE

0

1

RWd~r !2 dr, (A.18)
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where RWd~r ! 5 *0
r Wd~s! ds+

For anyc [ R,

lim
Tr`

Pr~ ZLT . c!

$ lim
Tr`

PrS(
t51

T

FVt
' ZV* FVt . cD

5 lim
Tr`

PrST22 (
t51

T

~ FVt
y!2 2 2~T21 [vxy

' ! ZVxx
21ST21 (

t51

T

FVt
x FVt

yD2 cT22 [vyy+x . 0D
$ PrS~12 u!2vyyE

0

1

RWd~r !2 dr . 0D
5 1,

where

ZV* 5 S [vyy+x
21 2 [vyy+x

21 [vxy
' ZVxx

21

2 [vyy+x
21 ZVxx

21 [vxy 0 D
and the first inequality uses the fact that~(t51

T dt ZV21dt
'! is positive definite, whereas

the second inequality uses[vyy+x # [vyy 5 op~T 2!, ZVxx
21 5 Op~1!, [vxy 5 op~T !, ~A+16!,

~A+18!, and the portmanteau theorem~e+g+, Billingsley, 1999!+
Next, consider

ZQT~ Nu! 5 (
t51

T

Ivt ~1; ZV!' ZV21 Ivt ~1; ZV! 2 (
t51

T

Ivt ~ Nu; ZV!' ZV21 Ivt ~ Nu; ZV!+

Now,

(
t51

T

Ivt ~ Nu; ZV!' ZV21 Ivt ~ Nu; ZV! 5 min
b
S(

t51

T

~zt ~ Nu! 2 dt ~ Nu!'b!' ZV21~zt ~ Nu! 2 dt ~ Nu!'b!D
# (

t51

T

Yvt ~ Nu!' ZV21 Yvt ~ Nu!,

where Yvt~ Nu! 5 zt~ Nu! 2 dt ~ Nu!'~(s51
T dsds

'!21~(s51
T dszs!+ Partition Yvt~ Nu! after the

first row as~ Yvt
y~ Nu!, Ivtx~1!' !'+ The series Yvt

y~ Nu! satisfies the difference equationYvt
y~ Nu! 5

D Ivt
y~1! 1 Nu Yvt21

y ~ Nu! with initial condition Yv1
y~ Nu! 5 Iv1

y~1!+ As a consequence,

T22 [vyy+x ZQT~ Nu! $ T22 [vyy+xS(
t51

T

Ivt ~1!' ZV21 Ivt ~1! 2 (
t51

T

Yvt ~ Nu!' ZV21 Yvt ~ Nu!D
5 T22S(

t51

T

~ Ivt
y~1! 2 [vxy

' ZVxx
21 Ivtx~1!!2 2 (

t51

T

~ Yvt
y~ Nu! 2 [vxy

' ZVxx
21 Ivtx~1!!2D

5 T22S(
t51

T

Ivt
y~1!2 2 (

t51

T

Yvt
y~ Nu!2 2 2 [vxy

' ZVxx
21 (

t51

T

Ivtx~1!~ Ivt
y~1! 2 Yvt

y~ Nu!!D
5 T22 (

t51

T

Ivt
y~1!2 2 T22 (

t51

T

Yvt
y~ Nu!2 1 op~1!

rd ~12 u!2vyySE
0

1

Wd~r !2 dr 2E
0

1

W Nl
d~r !2 drD,
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where

W Nl
d~r ! 5 Wd~r ! 2 NlE

0

r

exp~2 Nl~r 2 s!!Wd~s! ds

and the last equality uses[vxy 5 op~T ! and (t51
T Ivtx~1!~ Ivt

y~1! 2 Yvt
y~ Nu!! 5 Op~T !,

whereas the convergence result follows from~A+17!, Lemma 7, and CMT+
Now,

E
0

1

Wd~r !2 dr 2E
0

1

W Nl
d~r !2 dr 5E

0

1E
0

1

K Nl~r,s!Wd~r !Wd~s! drds,

where

K Nl~r,s! 5
Nl
2

~exp~2 Nl~2 2 r 2 s!! 1 exp~2 Nl 6r 2 s6!!+

By the portmanteau theorem and the fact that the functionK Nl~{,{! is positive definite in
the sense that*0

1 *0
1 K Nl~r,s! f ~r ! f ~s! drds . 0 for any nonzero, continuous function

f ~{!,

lim
Tr`

Pr~ ZQT~ Nu! . c! 5 lim
Tr`

Pr~T22 [vyy+x ZQT~ Nu! 2 cT22 [vyy+x . 0!

$ PrS~12 u!2vyySE
0

1

Wd~r !2 dr 2E
0

1

W Nl
d~r !2 dsrD . 0D

5 1

for any c [ R+ n
Proof of Lemma 5. Let ut

PW 5 ut 2 Aut21, where A is the matrix appearing in
A2~iii !+ The equations definingZG and ZV are sample counterparts of the relations

G 5 ~I 2 A!21GPW~I 2 A' !21 1 ~I 2 A!21AS 2 ~I 2 A!21LA'~I 2 A' !21

and

V 5 ~I 2 A!21VPW~I 2 A' !21,

where

GPW 5 lim
Tr`

~T 2 1!21 (
t53

T

(
s52

t21

E~ut
PWus

PW'!, S 5 lim
Tr`

T21 (
t51

T

E~ut ut
'!,

L 5 lim
Tr`

T21 (
t52

T

E~ut
PWut21

' !, VPW 5 lim
Tr`

T21 (
t52

T

(
s52

T

E~ut
PWus

PW'!+

Because~I 2 ZA!21 rp ~I 2 A!21 and ZA rp A under A2~iii !, it therefore suffices to show
that ZGPW rp GPW, ZS rp S, ZL rp L, and ZVPW rp VPW+

Let [vt
† 5 ut 2 dt

'~ Zb 2 b!, where Zb 5 ~(t51
T dt dt

'!21~(t51
T dt zt !+ Let [vt

†† 5 [vt 2 [vt
†,

[vtPW,† 5 [vt
† 2 ZA [vt21

† , and [vtPW,†† 5 [vtPW 2 [vtPW,† 5 [vt
†† 2 ZA [vt21

†† + Using notation typified
by
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ZGPW,†,†† 5 ~T 2 1!21 (
t53

T

(
s52

t21

kS 6 t 2 s6

ZbT
D [vtPW,† [vsPW,††' ,

ZGPW can be written asZGPW,†,† 1 ZGPW,††,† 1 ZGPW,†,†† 1 ZGPW,††,††+ Now, ZGPW,†,† rp GPW

by Corollary 4 of Jansson~2002!+ The proof of ZGPW rp GPW is completed by using the
relation

[vt
†† 5 vt 2 ut 5 T21 1l (

s51

t21

us
y

0 2
and straightforward, but tedious, bounding arguments to show thatZGPW,††,†, ZGPW,†,††,
and ZGPW,††,†† areop~1!+ Indeed, the proof of Lemma 5 of Jansson and Haldrup~2002!
carries over to the present case+ The details are omitted for brevity+

Proceeding in analogous fashion, it can be shown that ZS rp S, ZL rp L, and
ZVPW rp VPW+ n

Proof of Lemma 6. In view of A2~iii ! and ~iv!, it suffices to show that [vyy
PW 5

op~T 2!, [gyy+x
PW 5 op~T 2!, [vxy

PW 5 op~T !, and ~ ZVxx
PW!21 5 Op~1!, where [vyy

PW, [gyy+x
PW, [vxy

PW,
and ZVxx

PW are defined in the obvious way+ Now, ~ ZVxx
PW!21 5 Op~1! because ZVxx

PWrp Vxx
PW+

Moreover,

6 [vyy
PW6 5 * (

i52~T22!

T22

kS 6 i 6ZbT
DS~T 2 1!21 (

t52

T26 i 6

[vt16 i 6
y,PW [vt

y,PWD*
#

1

T 2 1 (
i52~T22!

T22

*kS 6 i 6ZbT
D** (

t52

T26 i 6

[vt16 i 6
y,PW [vt

y,PW*
#

1

T 2 1 (
i52~T22!

T22

*kS 6 i 6ZbT
D*S (

t52

T26 i 6
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where the second inequality uses the Cauchy–Schwarz inequality and the last equality
uses(i50

T226k~i0 ZbT !6 5 op~T 102! ~Jansson, 2002! and(t52
T ~ [vt

y,PW!2 5 Op~T 2!+
Similar reasoning can be used to show that[gyy+x

PW 5 op~T 2! and [vxy
PW 5 op~T !+ n
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