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STATIONARITY TESTING
WITH COVARIATES

MICHAEL JANSSON
University of California, Berkeley

Two new stationarity tests are propos@&wth tests can be viewed as generaliza-
tions of existing stationarity tests and dominate these in terms of local asymptotic
power Improvements are achieved by accommodating stationary covarkates
Monte Carlo investigation of the small sample properties of the tests is con-
ducted and an empirical illustration from international finance is provided

1. INTRODUCTION

Lety, be an observed univariate time series generated by
yt:/‘l’ty—i_vty’ t:]-,"-’T’ (1)

where u{ is deterministic component ang’ is an unobserved error process
with initial conditionv{ = u; and generating mechanism

AvY =(1-06L)u!, t=2,...,T, (2)

whereu; is a stationary (0) process(In this papera process is said to B€0)
if its partial sum process converges weakly to a Brownian motion

The problem of testing the null hypothests: 6 = 1 againstH;: 0 < 1 has
attracted considerable attention in the literafa®has the closely related prob-
lem of testing for parameter constancy in the “local-level” unobserved compo-
nents model Pertinent references include LaMotte and McWort(&978),
Nyblom and Makelaineri1983, Nyblom (1986, Nabeya and Tanaké 988,
Tanaka(1990, Kwiatkowski, Phillips, Schmidt and Shin(1992, Saikkonen
and Luukkonen(1993a 1993h, Choi (1994, and Leybourne and McCabe
(1994. (For a reviewsee Stock1994) UnderH,, v = u{ andy; is a(trend)
stationary processwhereasy; is an integrated process with a random walk—
type nonstationarity under the alternative hypotheSt this reasontests of
H, are often referred to as stationarity tesike cited papers differ somewhat
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with respect to the assumptions on the underlying stationary progessd the
form of the deterministic componept!. On the other handall previous stud-
ies (of which the author is awajdave been concerned with the situation where
y; is observed in isolatianSpecifically all previously devised tests have ex-
ploited only the information contained i when testingH,.

In applicationsit is extremely rare that individual time series are observed
in isolation As a consequencé@ seems reasonable to ask whether more pow-
erful stationarity tests can be obtained be utilizing the information contained in
related time seriedo fix ideas suppose &-vector time serieg; of covariates
is observedwhose generating mechanism is

X; = pf+ug, t=1,...,T, 3)

where uf is deterministic component ang is an unobserved stationaty0)
process Moreover suppose the deterministic componept$and w are pth-
order polynomial trendgthat is suppose

p _ P _
mi = _:Zoﬂiyt', ui = _:Eoﬁixt', (4)

where {37:0 = i = p} C R and {8*:0 = i = p} C R* are unknown
parameters

The present paper proposes two new tests that exploit the information con-
tained in the covariates, when testing the null hypothesis thatis (trend)
stationary Both tests are valid under mild moment and memory conditions on
U = (uf,u)" and enjoy optimality properties in the special case whgris
Gaussian white noiséhe tests can be viewed as generalizations of existing
univariate stationarity testand the new tests dominate their univariate coun-
terparts in terms of asymptotic local power whenever the zero-frequency cor-
relation betweeny andu) is nonzero (When the zero-frequency correlation
equals zerpthe new tests coincide with their univariate counterpattsfact,
substantial power gains can be achieved if an appropriate set of covagiates
can be foundThe paper therefore provides an affirmative answer to the ques-
tion posed in the beginning of the previous paragrdpésults complementary
to those obtained here can be found in Han&k995 and Elliott and Jansson
(2003. These papers demonstrate the usefulness of covariates in the context of
testing for an autoregressive unit root

Section 2 derives the tests and establishes their asymptotic optimality prop-
erties in the special case where the underlying innovation sequence is Gaussian
white noise In Section 3 the tests are extended to accommodate general sta-
tionary errors by means of nonparametric correcti@ection 4 shows how the
tests can be applied to test the null hypothesis that a vector integrated process
is cointegrated with a prespecified cointegration vector and presents an empir-
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ical illustration Finally, Section 5 offers a few concluding remayksd all proofs
are collected in the Appendix

2. TESTING WITH WHITE NOISE ERRORS
Let (v, x{)’ be generated byl)—(4) and suppose, ~ i.i.d. N(0,3), where

’

_ [ %y 9%
2 =

Oxy 2

is a known positive definite matrix(partitioned in conformity withu,). Con-
sider the problem of testing

Hp:6=1 vs H;:6<Ll

This problem is that of testing whether th@ermanent component
(1-6)>% wis absent from the following permanent-transitory decomposi-
tion of y;:

t—1
Ve =i+ (1-0) X uy+u

s=1

To see how the use of stationary covariate$acilitates the testing problem
consider the serieg, — a;yzgxlxt, whose permanent-transitory decomposi-
tion is

t—1
yt - U)éyz;xlxt = /*Lty.X + (1 - 0) 2 u%/ + uty‘x,

s=1
whereu!™ = ui = oy, S5t ¥ andu!™ = v — oy, 3 uy. Because, is station-
ary, the transformatiory, — ox’yzgxlxt does not affect the permanent compo-
nent On the other handvar(u)”™) = (1 — p?)Var(u/), so the transformation
reduces the variance of the transitory component by a fragifowherep? =
ot oS 0y is the squared coefficient of multiple correlation computed
from 3. The covariateg; can therefore be used to attenuate the transitory com-
ponent ofy, without affecting the permanent componeks a consequencéhe
use of covariates makes it easier to detect the permanent compongrit ibf
is presentthereby leading to improvements in power relative to the case where
the covariates are ignoredihe remainder of this section makes these heuristic
ideas more precise

2.1. Point Optimal Invariant Tests

Defineg = (B¢,..., By, By ,....,BY) and for anyt = 1,...,T, let

Yi Uty dty 0
Z = s Uy = , dt = ’
X, u 0 1L,Qd
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whered) = d* = (1,...,tP)". Using this notationthe model can be written as
z=d{ B+, t=1,...,T.

The problem of testindfly: 6 = 1 vs Hy: 0 < 1 is invariant under the group of
transformations of the form, — z + d/b, b € R&V(PTD A maximal invari-

ant ismy = D] ved(z,,..., Z7), whereD, is a matrix whose columns form an
orthonormal basis for the orthogonal complement of the column space of
(dq,...,dy)". For any6* let

o (nen (& o
z«a)—( . ) dtw)—( . |k®dtx>’

wherey,(6*) satisfies the difference equatign(6*) = Ay, + 0*y,_1(6*) with
initial conditiony,(6*) =y, andd?(6*) is defined analogouslyrhe probabil-
ity density ofmy is proportional to

17 3
exp —5261(0;2)'2 5.(0;3) ),

t=1

where for any 67

T -1
0,(07:%) = z,(6%) — d (")’ < > ds(é’*)ilds(ﬂ*)’>
s=1

X (2 ds(e*)E‘lzs(O*)>.
s=1

By the Neyman—Pearson lempthe test that rejects for large values of

T T
Pr(6) = Pr(8:3) = 3 5(L3) S 15(L3) - 3 5(G:3) S 0(B3)  (5)
t=1 t=1
is the most powerful invariant test 6f= 1 against the specific alternatige= 6.
Theorem 1 characterizes the limiting distributionRy(4) under a local-to-
unity reparameterization of and @ in which A = T(1 — 6) = 0 and A =
T(1— #) > 0 are held constant aE increases without boundhe limiting
representation oP;(#) involves the random functionapp, the definition of
which is given next
LetR € [0,1), A = 0, andA > 0 be given Let 32 be the(lower triangulay
Cholesky factor of the X 2 matrix

- 1 R
E=E(R)=<R 1)



60 MICHAEL JANSSON

and forl € {0, A}, define

- VIA(r) DY(r) 0 \_
Xr) — S§-1/2 _ —1/2r
Ui == (W(r) ) Bir) < 0 DX(r))E ’

where

r

VA(r) = VA(r) — Ifo exp(—1(r — s))VA(s)ds

DY(r) =DY(r) — If exp(—I(r —s))DY(s) ds
0

VA(r) = V(r) + Af(; V(s)ds DY(r) = D*(r) = (4,...,r?), and(V,W)" is a
Brownian motion with covariance matriX. (Herg and elsewherethe depen-
dence ofU?* and D, on R is suppressefl Finally, let R, = (1 — R?)"Y2 and
define

QDP(A, X? Rz)

1
= —/_\zRﬁf Vi (r)2dr + ZXRﬁ(f
0 0

1 ! 1 -1 1

+ <fo Dj(r) dUf (r)> <fo Dx(r)Dx(r)’dr> <f0 Dj(r) dUf (r)>
1 ! 1 -1 1

—(f Do(r)dUoA(r)) (f Do(r)Do(r)’dr> (f Do(r)dUoA(r)>.
0 0 0

THEOREM 1 Let z be generated by (1)—(4). Suppose-ui.i.d. N(0,%)
and suppose = T(1—6#) = 0andA =T(1— 4) > 0 are fixed as T increases
without bound. ThenR0) =4 op(A; A, p?).

1 1

VA (r) dVA(r) — Rf Vi (r) dW(r))
0

Corresponding to any invariafpossibly randomizedtest ofHy: 6 = 1 there
is a test functionp: RTP~V&k+D 510, 1] such thatH, is rejected with prob-
ability ¢+(m) whenevemy, the maximal invariantequalsm. For any giverd
and any suclp+, the probability of rejectinddg is [ ¢+(m) f+(m|6,>) dm where
fr(-16,2) denotes the probability density of the maximal invariant and the do-
main of integration isRTP~ V& A test ¢ is of levela € (0,1) if its size,
namely [ ¢+(m)fr(m|1,2) dm is less than or equal te. Similarly, a sequence
{¢+} of test functions is said to be asymptotically of leveif

lim f¢T(m)fT(m|l,2)dms a.
T—owo

Whenlim;_,_, on the left-hand side equals lim., and the inequality is an
equality {¢+} is said to be asymptotically of size
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The test statisti®;(f) is point optimal invariantPOI) in the sense that the
power

f¢T(m) fT(m|6_’2) dm

against the point alternativeé = 6 is maximized over all invariant tests of
level & by the test function @P+(8) > cf(6,a,3)), where X-) is the indicator
function andcf (6, «,3) is such that the test is of size This optimality re-

sult has an obvious asymptotic analoglet the functionc®(-,-,-) be implic-

itly defined by the relation Rkop(0; X, p?) > cP(A,a, p?)) = a. The statistic
P;(0) is asymptotically POl under local-to-unity asymptotics in the sense that
dY(mr; A, a,3) = 1(Pr(1— T1X) > cP(A,a, p?)) maximizes

lim f¢T(m)fT(m|l— T71A3)dm
T—oo
over all invariant tests asymptotically of leve] that is

lim J¢T(m)fT(m|l— T71A,3)dm
Tooo

= lim f¢$’(mT;f\,a,2)fT(m|l—T‘lx_\,E)dm

whenever{¢+} is asymptotically of levek. Moreover lim;_,., on the right-
hand side equals lif,., and is given by Pipp(X; A, p2) > cP(A, a, p?)).

Theorem 2 of Saikkonen and Luukkon€r9933 obtains an upper bound on
the asymptotic power function of any location and scale invariant stationarity
test in the univariate casBecause scale invariance is not impasthe result
stated here covers a larger class of tests than Theorem 2 of Saikkonen and Luuk-
konen(1993a even in the univariate cas€rhe present paper obviates the need
to impose scale invariance by assuming thas known) Moreover the multi-
variate model studied here contains the univariate model of Saikkonen and Luuk-
konen(1993a as a special case

The function®(A; p?) = Pr(ep(A; A, p2) > cP(A, a, p?)) provides an upper
bound on the asymptotic power function of any invariant test asymptotically of
level a. The bound is sharp in the sense that it can be attained for any given
by the testpr(mr; A, a,3). Moreover although no test statistic attains the up-
per bound uniformly i, it turns out that it is possible to construct tests whose
power functions are very close to the bouridhe Gaussian power envelope
therefore constitutes a useful benchmark against which the power function of
any invariant testasymptotically of leveky) can be compared
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The univariate counterpart & () is
T T
PY(9) = PY(B:0,y) = ayyl<2 0/(1)? - a3<é>2>,
t=1 t=1
where
T -1/ T
0(6%) = y(6%) — d’ (") ( Zldg(e*) dsy(ﬁ*)’> <Eldsy(9*)ys(0*)>
S= S=
for any 8*. Whenu! ~ i.i.d. N(O, ayy), the test that rejects for large values of
PY(6) is more powerful against the specific alternatve= § < 1 than any
other invariant test ofly based solely o, where invariance is with respect to
transformations of the forng, — y, + by d’, b, € RP*%
When p? = 0, the time series; and x, are independentn that casgthe
covariatesx, carry no information abouy;, and the statistic®(6) andPy(8)
are equivalentln contrast the rejection regions of the tests based on the
statisticsPr(6) and P{(8) differ wheneverp? # 0. These differences persist
asymptotically as PY(0) —4 ¢p(A;A,0) under the assumptions of Theorem 1
Comparingep(A;A,0) and op(A; A, p2), the limiting distribution of P+(0) is
seen to depend on the covariatgonly through the parametgr’. As a con-
sequencethe “quality” of the covariates can be summarized by this scalar
parameter
Figure 1 plotsm%%(A;p?) for selected values of? in the constant mean
(p = 0) case (The curves were generated by taking@® draws from the
distribution of the discrete approximatipbased on P00 step$to the limiting
random variable$ The lowest curve corresponds 3 = 0 and therefore pro-
vides an upper bound on tlilwcal asymptoti¢ power function of any invariant
univariate stationarity tesfin increase in the quality of the covariat@s mea-
sured byp?) leads to an increase in the level of the power envelbpedeed
the difference between the power envelope and its univariate counterpart is quite
remarkable for most values @f2. For concretenessonsider the alternative
A =5, which corresponds to a moving average coefficenf 0.975 whenT =
200 The univariate power envelope is3@, whereas the envelopes arel@
and 058 whenp? equals @ and 05, respectively Because they are upper
boundsthese power envelopes do not by themselves illustrate the power gains
attainable by feasible test®n the other handhe evidence presented in Fig-
ure 1 clearly suggests that substantial power gains can be achieved by includ-
ing covariates in a stationarity test provided an appropriate set of covariates
can be foundThe power envelopes are lower in the linear trépd= 1) case
but the qualitative conclusion remains the saa®can be seen from Figure 2

2.2. Locally Best Invariant Tests

Even asymptoticallythe critical region of the test based M1 - T )
depends om. As a consequenceno test is asymptotically uniformly most
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FiGURE 1. Power envelope$% level testsconstant meafp = 0).
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powerful (with respect to the class of invariant tesis the sense of Basawa
and Scot{(1983. In such casegests based on weaker optimality concepts seem
worth consideringOne such concepthe concept of point optimalifyustifies
the test based oR; (1 — T *AT), whereA' is a prespecified alternative against
which maximal power is desireds an alternative to that teghe present sec-
tion develops a test based on a Taylor series expansiBp(df— T 1)) around
A = 0. The resulting test can be implemented without specifying an alternative
in advance and enjoys certain local optimality properties

Using simple algebtat can be shown that

_ 1y —-117-1 u ~ ~ ' 1
o) (T 2 a@a@y )

.9 -

and

2

P (1-T 1Y) L_O =Ly +T Py,

Br =2
T 20
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FIGURE 2. Power envelope$% level testslinear trend(p = 1).

where

T T v 1/ T
L) =SS+ (z d@**@) (z dtzldg> (z dtz**v;),
t=1 t=1 t=1

P -1 oY 0 Pl
o= , 3= : (6)
¥ 0 o 0

V=T 131 05(L;), Oyyx = Oy — 032l 0y, aNd o™ = —oy i3 ko,
(The dependence ¢* andP; on T has been suppressed to achieve notational
economyand the notatiorV; recognizes the fact that(1;3) does not depend
onzx.)

Under the assumptions of TheoremTL 1 3/, :(1)81(1)" —p 2. As a con-
sequencgthe limiting distribution ofPy is degenerateP; —p —1. On the other
hand Theorem 2a), which follows shows that under the same assumptions
the limiting distribution ofL; equals that of the random variabig (A; p2),
where forany 0= R < 1,
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1

e 5R:) = [ OMyS 0N ar

0

+ <f01D(r)i**UA(r)dr>,(folD(r)D(r)’dr>1

1
D(NS*UA(r)dr),
x(fo (s (r) r)
where

r ! 1 1
UA(r) = Ug\(r) — <JO D(s) ds) <fo D(s)D(s)’ ds)(fo D(s)dU&(s)),

D(r) = Dy(r), and

s 1-RIR? —R,R gon 0 -R.R
| -R.R 0o /) \RRR 0 )

The test that rejects for large valueslafis asymptotically equivaleritn an
obvious senseto the test that rejects for large values of the second-order Tay-
lor approximation toPr(1 — T~*A), namely PrA + PrA2 This observation
suggests thdt; enjoys certain local optimality properties sequence ¢} of
tests is asymptotically locally efficieriivith respect to the class of invariant
tests asymptotically of size) in the sense of Basawa and Sc(t®83 if it
maximizes

lim 9 f¢T(m)fT(m|l—T‘1A,E)dm
T OA A=0

over all invariant tests asymptotically of size As Theorem 2b) shows any
invariant test(asymptotically of sizev) is asymptotically locally efficient ac-
cording to that definitiort To obtain a nontrivial characterization of local op-
timality in the present contexthe following alternative concept of asymptotic
local optimality is usefulLet g* be the smallest integey such that

im [ 19[S -fr(ml2,5) dm> o

T—oo

wherel{?(m[3) = a%logfr(m|1 — T 1A, 3)/9A%,_o. An invariant test is said
to be asymptotically locally best invariafitBl ) if it maximizes

ERN
lim - f(/)T(m)fT(m\l—T*l)\,E)dm

T—oo (Mq A=0

over all invariant tests asymptotically of the same slreregular cases where
partial derivatives off logfr(m|1 — T1A,3)-fr(m|1, 3) dmwith respect tox
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can be obtained by differentiating under the integral stgis concept of local
asymptotic optimality agrees with that of Basawa and S¢b®83 when

g* = 1. The testing problem studied here ltggis= 2 and as Theorem(2) shows

L+ is asymptotically LBI in thestrongey sense defined hefe

THEOREM 2 Let z be generated by (1)—(4). Suppose-ui.i.d. N(0,%)
and suppose = T(1 — 8) = 0 is fixed as T increases without bound. Then

(@) Lt =4 oL(X;p?).
If {1} is asymptotically of size € (0,1), then
(b)

=0,

A=0

i _Ef mf-(mll—T A 3)dm
Im I ¢( ) ( | ) )
(c)

=0,

A=0

97
T 2 [[(6rm) — stma 3D tr(mit =T -20,%) am

where¢t(my;a,3) = 1(Ly > c"(a,p?)) and Pr(¢ (0;p%) > c"(a,p?)) = a.

The univariate counterpart af; is
T A
LY = L¥(ayy) = 03" 3 (W)3
t=1

whereV,Y = T-1 31 5Y(1). The statisticsL; and LY are equivalent if and
only if p2 = 0. Moreover L —4 ¢ (A;0) under the assumptions of Theorem 2

so the difference betwedn, andL¥ persists asymptotically whenevgf # 0.

As was the case with the power envelopes derived in the previous sett@on
inclusion of covariates can have a substantial effect on the power properties of
the LBI test (This will become apparent in Section23

3. TESTING WITH WEAKLY DEPENDENT ERRORS

The analysis in the previous section proceeded under the restrictive assumption
thatu, ~ i.i.d. N(0,2), wheres is known The optimality theory seems to de-
pend on the normality assumptio@n the other handt is straightforward to
construct feasible test statistics having limiting representations of the ¢grm

and ¢, under much less stringent assumptionsupnFor instancethe follow-

ing assumption suffices

Al. U =X, Cig_i, Where{e.:t € Z} isi.i.d. (0,l.1), 2ieo C; has full
rank and>”, i|C;| < oo, where|-| is the Euclidean norm
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3.1. Feasible Tests

Define the matrices

w ! T T
Q= < W Q”) =lim T13 > E(uu)

Wyy XX T—o0 t=1s=1

and
’yyy ')’yx . B T t—1

r= = lim T > E(u,uy),
Yxy XX T—eo t=2s=1

where the partitioning is in conformity withu,. Moreover let p? =
w;ylw;yﬂgxlwxy be the squared coefficient of multiple correlation computed
from Q, the long-run covariance matrix of. (Because) = E(u,u;) whenu,
is white noisethe present definition gb? is consistent with that of Section)2
Under Al and local-to-unity asymptoticst(Q) —4 ¢ (A; p?), SO an “auto-
correlation robust” version of; can be obtained by employing the long-run
covariance matriX) in the definition of the test statistiénalogously an auto-
correlation robust POI test can be basedRytd;Q). In general P+(6;Q)
suffers from “serial correlation bias” under ABpecifically Pr(0;Q) —q4
QDP()\;)_\’pZ) + 2/_\\wyiy.lx'yyy.x’ whereyyyx = vy — w;yﬂ;xl')'xy' Let

QT(H_;QyF) = PT(Q_,Q) - 2T(1 - é)wyiy}x'yyy.x- (7)

The statisticQr(8;Q,T) coincides withP;(6;Q) whenu, is white noise be-
causel’ = 0 in that caseMore generally Q(6;Q,T") correctsP(6;Q) for
serial correlation bias an@(8;Q,T') —4 ¢p(A; A, p2) under Al and local-to-
unity asymptotics

In most(if not all) applicationsthe tests based dn(Q) andQ+(6;Q,T') are
infeasible becaus@ andI'" are unknownlt therefore seems natural to consider
the test statistickr = L+(Q) andQ1(8) = Q;(6;,I'), where

A = ‘E’yy (E’;y
wxy Qxx
and
P = 7:’yy 7:’yx
7xy 1—‘xx
are estimators of) andT’, respectively

THEOREM 3 Let z be generated by (1)—(4). Suppose Al holds and sup-
posei = Tflf f)=0andX = TA(l — ) > 0 are fixed as TAincreases without
bound. If(,I') —, (Q,T), thenQr () —q @p(A; A, p?) and Ly —q ¢ (A;p2).
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Conventional possibly prewhitenexdkernel estimators of) andT (e.g., An-
drews 1991 Andrews and Monahari992 meet the consistency requirement
of Theorem 3 Conditions under which VARL) prewhitened kernel estimators
are consistent are provided in Sectia.3

The statistics

A%/(é) = 'Iy(e_;d)yya i’yy) - 2T(1 - 0_) (I);yl’?yy

andL) = LY(&,,) are univariate counterparts Qf(4) and L+, respectively
Under the assumptions of Theorem ®Y(6) —q ¢p(A;1,0) and LY —q
¢, (1;0). The test statistid.¥ is well known (e.g., Kwiatkowski et al, 1992.
On the other handhe semiparametric versidd{(d) of the univariate POI test
would appear to be new

3.2. Asymptotic Power Properties

Saikkonen and Luukkonei19933a considered the constant mean case and found
that their test statisti&(1 — 7/T), which corresponds t@{(1 — 7/T), has a
local asymptotic power function that is almost indistinguishable from the uni-
variate power envelopd@he choicel = 7 produces a test that is asymptotically
0.50-optima) level 0.05 in the sense of David4969. In other wordsA = 7 is
the alternative for which the univariate power envelope for 5% level tests equals
0.50. In the general casé therefore seems natural to consi@,r(l — TN,
whereA' is such that the test statistic is asymptotically@optimal level 0.05.
Although computationally feasihlsuch a procedure seems cumbersome in view
of the fact that the power envelope for 5% level tests depends not only on the
order of the deterministic component in the model but also on the parameter
p2 which measures the quality of the covariafEs construct test statistics that
are asymptotically ®0-optima) level 005 one would therefore have to use a
new A" for eachp? Fortunatelya much simpler approach yields very satisfac-
tory results The approach taken here is to use the samfor all values ofp2
The value ofA" is chosen in such a way that the test is asymptoticabp0
optimal level 0.05 in the worst case scenarid = 0, the case where the uni-
variate test is optimalThis approach generates a test that has excellent power
propertieqrelative to the power envelopeshenp? is low. Moreover Q dom-
inates its univariate counterpart for all values @f In fact, the test has a
power function that is very close to the power envelope even for nonzero val-
ues ofp2

Figure 3 illustrates this in the constant mean case with= 0.50. In addi-
tion to the power envelope and the local asymptotic powe-gfFigure 3 also
plots the local power function of the LBI te§t and the univariate tes®y
and LY. ComparingQr to @Y, it is seen that the inclusion of covariates can
lead to huge gains in power in cases where an appropriate set of covariates can
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FiGURE 3. Power curvesp? = 0.5: 5% level testsconstant meafip = 0).

be found The Pitman asymptotic relative efficien¢RE) of Qr with respect
to QY (evaluated at power.B0) is 1.65, implying that in large samples the
univariate test needs 65% more observations than the test using covariates to
have comparable power properties wheh= 0.50. The case where covariates
are included is qualitatively similar to the univariate case in the sense that the
POI test dominates the LBI test for all but extremely small values. thdeed
the inferiority (as measured by the Pitman AREf the LBI test is somewhat
more pronounced when useful covariates are available

Figure 4 presents results for the linear trend cd$e statistic<Q and QY
use A’ = 12, the value that yields an asymptotically50-optimal level 0.05
test in the univariate cas@ll power curves lie below the curves for the
constant mean casbut the pattern is the same as in Figurelr8 particular
the statisticQ has a power function that lies close to the envelope and far
above the power functions corresponding_teand Q. For instancethe Pit-
man ARE ofQ; with respect taQy (evaluated at power.50) is 1.82, indicat-
ing that the inclusion of covariates is even more beneficial in the linear trend
case than in the constant mean case
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FIGURE 4. Power curvesp? = 0.5: 5% level testslinear trend(p = 1).

Tables 1 and 2 give various critical values @ and L, for p € {0,1},
which seem to be the cases of empirical relevahte¢he case oQT, the crit-
ical values correspond to the recommended value¥,afamely AT = 7 when
p = 0 andA™ = 12 whenp = 1. The critical values are presented fof in steps
of 0.1. The recommendation is to use the critical value correspondirff to
wy‘ylcb;y(z;xlcbxy computed fromf). Interpolation can be used to obtain critical
values for values of? between those given in the tables

In general point optimal and locally optimal tests may fail to be consistent
in curved statistical modelzan GardererQOOQ In view of the foIIowmg fixed
parameter resulthe tests based c@T andL+ are consistent if) and ¥ Yyyx are
well behaved under fixed alternatives

THEOREM 4 Let z be generated by (1)—(4). Suppose Al holds and sup-
posed < landA = T(1— 6) > 0 are fixed asAT increases without bound. If
Pyyx = Op(T2), Dy = 05(T?), dyy = 0,(T), and Ol = O,(1), then
lim Pr(Q;(8) >c) = lim Pr(Ly >c)=1
T—oo T—oo

for any ce R.
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TaBLE 1. Percentiles of 1 andO;(1 — 7/T), constant mean cage = 0)

- Qr(1—7/T)

p? 90% 95% 975% 99% 90% 95% 9B% 99%

0 0348 Q0458 0589 Q748 —1969 —0.973 Q055 1451
01 0362 Q0484 0622 0804 —1938 —0.854 Q244 1588
02 0382 Q0516 Q0652 0867 —1.880 —0.787 0361 1663
03 0404 Q571 Q725 Q940 —1.887 —0.694 Q0345 1968
04 0444 Q0621 Q797 1059 —1.989 -—0.761 Q0460 2049
05 0493 Q701 Q924 1216 —2146 —0.740 Q575 2110
06 0572 Q0838 1124 1541 —2518 —0.964 Q0448 2249
0.7 0665 Q999 1337 1812 —3079 —1.458 0028 2058
08 0942 1430 1930 2583 —4821 -—2813 -0.841 1216
09 1750 2736 3743 5126 —9.932 -—7.054 —4650 —1.805

Note The percentiles were computed by generating)@0 draws from the discrete time approximatidrased
on 2,000 stepsto the limiting random variables

3.3. Covariance Matrix Estimation

Under fairly general conditionghe requirements of Theorems 3 and 4 are met
by VAR (1) prewhitened kernel estimators with plug-in bandwidffsese esti-
mators are defined as follows

TABLE 2. Percentiles of + andQ;(1 — 12/T), linear trend casép = 1)

Cr Qr(1—12/T)

p? 90% 95% 9B% 99% 90% 95% 9B% 99%

0 0118 0147 Q176 Q214 -5.019 —3927 —2959 1634
0.1 0120 Q151 0185 Q228 —4944 -3.807 —2.660 —1.208
02 0117 Q148 0180 0226 —5162 —-3.970 —2736 —1405
03 0115 Q149 0185 0236 —-5317 —-4.035 —-2686 —1115
04 0115 0153 Q197 0251 —5.600 —4.224 —-2975 —1.377
05 0112 Q157 0207 Q273 —6.106 —4.431 -—-3121 —-1141
06 0114 Q170 0222 Q297 —6993 —5130 —3.410 —1.209
0.7 0115 Q183 (0258 0358 —8546 —6.303 —4.442 —2.060
0.8 0128 0222 Q339 0485 —11941 —-9.278 —6.858 —4.062
09 0143 0336 0545 0839 —23141 -—18951 —15393 -—11340

Note The percentiles were computed by generatindd@0 draws from the discrete time approximatidrased
on 2000 steppto the limiting random variables



72 MICHAEL JANSSON

Fort=2,...,T, let oV =, — Ab,_1, whereAis a(k + 1) X (k + 1) matrix
andd, = z, — d{(2g_; dsdd) *(S:; dsz,). Define

>

’
ts

R T
S=T13 5
t=1

T
A= (T - 1)71 E ﬁtpwﬁt’—l’
t=2

. TJ [t — s
QPW — (T _ 1)71 E 2 k _ lf}tPWi}sWr’
t=2s=2 bT

and

& PW -1 o5 [t sl -~ PW.5 PW
PW=(T-1> > k[ —— |oFWolW,
t=3s=2 br

wherek(-) is a kernel andb;} is a sequence dfpossibly sample-dependeént
bandwidth parameter3he proposed estimators 6f andI" are

Q= (-~ - A)?
and
I=(-ATPYI-A) 1+ (1 -AAS - (1 - A AN (1 - A)
respectivelyConsider the following assumption
A2.

(i) k(0) = 1,k(-) is continuous at zerosup=o|Kk(s)| < oo, and f;° k(r)dr < oo,
wherek(r) = sup=, |k(s)| ( for everyr = 0).
(i) br = arbr, wherear andby are positive withar + a7 = Op(1) andbr® +
T Y2br = 0(2).
(i) T¥2(A— A) = O,(1) for someA such thatl — A) is nonsingular
(iv) The matrixA in (iii) is block upper triangular

Assumption AZi) is discussed in Janss¢2002, whereas Assumptions AR)
and(iii ) are adapted from Andrews and Monahaf92. Assumption AZiv) is
helpful when studying the behavior 6f andI" under fixed alternativedVhen
A =0, O andTl are standard kernel estimators and(ii2 and(iv) are trivially
satisfied A nondegenerate prewhitening matrix satisfying(i2 is discussed
subsequently

LEMMAS. Let z be generated by (1)—(4). Suppose Al and A2 (i)—(iii) hold
and suppos@ =T(1—6) =0 andA =T(1— ) > 0 are fixed as T increases
without bound. TheitQ,T') —, (Q,T).
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LEMMA 6. Let z be generated by (1)—(4). Suppose Al and A2 hold and
suppose® < landA =T(L—6) > Oare fixedas T increases without bound.
Thenyyy, = op(T ), @y = op(T ), @yy = 0p(T), and Q! Op(1).

Under local alternative§.e., under the assumptions of Theorem 3 and Lemma
5), A2(iii) is satisfied by the least squares estimator

T T -1
A — A AL A A
As= 2 UtUt—1 E Ut—1Ut-1 | -
t=2 t=2

On the other handstandard cointegration arguments can be used to show that
the first column ofA, g converges at rat& to first unit vector inR¥** under
fixed alternativedi.e., under the assumptions of Theorem 4 and Lemm#&$§
a consequence\ s violates AZiii ) under fixed alternatives

An estimatorA satisfying AZiii) under both local and fixed alternatives can
be obtained by modlfylng\LS as follows Let MLSJ,_SMLS be the Jordan de-
composition ofALS Define A = MLSJMLS, where J is a Jordan matrix ob-
tained fromJ,s by dividing the diagonal elements of each Jordan block by
max(1,|u|/0.97), whereu is the eigenvaluéreal or complex associated with
the Jordan block anf| denotes absolute valughis adjustment preserves the
eigenvectors oA,_S and bounds the elgenvalues/bbway from unity By con-
struction A = A s whenever the eigenvalues Af s do not exceed 97. More
generally the properties ofA are easily deduced once the propertiesip§
have been establisheth particular A satisfies AZiii) wheneverT Y2(A g —
ALs) = Op(1) for someA, s (as is true under both local and fixed alternatives
whereas AZ2iv) holds if the matrixA, s is block upper triangulafas is the case
under fixed alternativesLemmas 5 and 6 therefore demonstrate the plausibil-
ity of the high-level assumptions oft and I' made in Theorems 3 and, 4
respectively

3.4. Finite Sample Properties

To investigate the finite sample properties of the test statistics introduced in
Section 31, a small Monte Carlo experiment is conduct&a&mples of siz& =

200 are generated according(tb—(4). The errorsu, are generated by the bi-
variate model

u Cyy(L) 0 !
<u{> :< yp (1—p2)1/2><s{>’ ®)

where(e!, &¥)" ~i.i.d. N(0,1,) andc,,(1) = 1. Two specifications of,,(L) are
considered

cAR(L)=(1-a) Y al, aec{-08-05-0.2020508
i=0
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and
1
cy’\f,A(L) = m (1+ bL), b e {-0.8,—0.5,—-0.2,0,0.2,0.5,0.8},

corresponding to an AR) and an MA(1) model foru?, respectivelyIn both
cases

. e~ 1 p
Q TIinooT tZElglE(utus) <p 1).
In particular the parametep in (8) is the correlation coefficient computed
from Q.

The parameter$) andI' are estimated using VAR) prewhitened kernel
estimatorsSpecifically QPW and"PW are constructed using the quadratic spec-
tral kernel(which clearly satisfies Assumption Ai2) along with a plug-in band-
width. The value of the plug-in bandwidth is obtained by setting =
1.3221- T** (following Andrews 1991 andar = max(min(&ar1)(2)*%,5),0.05),
wheredag)(2) is computed from Andrews'61991) equation(6.4) (with w, = 1
for all a). Because @5 = a7 = 5 is imposedA2(ii) is automatically satisfied
In particular the conditiondr = 5 controls the behavior of the estimated band-
width under fixed alternativeghereby circumventing the problems discussed
by Choi(1994. Finally, the matrixA used in the prewhitening procedure was
computed by modifying the ordinary least squai®&S) estimator in the man-
ner described in Section3

Tables 3 and 4 and 5 and 6 summarize the results for the constant mean and
linear trend casesespectively The tables report the observed rejection rates
of 5% level tests implemented using critical values based on the estjidate
computed from(). As was the case with the asymptotic analysis of Secti@in 3
the simulation evidence is favorable to the tests developed in this.pEper
rejection rates of the new tests are quite similar to those of their univariate
counterparts under the null hypothedi® noticeable loss in power is observed
in the case where the covariates are uninformativeen p? = 0), whereas
substantial power gains are achieved in the cases where the covariates do carry
information abouty,.

In addition to documenting the superiority of the new tegte simulation
evidence also points out some problems with the small sample properties of
the new tests and their univariate counterpaRsjection rates under the null
tend to fall far short of the nominal level in the M® model with|b| = 0.5,
which leads to an unnecessary reduction in power when asymptotic critical val-
ues are used.ikewise, power is very low in the ARL) model witha = 0.8,
especially so for the point optimal testdoreover the pattern exhibited by the
rejection rates in the AR) model witha = 0.8 is rather peculiain part the
latter phenomenon appears to be due to imprecision of the estimatesund
', because simulation resul{aot reported heneshow that the power of the
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TaBLE 3. Monte Carlo rejection rate@\R(1) model 5% level testsconstant
mean T = 200

I:T7 ,02 = QT7 p2 =
a 6 ¥ & o0 02 05 08 0 02 05 08
-08 1 60 21 59 59 63 81 20 18 16 10

0975 311 226 308 359 435 597 224 283 399 636
0.950 587 558 585 649 703 798 550 668 815 958
0925 752 774 748 781 820 872 764 855 943 995
0900 834 886 831 854 873 910 882 929 978 999

-05 1 51 39 51 54 50 51 42 18 33 24
0975 310 286 309 347 426 597 278 283 517 817
0950 602 641 600 632 693 797 637 668 875 991
0925 759 823 757 772 822 882 817 855 965 1000
0.900 842 911 840 857 883 928 910 929 991 1000

-02 1 50 45 50 54 47 46 44 46 48 4.3
0975 319 317 312 340 420 581 312 376 539 843
0950 597 651 592 620 688 783 645 731 888 992
0925 754 827 750 769 809 869 823 887 974 999
0.900 836 910 835 849 876 910 905 950 993 1000

02 1 51 50 53 45 43 40 51 42 42 4.3
0975 307 301 302 327 411 554 292 365 521 830
0.950 591 641 584 595 657 725 630 714 862 985
0925 736 809 728 739 769 777 803 872 954 996
0.900 811 893 807 810 815 787 886 934 982 989

05 1 48 39 47 47 52 49 40 35 38 4.4
0975 283 262 278 318 391 554 251 325 483 776
0950 532 564 523 561 622 711 549 650 814 965
0925 649 728 638 672 704 739 701 795 903 960
0900 695 792 682 699 713 711 754 816 882 881

08 1 36 13 38 37 41 61 15 16 15 24
0975 180 66 170 203 287 499 63 96 190 458
0950 246 63 222 270 362 568 57 88 186 499
0925 163 27 151 180 263 503 25 38 73 278
0900 112 23 102 123 193 403 20 25 38 130

Note Based on 00 Monte Carlo replications

infeasible tests using the true values(fandI is monotonic ind. It follows
from Theorem 4 that the low power in the AR model witha = 0.8 is a finite
sample phenomenoin an attempt to quantify the effect of a change in the
sample size for moderate values Bf Tables 7 and 8 investigate the power
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TaBLE 4. Monte Carlo rejection ratedVIA (1) model 5% level testsconstant
mean T = 200

IA-T’ P2 = QT, P2 =
b 0 ¥ & o0 02 05 08 0 02 05 08
-08 1 00 00 00 00 00 00 00 00 00 0.0

0975 Q1 00 01 04 13 54 00 00 0O 0.3
0950 65 15 64 88 138 288 14 26 43 133
0925 192 101 192 238 322 473 96 132 200 403
0900 325 226 322 369 456 587 220 276 397 637

-05 1 g 01 07 03 06 07 02 00 00 0.0
0975 133 80 134 165 228 398 77 103 147 311
0.950 409 365 407 450 532 667 359 435 591 848
0925 603 608 597 628 697 784 601 677 825 971
0900 719 759 716 737 790 852 753 819 927 994

-02 1 37 31 38 37 38 32 33 30 26 22
0975 288 269 285 314 400 554 262 320 482 782
0950 569 610 566 604 682 762 607 699 860 988
0925 734 806 730 759 812 858 799 872 963 999
0.900 824 894 820 837 877 901 890 942 990 1000

0 1 52 50 53 50 45 42 53 43 41 4.3
0975 314 310 309 343 403 564 302 382 541 840
0.950 603 659 597 624 675 759 647 738 886 991
0925 751 825 748 764 794 832 820 886 967 999
0.900 831 909 826 844 854 867 903 946 988 1000

02 1 43 37 42 37 42 45 37 31 33 3.6
0975 281 267 281 303 388 562 265 321 485 799
0950 561 606 556 583 654 748 598 691 857 985
0925 704 787 699 725 766 806 777 858 950 997
0900 789 876 780 798 817 822 870 925 982 994

05 1 17 09 17 20 28 58 08 08 10 21
0975 191 146 190 241 361 584 144 196 355 760
0.950 454 445 448 517 623 768 433 556 771 981
0925 609 658 606 653 727 820 642 756 918 998
0.900 684 774 677 721 769 838 758 849 959 994

08 1 10 03 11 12 29 69 04 03 06 23
0975 147 88 144 207 347 575 84 145 315 756
0950 414 366 402 468 595 759 354 468 729 981
0925 562 566 553 601 707 815 543 673 882 997
0.900 633 670 625 669 760 843 638 773 935 997

Note Based on 00 Monte Carlo replications
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TaBLE 5. Monte Carlo rejection ratd®\R (1) model 5% level testslinear trend
T = 200

Ii'rwﬂz = QT, PZ =

a 0 ¥ & o0 02 05 08 0 02 05 08

-08 1 74 05 74 77 95 119 04 03 01 0.0
0975 161 19 160 189 248 375 18 29 47 6.7
0950 399 132 393 438 528 663 130 199 335 577
0925 599 360 591 651 736 831 350 461 668 900
0900 739 571 735 787 850 910 557 688 853 977

-05 1 5 24 57 56 55 61 25 21 17 0.6
0975 144 80 142 157 207 339 75 107 186 366
0950 353 284 348 410 511 644 275 401 613 915
0925 573 541 568 637 714 807 532 688 862 992
0900 726 732 723 775 830 898 720 848 956 999

-02 1 55 41 55 52 49 49 40 34 31 3.0
0975 140 107 137 147 199 320 105 149 260 538
0950 363 339 360 400 488 625 330 451 696 961
0925 584 601 579 619 703 798 590 724 905 997
0.900 730 774 725 765 821 892 766 869 972 1000

02 1 47 44 45 46 53 50 41 39 46 3.8
0975 128 106 127 134 203 315 101 161 293 529
0.950 325 333 321 364 471 580 323 445 690 949
0925 530 563 520 559 656 715 544 684 892 994
0900 654 720 647 692 760 786 705 821 959 999

05 1 44 32 44 42 54 52 36 32 33 3.2
0975 111 86 112 118 172 303 87 126 217 426
0950 277 255 269 308 389 536 251 351 567 865
0925 436 442 428 478 546 658 416 545 770 961
0.900 553 580 535 569 616 711 540 660 840 960

08 1 29 07 28 37 42 75 07 07 09 0.9
0975 &3 12 62 84 135 294 12 21 41 110
0950 118 16 113 154 235 433 18 25 58 220
0925 112 08 110 139 216 442 13 12 25 129
0900 70 03 75 91 150 358 06 04 07 34

Note Based on 00 Monte Carlo replications

against thefixed) alternatived = 0.9 for T € {200,300400,500} in the AR(1)
model witha = 0.8. As the sample size increasg®wer increases in all cases
but remains disappointingly low in the case of the point optimal testeed
even in samples of siz€ = 500 the point optimal test fails to dominate the
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TaBLE 6. Monte Carlo rejection rate6MA (1) model 5% level testslinear
trend T = 200

|1T, PZ = QT, PZ =
b 0 ¥ & o0 02 05 08 0 02 05 08
-08 1 00 00 00 00 00 01 00 00 O01 0.0

0975 Q0 00O OO0 00O oO0O0O 04 o00 OO0 18 0.0
0950 Q1 O00 01 02 12 51 00 OO0 128 0.0
0925 11 01 11 22 57 165 00 00 320 11
0900 52 03 50 76 474 298 03 07 478 8.3

-05 1 04 00 04 52 06 07 00 0O 0O 0.0
0975 22 02 22 30 53 120 03 05 07 14
0950 131 51 129 161 254 412 48 72 1583 367
0925 317 205 315 357 473 623 197 268 455 790
0.900 491 399 487 523 630 773 392 502 720 955

-02 1 37 25 37 34 39 33 23 21 18 11
0975 108 74 107 125 162 280 70 110 186 383
0950 306 274 301 358 445 589 267 380 611 923
0925 523 525 514 578 664 775 510 659 872 994
0900 684 730 677 726 801 870 719 822 960 1000

0 1 47 40 49 52 49 45 41 43 38 3.8
0975 127 107 125 149 205 310 103 161 276 561
0.950 341 342 333 385 479 599 332 466 695 965
0925 560 600 551 596 675 756 585 715 898 997
0900 708 774 701 735 786 843 758 861 967 1000

02 1 34 29 35 40 42 47 28 26 23 25
0975 97 79 96 137 177 306 77 139 230 460
0950 299 288 296 363 442 573 275 413 625 929
0925 506 528 501 554 632 717 518 669 856 992
0900 656 710 650 692 746 798 699 820 941 999

05 1 c9 03 10 17 33 63 03 07 06 16
0975 40 17 36 69 141 325 17 46 99 386
0950 172 119 167 237 384 592 115 209 442 902
0925 342 299 334 409 562 733 288 430 719 988
0.900 480 463 465 548 677 810 445 614 872 998

08 1 04 00 05 10 28 65 01 01 oO04 13
0975 19 04 20 46 133 330 05 18 69 367
0950 113 49 110 193 357 589 48 128 371 905
0925 251 161 242 353 539 743 153 320 659 989
0900 374 290 363 474 653 824 276 478 8l6 998

Note Based on 00 Monte Carlo replications
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TaBLE 7. Monte Carlo rejection ratefAR(1) model a = 0.8, § = 0.9, 5%
level testsconstant mean

ET,PZ = QT7P2 =

T Ly oY 0 0.2 05 08 0 02 05 08

200 101 21 9.0 123 199 390 19 24 45 125
300 263 91 228 274 347 532 79 104 150 308
400 423 226 388 417 474 620 211 242 300 516
500 533 378 499 521 576 696 344 388 480 707

Note Based on 00 Monte Carlo replications

locally optimal testAs a consequencehe locally optimal test is likely to be
superior to the point optimal test in cases where the time series is believed to
be highly persistent under the null hypothesis

4. COINTEGRATION TESTING WITH A PRESPECIFIED
COINTEGRATION VECTOR

An example of the applicability of the tests proposed in this paper can be ob-
tained from the theory of cointegrated time seri®spposeY;, X{)" isa(k +1)-
vector integrated process generated by the cointegrated system

Yl = /.LtY+lp’Xt+U[Y,
Axt = A/*L?( + utx’
whereY, is a scalarX; is ak-vector uy and u are deterministic components
and(uy,u)’ satisfies AL Settingy; = Y; — 'X,, wi = uf — 'k, x = AX,,
and uf = ¥, the cointegration model reduces th)—(4) with (uf,uX)" =

TABLE 8. Monte Carlo rejection rate6AR(1) model a = 0.8, § = 0.9, 5%
level testslinear trend

LT, Pz = QT’ p2 =

T Ly & o 02 05 08 0 02 05 08

200 66 03 6.9 8.6 143 350 03 04 0.7 29
300 140 07 130 154 230 460 10 12 25 122
400 211 25 196 241 333 548 22 38 69 236
500 319 60 291 316 393 618 59 81 125 367

Note Based on 00 Monte Carlo replications
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(u,u)" and@ = 1. In this contextthe null hypothesi# = 1 is the hypothesis
that (Y;, X{)" is cointegrated with cointegrating vecttt, —¢')’, whereas the
alternatived < 1 is the hypothesis thaly;, X{)’ is not cointegrated

In many applicationghe (potentially) cointegrating vectofl, —’)’ is known
a priori from economic theorye.g., Horvath and Watsqril995 Zivot, 2000.3
In such caseghe null hypothesis thaty;, X{)’ is cointegrated with cointegrat-
ing vector(1, —¢’)" is invariably tested by applying a univariate stationarity
test to the serie¥; — ¢'X;, thereby discarding the potentially useful informa-
tion contained in the serieSX;. As indicated by the results of the previous
sectionsthis empirical practice may lead to a dramatic and unnecessary reduc-
tion in power in situations where the zero-frequency correlation betwegn
andY; — ¢'X; is nonzeroIn economic applicationsuch nonzero correlations
are the rule rather than the exceptiovhen interpreted as tests of the null
hypothesis of cointegration with a prespecified cointegrating vettterstation-
arity tests proposed in the present paper therefore seem much more attractive
than their univariate counterparts currently used in empirical work

As an illustration the tests are used to examine the relevance of long-run
purchasing power parityPPB. Specifically the bilateral intercountry relation-
ship between the United Stajegbe domestic countryand the United King-
dom the foreign countryis consideredThe aim is to test the following version
of the PPP hypothesi®.g., Froot and Rogoff1995:

S = Bo+ Bt +¢PpP +¢Fpf +uy, 9)

wheres; is the logarithm of domestic currency price of a unit of foreign ex-
change p? andpf are the logarithms of the price indices in the domestic and
foreign countriesandu, is a stationary error term capturing deviations from
PPPR In this setup a rejection of the null hypothesis of cointegration is inter-
preted as evidence against long-run FB®Bon imposing the symmetry and pro-
portionality restrictiony® = —¢F = 1, the problem reduces to that of testing
whether the real exchange rage— p° + pf is (trend)stationary The data
consist ofs, — pP + pf and(ApP, Ap§), where the inflation rateap? andApf
serve as covariates

The tests are implemented using quarterly data from the Global Financial
Databasg GFD). The exchange rate data is from GFD series __ GBPRarid
the price series are consumer price indid&sces for the United States and the
United Kingdom are from GFD series CPUSAM and CPGBRBEkpectively
When implementing the testhe nuisance parameters are estimated in the same
way as in the Monte Carlo experiment of Sectiad. 3he linear trend version
of the test statistics is useth other words p = 1 is imposed® Two sample
periods are considere@ne sample perigctovering the period from January
1900 through January 2004pans the twentieth centumyhereas the other sam-
ple period covering January 1974 through January 20€drresponds to the
period of the recent floaffable 9 summarizes the results
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TaBLE 9. Tests of long-run PPP

Univariate Tests Using Covariates
Sample Ly Q7 Ly Qr p?
1,9001-20011 0.081 —8.788 0.170 —6.795 Q514
(0.147) (—3.927) (0.159) (—4.529
1,9741-20011 0.019 -9.728 0.283 -20.012 Q0830

(0.147) (—3.927) (0.255)  (—12150

Note Numbers in parentheses are 5% critical values

In agreement with other studigs.g., Culver and Papell1999 Kuo and
Mikkola, 1999, the tests fail to reject the null hypothesis of stationarity when
the covariates are ignoretihe tests using covariatds contrastprovide mixed
evidence regarding the validity of long-run PHMRe locally optimal test based
on L rejects the null at the 5% level in both casesereas the point optimal
test based o) fails to reject in both caseJo the extent that the stationary
component ok, — pP + pf might be well approximated by a highly persistent
autoregressive procese.g., Engel 2000 Kuo and Mikkolg 1999, the fact
that Qr fails to reject is to be expected in view of the simulation results re-
ported in Section 3. The estimate$? are large suggesting that substantial
power gains are achieved by using covariatgsich in turn might explain why
the L, test reaches different conclusions than the univariate. tests

5. CONCLUSION

The tests proposed here enable researchers to utilize the information contained
in related(stationary time series when testing the null hypothesis of stationar-
ity. Substantial power gains can be achieved by doingTée new tests are
easy to implement and are applicable whenever a set of stationary covariates is
available In particular they are useful when testing the null hypothesis that a
vector integrated process is cointegrated with a prespecified cointegrating vec-
tor, because an obvious set of covariates is available in that case

NOTES

1. In fact the conclusion of Theorem(B) holds whenevef¢r} is asymptotically of leveb.

2. An alternative sufficient condition for the conclusion of Theore(o)2s that{¢+} is asymp-
totically of levela anda = Pr(¢.(0;p2) > E(¢ (0;p2))).

3. The stationarity tests considered here cannot be used to test the null hypothesis of cointegra-
tion if the (potentially cointegrating vector is unknowrror that testing problemShin (1994,
Choi and Ahn(1995, and Nyblom and Harvey2000 propose consistent testwhereas Jansson
(2003 derives a Gaussian power envelope and develogarly efficient tests
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4. In part this is the raison dtre of the huge literature on efficient inference in cointegrated
systemge.g., Phillips and Hanserl99Q Phillips, 1991, Saikkonen1991 1992 Park 1992 Stock
and Watson1993.

5. Empirical tests of long-run PPP are typically conducted using the constant mean versions of
the univariate stationarity test§he reasons for not imposing, = 0 in (9) are twofold First as
pointed out to the author by Maurice Obstfelde presence of a deterministic trend component in
(9) cannot be ruled out on theoretical grounbigleed a simple Harrod—Balassa—Samuelson model
(e.g., Obstfeld and Rogoff1996 Chap 4) in which the differential between productivity growth in
tradables and nontradables differs between the home and foreign countries might produce a non-
zeroB; in (9). Secondthe real exchange rate appears to have a nonconstan{ suggesting that
B1 should be unrestricted ).
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APPENDIX

The proofs of Theorems 1-4 make use of Lemmanhich shows how functional
laws for sample moments of the transformed datd) andd, () can be deduced from
functional laws forz; andd;. Because these preliminary results might be of independent
interest they are presented in greater generality than needed for the proofs of
Theorems 1-4
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In Lemma 7 and elsewhere in the Appendix| denotes the integer part of the argu-
ment and all functions are understood to be CADLAG functions defined on the unit
interval (equipped with the Skorohod topology

LEMMA 7. Let{Fr:0=t=T,T =1} and{(g},h%)' :1 =t =T, T = 1} be trian-
gular arrays of (vector) random variables with-§= 0 for all T. Let | > 0 be given and
define Fy(1) = AFr + (1= T ) Fr1(l), gr(l) = Agre + (L= T~ ) gr,—4(1), and
hri(l) = Ahge + (1= T H)hy —1(1) with initial conditions Ro(l) = Fro, gra(l) = gr1,
and hray(l) = hyy.

(a) Suppose

FT[EJ'J N <F(')> (A1)
T 3] \60) |
t=1
where F and G are continuous. Then
FT,[T~J(I) F|()
v L_T'?T’”'J(') e (A2)
T’ltZlgn(l) G ()

jointly with (A.1), where Rr) = F(r) — | J§ exp(=1(r — s))F(s)ds and G(r) =
G(r) =1 [ exp(—=I(r — s))G(s) ds.
(b) Suppose

LT-|

TS by, HCY
t=1 '
LT-] '
TS Faht | f FISIARE T () (A3)

t=1
[T-] /t-1 , .
T222<_1gﬂ>h,n LG(s)dH(s) + Ten(-)

jointly with (A.1), where HJy, andIsy are continuous and H is a semimartin-

gale. Then
IT-] .
T2 Frehy (1) f F(s) dH,(s)" + Iy ()
t=1 0
IT-] .
Tt Fr(h)hy f F(s) dH(s)’ + Ty (+)
t=1 0
[T-] .
T 21 Fre(1)hy (1) —d J; Fi(s) dH (s)" + Ty (1) (A.4)
[T-] .
Tilg(gﬂ_th('))hIﬂ |(J; Gi(s) dH(s)’ +FGH(')>
IT-] .
T2 (gre— gr())hp(1) I («fo Gi(s)dH(s)" + FGH('))
t=1

jointly with (A.1)—(A.3), where Hr) = H(r) — | [ exp(—=I(r — s))H(s) ds.
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Proof of Lemma 7. Fort = 0,...,T, Fr¢(I) can expressed as

t—1

Fre(l) = Fre— 1T 2 Y (=T )" R,
i=1
This relation can be restated as follaws
| Tr]/T

Friro(1) = Frpzg — 12— T7H )LTrJflf (1=T M) ™Fgds  re[ol].
0

NOW, lim_,., SUpy=r=1|(1 — T — exp(—Ir)| = 0 andFr,1.; =4 F(-), whereF is
continuous so

Frir (D) =g F() =1 exp(—l~)f0- exp(ls)F(s)ds= F(-)

by the continuous mapping theorem
Next using summation by parts

Ore — 9ri(1) = 1G1 (1), (A.5)

fort=1,...,T, whereGr, = T '3}, gr; andGr(1) = AGr + (1 — T"1)Gr 1)
with initial conditions G1o(I) = Gt = 0. A second application of the proof of
Fr.im. (1) =4 R(+) yields Gt 1.,(I) =4 Gi(-). Moreover using Billingsley(1999 Theo-
rem 134), max<i=7[Gn(l) — Gr,t-1(1)| =4 0, SO

O~ 9 (D) =16 1. (1) = H(Gr 1. (1) = Gy 1. =1(1)) =4 1G, (4),

as claimed
Finally, using(Gr,|.}, 9, ;7-) — 97,17-1(1)) =4 (G(-),IG(-)), the continuous mapping
theorem(CMT), and the relatiory} G,(s) ds= G(r) — | [5 exp(—1(r — s))G(s)ds

IT-] IT-1 .
T 2 gr(l) = Gy 1. — T 2 (Ire — o) =4 G(-) — |J; Gi(s)ds= G (-).

The proof of parta) is completed by noting that the convergence results in the preced-
ing displays hold jointly with(A.1).
Using the assumption ofi~* 3.7} Fr,hy,, part(a), and CMT

LT-] LT-] LT-]
T 2 Frihn(l)' = T 2 Frhm— T 2 Fri(hr = he(1))
t=1 t=1 t=1

—q fo F(s) dH(S)’ + Iy (-) — |L F(s)H,(s)"ds

- jo F(8) dHy(8)’ + T ().
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Next,

LT-J
T3 Frlhh,
t=1

LT-] [T-] LT-]
=T 1Y Frhp—| <<Tl > Frdl )) Hijr—T71 > Frdl )Hﬁ)

t=1 t=1 t=1
—q j F(s)dH(s)’ + Te4(-) — 1 <<f F (s) ds) H(.) —f F (s)H(s)’ ds)

0 0 0
= f Fi(s) dH(S)" + Ty (4),
0
where the equalities follow from summation by parts and integration by, passectively

This resulf part(a), and CMT can be used to show that

IT-1 [T-] IT-1
T E FTt(I )hTt(l )' =T1 E FTt(l )h',l't -7t E I:'rt(l )(hTt - hTt(I ))'
t=1 t=1 t=1

—q J; Fi(s)dH(s)" + Ty (+) — IJO. Fi(s)H(s)" ds

- fo F(S) dHL ()’ + Ty (1),

Similar reasoning yields

LT-J LT-J

T E (g1 — gre(1)) D T E Gr ()i
=1 | =1
[T-] [T-]
T Zl(gn = gre(D)hre (1) T ZlGT,tfl(l Jhr (D)

f Gy(s) dH(9)' + Tan(-)
—q 0

fo G/(5) dH () + T (")

The convergence results in the preceding displays hold jointly @ith)—(A.3). n

Proof of Theorems 1 and 2.The proof proceeds under the assumptions of Theo-
rem 3 strengthening Al only when necessadgfine QO andT” as in Section 3Let

1/2 ’

w= ® diag(T"¥2..., T~ (P*1/2)

T 1/2 g LERRS] .
0 Y
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Because i, MaX=i<pSUp=r=1|T [ Tr|' — r'| = 0 andQ¥2 = 0¥20Y2 where

o= ° a-(t? 8 = 0 2wy w, 2
0 0 Qxx ’ 5 |k ’ XX xy%yy

it follows from Lemma 7 that

lim sup |TY2¥; d[TrJ(I) D,(I’)H =0, (A.6)

Too o=r=1

whered, (1) = d,(1 — T~1)-Q V2,

§ (Dm) 0 ) .
Dy(r) = a v,
0 1,®DXM)

andD/’(r) andDX(r) are defined as in the text
Standard weak convergence resuks., Phillips and Solp 1992 Phillips, 1988
Hansen 1992 for linear processes can be used to show that the following hold jointly

[T-] V()
T V2 2 U, —>d91/2( . (_)), (A7)

1%,J 2 u’—>d91/2f Y(r) d Y(r) 1/2’+Ffdr (A.8)
& ' o Jo \wiry ) \Wir)

where(\/,\TV’)’ is a Brownian motion with covariance matrix. By (A.7), Lemma 7

and the relationy = T 1A S5} u? + uY, simple algebra yields
/2 %J t ¥ O—1/2 V'A(')
Tt v (1) >qUA) = Q712 | , A9
=0 d ¥ W) (A.9)

wherev, (1) = Q@ Y2(z,(1 — T~Y) — dy(1 — T~2)'B) andV," is defined in terms o¥/
as in the textSimilarly, using(A.7), (A.8), and Lemma 7the following results can be
verified:

1
E (v (0) = v () (v (0) = v (X)) =4 Azp#f Vi (r)2 dr, (A.10)
Z (v (0) — v (A))'v; (0)

- 1 1 ~
—d /\pﬁ(fo Vi (r) dVvA(r) *fo Vi (r) dW(r)'s + wyylvyy_x>, (A11)

Wherep# = (1 - p2)71/2, P = (w;ylw;(yﬂ;xlwxy)l/zy and Yyyx = Yyy — w;yﬂ;xlyxy-
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The limiting distributions ofPr(4;Q) andL+(Q) do not depend ok, the dimension
of x;. The remainder of the proof proceeds under the assumptiorktkal andé =
I8] = p, because these assumptions simplify the algebra without leading to a loss of
generality Whenk = 1 andé = p, the processeB,, U, andW coincide with the pro-
cesse®d,, U, andW defined in the textwith R = p). Now,

Pr(6:0) = X 5/ (0)5/(0) = X 5/ (V)5 (D),
t=1 t=1
whered (1) = v/ (1) = d(1)(S&, dd () dI (1)) 1L, di(Hwd(1)). By the algebra
of OLS, (A.6), and(A.9),
T

.
> ol 1) a () = X v (v ()
t=1

t=1

= —(qu > df )>, <\1fT > dfdia )'qu') (qu > df (e ))

1 , . . )
—dq (fo D|(l’)dU|A(r)) <f0 D|(|')D|(l')'dr> <f0 D|(|')dU|A(r)>

for | € {0, A}. Using this along with(A.10) and(A.11) and the relation

T T
2 Utf(o),UtT(o) - E UtT(/_\)/UtT(/_\)

= =2 @0 = v/ (D)@ 0 = v/ (W) +2 3 (&0 — v/ (1) 0),

it follows that
PT(H_;Q) —d ‘PP(/\J\,PZ) + wa;)/,lXYyy,X'

Becausey,yx = 0 andX = O under the assumptions of Theoremtlie proof of that
theorem is now complete
Next, L1(Q) can be written a&%(Q) + L% (Q), where

:
LrQ) = 3 V"0 V],

t=1
T . _\N/T -1/ T .
L7 (Q) = <2 dtTQ**VtT> (E dtTdtT/) <2 dtTQ**VtT>,
t=1 t=1 t=1

V=T3S0 60(0), df = d(0), &F = 0¥20*QY?, and 0™ = QY20 QY2 When
k=1, O* andQ** coincide withS* and3** defined in the text

The resultL+(Q) —4 ¢ (A;p2) now follows from simple algebra and the fact that
T- 23T 10" 54 UA(-) under the assumptions of TheorepwdhereU * is defined as
in the text(with R = p). In particular Theorem 2a) follows becausé&. = Q under the
assumptions of Theorem 2
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Under the assumptions of Theoremiregrals such as

fqu(m)fT(m\l— T A3)dm

can be differentiated with respect foby differentiating under the integral sigAs a
consequence

ij f 1-T771 d
o (M) fr(m[1— A,X)dm

A=0

- | [etmumans el
= [ o) trmis ) dm

1/2
= (fl(l)(mIE)ZfT(mH,E)dm)
= (Varg(Pr))¥?

where Vag(-) denotes the variance unddg. The first inequality usesp| = 1 and the
modulus inequality for integralghe second inequality uses the Cauchy—Schwarz in-
equality and the last equality usefl ™ (m|2)fr(m|1,3)dm = 0 and the fact that
| D(my|3) differs from Py by an additive constantJsing the fact thaty, is Gaussian
white noise it is easy to show that liga,., Varg(Pr) = 0. Therefore thelim,_,_, of the
left-hand side of the preceding display is zeas claimed in Theorem(B).

For anyT, let ¢ (my;,3) = 1(Lt > ¢k (e, 3)), whereck(a, 3) is such that

f@#(mT;a,E)fT(mll,E)dm= J¢T(m)fT(mILE)dm

By the Neyman—Pearson lemma and the fact tiatm;|3) — 2T -4 @D (my|3) differs
from 2L+ by an additive constant

f(qﬁT(m) = ¢F(Ma,2)(1@(m[E) — 2T 1P (m[2)) fr(M[1,E) dm= 0.
Moreovey for any sequencén+} of bounded functions

2

Y nr(M)fr(m1—T71A,3)dm
A=0

= fnT(m)(l(Z)(mIE) +1®(m[2)?) fr(m[1,2) dm

= fT]T(m)(l @(m[2) — 2T~ H ¥ (m[2)) fr(m|1, %) dm+ o(D),
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where the second equality usgs™® (m|3)?fr(m|1,3) dm = o(1). Combining the pre-
ceding displaysit follows that

=0.

A=0

97 ~
Jm 5 f(d)T(m) — ¢r(ma,2) fr(ml1— T *A,3) dm

The proof of Zc) can be completed by showing that

92 .
Tlim — | (dF(ma,3) — dpF(m;a,3) fr(m[1— T *A,3)dm

o IA2 =0

A=0

which, becausd @t (-;a,3) — ¢5(-;a,3)} is boundedholds if
T”jmw Eo((fr(Mr;a,2) — ph(Mr;a, ) (1P (M [2) — 2T H P (mr[2)) =0,

where Eq(-) denotes expectation undét,. Now, using Eo(l P(mr|3)) = 0 and

Eo(I @(mr|3)) = —Varg(Pr) and the fact thalt® (my|3) — 2T ~1 O (my|3) differs from
2L+ by an additive constant

12(me]3) — 2T U P (me[3) = 2LF — Varg(Py),
wherelL¥ = Lt — Eo(Ly). Using this relation and lir., ., Vary(Py) = 0,
Tm Eo((FH(Mrsa,S) = dh(myia, 3) (12 (me|3) — 274 (me[))

=2 T“jmw Eo(($F(mr;a, ) — ¢r(mrsa, X)LY).

Becaus€ ¢r} is asymptotically of levek, it can be showr(using Theorem @)) that
limi_., ¢r(a,3) = ct(a,p?). Therefore dr(Mr;a,S) — pr(Mr;a,S) —, 0. More-
over, {L¥} is uniformly integrable undeily, so

lim Eo((FH(mrsa,3) — ¢h(mria, $)LY) = 0

as was to be shown n
Proof of Theorem 3. The proof of Theorems 1 and(® carries over to the case
where andT are replaced with consistent estimators if the following analogues of

equationgA.6) and(A.9)—(A.11) can be established

sup [T¥2wdl (1) — Dy(r)] =, 0, (A.12)
O=r=1
), . § VIA()
T2 z 07 (1) 5g U () = Q2 W | (A.13)

T 1
> (07(0) = 57 (X)) (6 (0) — 6 (X)) =4 A%pZ f VR\(r)2dr, (A.14)
t=1 0
> (6 (0) — & (X)"5; (0)
t=1

- 1 1 ~
—d )‘pg(L VI\/\(r)dVA(r) _J; VZ)\(r) dVV(l')’5 + wyyl')’yy.x>’ (Als)
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whered/ (1) = d(1 — T2)- QY2 and 5/ (1) = & Y2(z(1 — T7) - d(1 -
T-UYB).

Now,
sup HTl/z\I,TdA[TI'rJ(I) - E)I(r)H

O=r=1

I\

sup (| T2 (dfr (1) = dre ()] + T2 d (1) = Dy ()])

O=r=1

sup [TY2wrdh (D(QYZQ~Y2 — 1) + 0(D)

O=r=1

I\

sup [ T2 dr (D] - [QY2 QY2 — 14 + 0(1)

O=r=1

0p(1),

where the first inequality uses the triangle inequalitye first equality uses the relation
di () = df (HQ¥Y2O~Y2 and (A.6), the second inequality uses the propertieq df
and the last equality usé#.6) and the assumptiof —p O

Similar reasoning establish¢&.13)—(A.15). u

Proof of Theorem 4. By the properties of seemingly unrelated regressior(4; )

does not depend of1:
T r/T -1
(2 dsyvsy> <2ds"dsy'> d’

<5g(1;@)> (ﬁ!(l)) (vty) & &
~X(1. ) = ~X = X N T ’ T -1
7(LQ) 77(1) Ut ( E d§u§’> < 2 dédé’) dx

becaused’(1) = dY = dX. Partition V; = T-13} 5,(1;Q) after the first row as
(\7’1)’7\7[%)/‘

Under the assumptions of Theoremit4follows from standard results for linear pro-
cesses that

.

T 1YV =0,1) (A.16)
t=1

and

T Y254 >4 (1— 0)0¥2WI(.), (A.17)

where

1 ! 1 1
Wa(r) = W(r) — (f DY(s)W(s) ds) (f Dy(s)Dy(s)’ds> DY(r),

[0] 0
W is a Wiener procesandDY is defined as in the texBy (A.17) and CMT,

T‘ZIZEl(Vty)Z —q (1- O)Zwyyfo Wd(r)2dr, (A.18)
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whereWd(r) = f; W(s)ds

For anyc € R,
lim Pr(L; > c)
Tooo
T o~ A o~
= lim Pr(EV{Q* > c>
T—oo t=1
T _ . T
= lim Pr<T2 > (V)2 = 2(T o) Ot <T1 > ) —cT™ > o)
T—ooo t=1 =
1 —
= Pr<(1— 0)2wyyf Wd(r)2dr > O)
o]
=1,
where

—1 1 1
O = Byyx yyxwny
- wyy.xQxx Wyy 0

and the first inequality uses the fact tH&,_, d, Q~d) is positive definite whereas
the second inequality us@hyy = dyy = 0p(T?), Ol = Op(1), @y = 0(T), (A.16),
(A.18), and the portmanteau theordmg., Billingsley, 1999.

Next, consider
A T A A A T A A A
Qr(0) = X 5(LY)'Q (L) — X 5(6;Q0)Q 5,(6; Q).

t=1 t=1

where 3(8) = z(0) — d(0) (S, dd) 1(SL, d.zo). Partition 5,(8) after the
first row as(57(0),5X(1)"). The seriess’(0) satisfies the difference equatigf () =
A5Y(1) + v 1(6) with initial condition{(8) = #{(1). As a consequence

T2y, Qr(6) = thbyy.x<2 5()'Q 191 - 3 l7l(9)’f2151(§)>

t=1 t=1

T T

=T ( Z (@ (1) = @ el 57(1)* ~ E (8(8) — @3 007 (1))? )
T T T

=T <Z 5¢'(1)2 — Z 5Y(8)% = 245, 05! 30X (D (0 (1) — 63(5)))
t=1 t=1

=T 225/ (1)? - 2 5{(6)2 + 0,(1)

,..
Il
[

1
—q (1—0)2wyy<fo W"(r)zdr—f0 W;d(r)zdr>,
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where
WE(r) = Wd(r) — )_\frexp(—/_\(r —s)W9(s)ds
0]
and the last equality useé,, = 0,(T) and S, 5¥(1)(5 (1) — 5)(8)) = Oy(T),

whereas the convergence result follows fro17), Lemma 7 and CMT
Now,

1 1 1 1
dir\2 4y — dir)2 dr — _ d d
JOW (r)y?dr JOWA(r) dr J;JO K;(r,s)W(r)W9(s) drds
where

K;(r,s) = — (exp(—A(2 —r —s)) + exp(—A|r — 8|)).

N | >

By the portmanteau theorem and the fact that the fundfign,-) is positive definite in
the sense thaﬁ(;l fol K;(r,s)f(r)f(s)drds > 0 for any nonzerpcontinuous function

f(),

lim Pr(Q:() >c) = lim Pr(T 24, Q(8) — cT 2o, > 0)

Tooo T—ooo
1 1
= Pr<(l— 0)2a)W<J we(r)2dr —J Wf'(r)zdsr> > 0)
0] 0
=1
for anyc € R. n

Proof of Lemma 5. Let uPW = u;, — Au_,, where A is the matrix appearing in
A2(iii ). The equations definingf and() are sample counterparts of the relations

T=(—-A1TPWI-A)T+(1-AAS—(1—-A AA(-A)?
and

Q=(0-ATM1 -A)Y

where
T t—1

[PW = I|m (T=D71> > E(UPWuEW™), S =limT~ 12 E(u,up),
t=3s=2 T—oo

T T
A= limT- 12 E(ufWu_,), QPY=lim Tt > E(UPWuEW).

T—ow = T t=2s=2

Becausd| — A)~1 —=p (I = A" 1 andA —p Aunder AZiii), it therefore suffices to show
that TP -, TPW S -, 3, A —p A, andQPW -, 0PW

Letd, = u, — d/(B — B), whereg = (S, d, d ) 1(2l o d.z). Letd, T =5, — o/,
oPWT =51 — Apl |, andpPWIT = pPW — pPWt = 51T — A5TT Using notation typified
by
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PW T, 1T 1 o, [t APWT 5 PW T

r =(T-Dt> Dk pPWT oW
t=3s=2 bT

f‘PW can be written afP\N,T,T + f‘pV\/,TT,T + f‘P\N,T,TT + f‘P\N,TT,TT' NO\N, f‘PVV,T,T —p rPwW

by Corollary 4 of Janssof2002. The proof ofi' "W —, TPV is completed by using the
relation

t—1

AW
lA)tTT:Ut—Ut:T71 s=1
0

and straightforwardbut tedious bounding arguments to show thEPW. T [PWETT
and ['PWT areo,(1). Indeed the proof of Lemma 5 of Jansson and Haldi(@002
carries over to the present ca3ée details are omitted for brevity

Proceeding in analogous fashijoit can be shown that —, 3, A —, A, and

QPW_> QPW [ ]
Proof of Lemma 6. In view of A2(iii) and (iv), it suffices to show thaijy" =
op(TZ) P = 0p(T2), &R = 0p(T), and(QX)‘("’) L= 0p(D), Whereéfy"v, Pyots c?)f))"’,
andQRW are defined in the obvious waow, (Q5Y)~ = O,(1) becausdfy —, QRW.
Moreover
i i| gyl PW Ay, PW
‘C:’;yw = E k(A_ (T_l)il E lA)t)le\ ﬁty
i=—(T-2) br t=2
- 1 Tiz ||| Tz‘llAyPWAyPW
T-1.-% 2| \B S
1 T-2 li T—i| pr 1/2 /T—li| VW 1/2
=— — D o
T_li:—(T—z) bT> 1:22( t+ i ) 1:22( t )

T T-2
= (B S

i=—(T-2)

()

where the second inequality uses the Cauchy—Schwarz inequality and the last equality
usesY, 4 |k(i/br)| = 0,(T¥?) (Jansson2002 and 3, (5 "")? = 0,(T2).
Slmllar reasoning can be used to show tﬁ@.’,‘{ =0p(T?) andwxy = 0p(T). u

= 0,(T%2),



