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This paper proposes a notion of near cointegration and generalizes several exist-
ing results from the cointegration literature to the case of near cointegrétion
particulay the properties of conventional cointegration methods under near co-
integration are characterizethereby investigating the robustness of cointegra-
tion methods In addition we obtain local asymptotic power functions of five
cointegration tests that take cointegration as the null hypothesis

1. INTRODUCTION

In a highly influential Monte Carlo studyGranger and Newbol@1974 con-
sidered regressions of independent random walks on each other and found that
the usual significance test based on the regresBiatatistic tends to over-
reject the null To describe this phenomenathe termspurious regressiomwas
coined* The numerical findings of Granger and Newbold are given an analyt-
ical explanation by Phillip§1986, whereas PatkOuliaris and Choi(1988

and Park(1990 provide further clarificationThese authors consider regres-
sions involving quite general integrated processes and show that the asymp-
totic properties of the appropriakestatistic depend crucially om?, the squared
multiple correlation coefficient computed from the long-run covariance matrix
of the underlying innovation sequendé p? < 1, the F-statistic diverges at
rateT (whereT is the sample sizenvhereasT ~ X F has a nondegenerate lim-
iting distribution which only depends on the dimension of the systBnother
words the regression is spurious whenever the coefficient of correlation is less
than unity In contrastwhenp? = 1 the series are cointegrated afd= O,(1)

with a complicated limiting distributionConventional asymptotic results there-
fore depend discontinuously qit.
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On the other handt is quite obvious that the finite sample distribution of
the F-statistic depends continuously @rf. As a consequengghere is reason
to believe that spurious regression asymptotics provide a poor approximation
to the finite sample behavior of tHestatistic when the processes are “nearly”
cointegrated in the sense that is “close” to unity More generallyfinite sam-
ple approximations based on spurious regression theory are likely to be of lim-
ited usefulness whenever the limiting behavior of the object of intéesst an
estimator or a test statisjiexhibits a discontinuity ap? = 1 and values op?
close to unity are of particular intere$h contrasta model of near cointegra-
tion in whichp? is a sequence of parameters lying in a shrinking neighborhood
of unity asT tends to infinity is much more appealing in such situations

Motivated by these consideratigribe present paper introduces a model in
which p? is a primitive parameter and uses this model to propose a notion of
near cointegratiof By constructionthe limiting behavior of thé=-statistic de-
pends continuously op? in our setupand the model of near cointegration can
therefore be used to bridge the gap between spurious regression and cointegra-
tion with respect to the limiting behavior of tHestatistic’ We use the model
of near cointegration to generalize several existing results from the cointegra-
tion literature to the case of near cointegratibmparticular the robustness of
cointegration methods is investigat&tle characterize the limiting behavior un-
der near cointegration of the usual Wald statistic devised to test hypotheses on
a cointegrating vector and show that the limiting distribution obtained under
near cointegration stochastically dominates jfedistribution applicable un-
der cointegrationThis result complements Elliott’s recent stud®998, where
the implications of near integration in exactly cointegrated models are exam-
ined In addition to studying the robustness of cointegration methadschar-
acterize the behavior of five regression based cointegration tests under local
alternatives and compute the corresponding local asymptotic power functions
Among the tests under studyree are found to have virtually identical local
asymptotic power propertiesrhereas the remaining two are significantly infe-
rior in terms of local asymptotic power

The paper proceeds as followls Section 2 we introduce our modeSec-
tion 3 discusses the behavior of regression estimators under near cointegration
and Section 4 contains the corresponding results for inference procedures based
on these estimatarén Section 5 we report the behavior of several cointegra-
tion tests under near cointegratidfinally, Section 6 offers a few concluding
remarks Proofs of all results of the paper are outlined in the Appendix

Before we begina word on notationThe inequality> 0 signifies positive
definiteness when applied to square matrjeed |- | is the Euclidean norm
For any symmetricA > 0, A~¥2 = (AY?)~1 and AY2 is the upper triangular
matrix with positive diagonal elements such t#dt?’AY?" = A. The symbols
= 4, and —p Signify equality in law convergence in distributigrand con-
vergence in probabilityrespectivelyFinally, to simplify the notation integrals
such asfy W(r) dr and stochastic integrals such §5W(r) dW(r)" are typi-
cally written asfW and fWdW, respectively
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2. THE MODEL AND ASSUMPTIONS
Supposdz;: 0=t =T, T = 1} is anm-vector triangular array generated by
Azr = Cr(L)e, (1)

where eactC;(L) = X2 ,Cy L' is anm X m matrix lag polynomialwhereas
{e.:t € Z} is independent and identically distributéd.d.) with E(e) = 0 and
E(e €/) > 0. Triangular arrays are considered to be able to define a notion of
near cointegration similar to those of Tangk®93 1996. Our objective is to
do so by means of a parameterization{@(L): T = 1} andE(e €/) that in-
volves minimal loss of generality for any fixédand depends om in the sim-
plest possible fashion

Applying the BN (Beveridge and Nelsqri981) decompositiofi to C(L),
we can writez; as

zr = Cr(D& + Cr(L)g + zro — Cr (L) ey,

whereé, = 3., e.. We assume thatr(1) is upper triangulatwith nonnega-
tive diagonal elementsandE(e €/) = |,,. For any fixedT, these assumptions
entail no loss of generalifyPartitionzy, into m, = 1 andm, = m — 1 compo-
nents agr = (Yq, X5,)". Conformably partition C+(1) andCy (L) after the first
row asCr(1) = (CY(1),C¥1)") andCr(L) = (C{(L),C¥(L)"), respectively
AssumingC{(1) andC¥(1) have full row rank C;(1) can be written as

WA= PR (pr QR a1
Cr(1) = " : 2)
0 Q><><,T

wherewy, + > 0 is a scalarQ,, r > 0 is anm, X m, matrix, &y, is anm,-
vector such thatD;MTQ;X}T Wy, 1 = wyy, 1 and 0= pr = 1. Under this param-
eterization the rank ofC;(1) depends solely on the scalaf. Indeed C(1)
has full rank whenever & p; < 1, whereasC(1) has(deficieny rankm — 1
if pr = 1. This feature is very convenient for our purpasas it enables us to
define a notion of near cointegration by modelifyg;} as a sequence lying in
a shrinking neighborhood of unity asincreases without bound

In recognition of the fact that our main emphasis is on the cointegration prop-
erties of{zr}, we henceforth make the simplifying assumption thatis the
only parameter of the model that varies wikhTo make this assumption ex-
plicit, the redundant subscrigt will be omitted in expressions involving the
parameter€¥(L), Cr(L), wyy 1, Quy 7, ANd @,y 7 that do not vary withr. Like-
wise x1; will be written asx;.

Let u, = CY(L)e, whereC!(L) = (1,—p")C(L) and B = Q. &,,. Define
w; = (U, Ax{) and letQ,,, be the long-run covariance matrix af, namely

Wyy XX T—oo t=1s=1

Wyy w>,<u . L
‘waz = Ilm Til E E E(WtW;),
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where the partitioning is in conformity witlv,. The development of formal
results will proceed under the following assumptions

Al. Cr(L) =C;(1) + C(L)(1 — L), whereC(L) = 372,C, L' is a lag poly-
nomial with 32,1 |G| < o0, andCr(1) is defined as in2) with wyy, @y, and
O fixed and 1— p? = T 222w, x/wy, for somei = 0, wherewy, x = wy, —
w0l Ot w,, > 0 andCY¥(1)(1,0)" > 0.

A2. {g} isi.i.d. with E(ge) = 0 andE(e, €/) = Ip,.
A3. 710 = C(L)e,.

The long-run covariance matrix ofAzy, is Q,, = IichmT*lEtT:1
T E(Azr AZr). In view of the relation

w Wy W, Dy
Q= lim C(1)Cr (D) = lim ( o y> - ( . y)’
T—oo

T\ p1 @y Qi Oyy Oy

the parameterpr, wyy, (., anda,, in Al all have natural interpretationin-
deed it is apparent thaC;(1) is parameterized directly in terms of the ele-
ments ofQ,,and the scalapr. In turn, p2 is the squared coefficient of multiple
correlation computed frort(1)C(1).

Under Al {z} is nearly cointegrated in the sense tpatlies in a shrinking
neighborhood of unity a$ increasesOf course near cointegration reduces to
cointegration whem = 0 in Al. In that casethe assumptiom,, > O states
that the cointegration is regular in the sense of R4892. On the other hand
when A # 0, the conditionC"(1)(1,0’)’ > 0 can be interpreted as an identifi-
cation assumptiaf The assumptio),, > 0 implies that{x,} is a noncointe-
grated integrated procesalthough somewhat restrictivehe assumption of
noncointegrated regressors is fairly standard in the related litefatréo fa-
cilitate comparisons with existing results we shall maintain this assumption
throughoutAssumption A3 is introduced to avoid any complications that might
arise as a result of a nonzero mearzfpand/or a “remote past” initialization
of the{z,} procesdqe.g., Canjels and Watsqri997).

The parameten introduced in A1 will play a prominent role in the sequel
Because

T-og*(1— pf)¥*
A= 7z : (3)

wUU.X

A can be interpreted as a signal-to-noise ra8pecifically the numerator in
(3) is proportional tawy;?(1 — p#)Y/2 which is the long-run standard deviation
of Ay conditional onAx; in the case where does not vary withT. The
denominatare}/2, is the long-run standard deviation @f conditional onAx;.
Under cointegrationthe former is zero and = 0. Under spurious regression
(whenpt < 1 is fixed), on the other handhe right-hand side of3) diverges
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Near cointegration corresponds to the intermediate case where the numerator
and denominator of3) are of the same order of magnitude
Our model can be written in triangular form as

Yo = B'% + 8ré + CU(L)e,
Ax, = C*(L)e,, 4)

wheredr = (wy)?(1 — p#)V% (pr — Dy, Qx/?). As it turns ouf the pres-
ence of the additional “error term8; &, on the right-hand side of4) leads
to an increase in the asymptotic variance of estimator@.oOn the other
hand becausedt ¢, is asymptotically uncorrelated with “the regressag”in
(4) in the sense that the long-run covariance betwrnand Té1 e, namely
limt_., T-C*(1)87, equals zer§ the presence od; ¢, does not affect the as-
ymptotic bias of estimators ¢8.

Notions of near cointegration that are closely related to ours have been pro-
posed by Tanaké1993 1996.%1° The near cointegration model of Tanal{®93
equation(20)) can be written in triangular form as

Yre = B'% + 81é + Cf(L)e,
Ax, = C*(L)e,

where &, = SL_ e, {g} satisfies A2 C¥(L) = CY(L) + T 1CY(L), and
lim+,, T-C*(1)67 = 0. The asymptotic distributions of interest are unaffected
by the presence of the terfi *CY(L)g, and Tanaka’s model1993 yields
results that coincide with the results of the present paper

Tanaka's near cointegration modé&P96 equationg11.68) and(11.70)) can
be written as

Yre = BrX +61& + Cf(Le,
Ax, = C*(L)e,

whereé&, = 3L, e, {e] satisfies A2 8 = B + T18, C¥(L) = CY(L) +
T-1CYL), and limy_,, T-C*(1)8r = 0. The termB = T(Br — B) is nonzero

in general and gives rise to a drift term in the limiting distribution of estima-
tors of B (such asBr and B} defined in Section Bbut does not affect the
limiting distribution of cointegration testshe objects of interest in Tanaka
(1996.

Unlike the parameterizations employed by Tangk®93 1996, the param-
eterization of near cointegration proposed here is explicitly one-dimensional
(involving only the scalar parametaj and therefore leads to simpler represen-
tations of the limiting distributions of intereswhich facilitates the interpreta-
tion of the results
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3. BEHAVIOR OF REGRESSION ESTIMATORS

Let & and Bt be the ordinary least squarédLS) estimators in the multiple
regression

Yo = @4 dp + B X, + O (t=1,...,T), (5)

where d; = (1,...,t™ 1) for some my = 1. Let ¥ = diag(TV2

STMa 2T ), WheI'ELm is anm,-vector of onesAs is well known(eg,
Ph|II|ps and Durlauf1986), the limiting distribution of¥; (a4, (Br — B)')’ un-
der cointegration is rather complicated and depends on the paramfgteasd
L, WhereQ,,,, was defined in Section,2vhereas

Yuu  Yux . -1 T
Lw=Cu Ty= =I|limT E E E (w, Wl).

Yo Dix T—o0 t=1s=1

A similar situation occurs under near cointegration

LEMMA 1. Supposé€zy} is generated by (1) and suppose A1-A3 hold. Then

(57 p) 2 fot) (o fou+ foaxnzions (2 ).

where Q(r)" = (D(r),X(r)"), D(r) = (L,r,...,r™ )", X(r) = Q2V(r),
and Uy(r) = AJyU(s)ds + U(r), whereas V and U are independent Wiener
processes of dimension,rand 1, respectively.

In addition to (&4, 34)’, we want to study an estimator that has a com-
pound normal limiting distribution under cointegratidfor concretenessve
consider the canonical cointegration regress{@CR) estimator proposed
by Park(1992.1! To construct this estimatowe need consistent estimators
of Quws Tows aNd Sy = liMrL, T 1S E(WW). Let Wiy = (Op, AX)),
where {0y} are the residuals fron5). We can estimat&,, by Suw =
T-13 1, W W4, whereas,,, andT,,, can be estimated by kernel estimators
of the form

wherek(-) is a kernel function andb} is a sequence ofpossibly sample-
dependentbandwidth pararrjetef‘é As shown in Lemma 5 in the Appendix
the estimator$),,,,, Iww, andX,,, are consistent under A1-Advhere
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A4,

(i) k(0) = L,k(-) is continuous at zerosup=o|k(s)| < oo, and [5 k(r)dr < oo,
wherek(r) = sup, |k(s)| (for all r = 0)

(i) br = &rbr, wherear and by are positive withar + 47 = Op(1) andby® +
T-Y2b = o(1).

The CCR estimatoftay’, A1)’ is the OLS estimator obtained from the mul-
tiple regression

AT tr T
yho=ardo+ BYxL 0l (t=1...,T), (6)
+ ALAL A1, AL D1 A A
WhereyTt =Ymt— Br F-IXEW\:}VWTI (‘)qu AXt, XTt - r-’XEW\:}VWT[’ andIBT IS

the OLS estimator frong5).

LEMMA 2. Supposézy} is generated by (1) and suppose A1-A4 hold. Then

AT
Ol-l- ,
Wr (,BAJ— —,3) —d (foQx) (a’&ézfode/\)’

where¥y, Q,, and U, are defined as in Lemma 1. The limiting distribution is
compound normal:

(Jo) oz o),
B N(g,wuu,x( i QXQ;>1< i Qx,AQi»>(f QxQ*>l)’

where Q ,(r) = A frl Q,(s) ds+ Q,(r) and ~|}-V signifies the conditional distri-
bution relative to/, = o(V(r):0=r =1).

Tanaka(1993 obtains a result equivalent to the first half of Lemm& 2n
important respecighe near cointegration case closely resembles the cointegra-
tion case For instanceB+ andBTT are superconsistent estimatorsgfMore-
over, the limiting distribution ofT(,é; — B) is compound normallhe mean of
this compound normal distribution is zero even under near cointegyatiah
the presence a¥; ¢, on the right-hand side g#) therefore does not introduce
a bias term in the limiting distribution qﬂ Under cointegrationi.e., when
A=0), [Q QL= JQQ; and the covariance matrix in the mixture rep-
resentation in Lemma 2 reduces dq, (J Q,Q;) L Otherwise if A # 0, the
covariance matrix is of “sandwich” formAs pointed out by the co-editor
this suggests that OLS-type inferendeased on the CCR estimatesill be
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misleading under near cointegratidndeed defining Q.(r) = frl Q. (s)ds we
have o

[ @0~ 2.2 = 20,0007 + 4 [ 9.0/ >0

The presence 08 &, on the right-hand side of4) therefore leads to an in-
crease in the asymptotic vanance,@} suggesting that overrejection of true
null hypothesesgon B) is likely to occur under near cointegratioh more pre-
cise statement corroborating this conjecture will be provided in the next section

4. INFERENCE ON REGRESSION COEFFICIENTS

This section is concerned with inference on regression coeffici@atgicular
attention is given to the robustness of conventional cointegration procedures
under near cointegratiorConsider a general linear hypothesis of the form
Ho: ®zB = ¢, Wheredy is ap X m, matrix of rankp and ¢ is ap-vector'*
Define

T -1 -1
Gr = (:)Ju:.Lx(q)BB‘IT - ¢B), {Cbg ( E X;de;r;,d> (13;3:| (CDBB; - ¢B)’ (7)
Wheredy,x = Guu— Gyt Oy, andxg, ¢ = X7, — (g X1 d) (S, ddl) .

THEOREM 3 Supposdzr} is generated by (1) and suppose A1-A4 hold.
(a) When H:dgB = ¢g is true,

[wau,

where \TDﬁ(r) = (JVEVE)VAE(r), V() = Vip(r) — (JVipVap) X
(J VopViap) Vap(r), and \o(r) = (Vip(r),Vep(r)') = V(r) — (JVD’) X
(S DD")"'D(r), where the partitioning is after the pth row, wherea<Dy and U,
are defined as in Lemma 1.

(b) The limiting distribution in part (a) satisfies

| [7eau|

where{,yiz(l)}ip:1 are i.i.d. y2(1) variates and0 = u; =---= u, are the eigen-
values of the matrify Vg(r)Vg(r)'dr, whereVg(r) = [VZ(s) ds. In particu
lar, the family{Z(|f V@dU,|?): A = 0} is stochastically increasing in, where
L(-) denotes the probability law of the argument.

2
Gr =4

’

E (14 A% ui) x2(1),

i=1

Under cointegratiosthe limiting distribution ofGr is x2(p) whenHg is true
In a recent papeiElliott (1998 investigates the robustness of this remarkable
result by considering a model in which the regressors are nearly integrated
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whereas some linear combination of the regressand and the regressor is exactly
stationary It turns out that they? result can break down when the regressors
are not exactly integratedheorem 3 enables us to conduct a complimentary
experiment we can investigate the robustness of cointegration methods in a
model where the regressors are exactly integrated whereas some linear combi-
nation of the regressand and the regressors is nearly statidntjows from
Theorem 3b) that tests based on the distribution applicable under cointegra-
tion (the y2(p) distribution are oversizedasymptotically under near cointe-
=Pr(x*(p) > 1)

gration That is
2 2
> t) > Pr( > t)
for all t > 0 whenevemn > 0.

For concretenessonsider the case whengy = 1, &5 = I, , and¢g = Bo. In
other words consider the null hypothesisy: 8 = By in a regression 03‘/TT.t on
x1. and a constanflo illustrate the magnitude of the size distortions encoun-
tered under near cointegratiowe have simulated the limiting distribution of
Gr for m, = 1,...,4 and for various values of. Specifically we have made
20,000 draws from the distribution of the discrete approximati@rssng 2000
steps to the limiting random variables-igure 1 plots the rejection frequencies
corresponding to a test with a nominal size of.5%

The evidence presented in Figure 1 suggests that severe size distortions can
occur if conventional cointegration methods are being used when the series
are nearly cointegrated rather than exactly cointegrdtedact, the size in-
creases dramatically gshe absolute value 9f\ increases from Oand sub-
stantial size distortions are encountered even for valuasiofthe range 5-10
Whether or not this is a problem obviously depends on whether or not research-
ers can be expected to be able to detect such departures from exact cointegra-
tion. It is therefore of interest to know whether or not tests for cointegration
can be expected to reject the null hypothesis of cointegration wherequal
to 10 say A partial answer to this question is provided in the next section
where we illustrate how to obtain the local asymptotic power functions of tests
for cointegration

lim Pr(Gy >t) = Pr<

Tooo

‘ f Vg du,

‘ f VP du,

5. LOCAL ASYMPTOTIC POWER OF COINTEGRATION TESTS

During the last decagenumerous cointegration tests taking cointegration as
the null hypothesis have been propos€dese test procedures utilize different
properties of cointegrated systenasid it therefore seems desirable to investi-
gate whatif anything can be said about the power properties of the different
tests In this sectionwe characterize the behavior of five regression based co-
integration tests under local alternativ@®Moreover we obtain the correspond-
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Size

FiGURE 1. Rejection rates foGr. Nominal size is 5%

ing local asymptotic power functions and use these to address the following
questions

(i) Does any one of these tests dominate the others in terms of local asymptotic
power?

(ii) Can cointegration tests be expected to detect those departures from cointegration
that seriously distort the size of conventional cointegration proced(akes
Section 4?

The variable addition test proposed by P&tR90 is computed as follows
Let k; andk, be arbitrary nonnegative integers such tkat k; + k, =1 and
fort=1,...,T, letry = (t™, ..., tM k1) (if k; = 1) and(if k, = 1) let {ry}
be ak,-dimensional computer generated random walk such{tkat;} ~ i.i.d.
N(0,1y,).* Finally, letr{ = (r{;,r5,). Based on the multiple regressiof® and

t ) Htry, T Sl 3T
Yy = G O + B Xp + Yy 1o+ Upy (t=1....T), (8)

construct the statistidr(ky, ko) = g[S, (01)? — S (0h)?]. This is
simply the Wald test used to test the significance of the regrasson8). As
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a consequence;(ky, ko) =4 x2(k) under the null hypothesis of cointegration
(Park 1990.

Several cointegration tests based on partial score sums have been proposed
We consider the test due to Sh{t994." That test is based ol =
Ao T 231, 82, where S = L, 0l 8 Evidently Cl; is constructed by
applying the stationarity test proposed by KwiatkowsHiillips, Schmidf and
Shin (1992 to the residualg0y,} from (6).

Cointegration tests also can be based on the resi¢8alsfrom the multiple
regression

= &1 S+ BrSi+ S,

whereSt, =3,y §¢=3L , d,, andSy =S5 lxTSfor 1=t=T. Choiand
Ahn (1995 propose the statistidsM+ = [&g i (T2 S, Sr 1 AS — ULLX)]2

LM'I'l = (Aut,:LLx T ZEt ZS?t 1) L. LMT, and SBDHI’ = wuuxT zzt lSI't’
where 9, = (1, =04, 000 (Tyw — Sww) (L =04, 050). These tests are inti-
mately related to the stat|onar|ty tests of Choi and Ah998).

THEOREM 4 Supposdzr} is generated by (1) and suppose A1-A4 hold.

Then
fﬁegduA

CIT —d fUAZ’

2
Jr (kg k) =4

’

SBDH o, f U,
2
LM-:— —q (fUA,QdUA,Q> y

2
(forano)
fUA%Q

whereRo(r) = (J RgRo) ?Ro(r), Ro(r) = R(r) — (JRQ)(/QQ)*Q(r),
Q = (D,V'), R = (R,R,), Ri(r) = (rM, . rMtk-1)y R is a k-
dimensional Wiener process independent of Q and Wy(r) = U,(r) —
(JQAU)'(JQQ)™Q(r), and U o(r) = Uy(r) — (JQU,)'(JQQ)Q(r),
Q(r) = [ Q(s) ds, whereas D, V, and \are defined as in Lemma 1.

LM —4
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~ LM,
— J,(2,2), CI & SBDH,

0.9

Power

25 30

FiGcure 2. Local power of tests for cointegratiomg = 1, m, = 1.

An expression equivalent to the representation of the limiting distribution of
Cl; is obtained by Tanaké996 Theorem 1111).1° To obtain local asymptotic
power functionswe have simulate¢the discrete time counterparts)dhe lim-
iting distributions of thel;(2,2),2° Cly, LML, LMY, and SBDH- test statistics
in the case whereny = 1 andm, = 1.* As in Section 4we have used,200
steps and have repeated the procedur®@Dtimes Figure 2 shows the local
asymptotic power functions of tests with size 5%

The local asymptotic power properties &f2,2), Clr, and SBDH; are very
similar, wheread_M{ and(in particulay LM} are remarkably inferior in terms
of local asymptotic powemBecause the local asymptotic power properties of
J:(2,2), Cl, andSBDH: are almost indistinguishahleur tentative conclusion
is that the choice among these tests should be guided by finite sample consid-
erations concerning size distortions

Remark 1 Notice thatLM{ = (SBDH)"*-LMy + 0,(1). Under fixed alter-
natives (i.e., under spurious regressiprLM+ diverges at a faster rate than
SBDH:, and a test based ohM{ is therefore consistentChoi and Ahn
1995. In contrast because bottM; and SBDH; are O,(1) under near co-
integration LM{' might be expected to have rather disastrous local asymptotic
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power properties if the local asymptotic power ®BDH is higher than the
local asymptotic power oLM{. Figure 2 confirms this conjectureViore
generally our findings illustrate the obvioysut important point that the
(local asymptotit power properties of a test cannot be deduced from the rate
of divergence under fixed alternativds the present example.g., LM+ and
SBDH diverge at the same rate under fixed alternatives ak diverges
faster than both of thesgChoi and Ahnp 1995. Evidently Figure 2 tells an
entirely different story

Remark 2 The local asymptotic power properties of the tests depend solely
on A. In particulay our distributional results do not depend on the particular
estimator used to estimate nuisance parameters sueh,asIn fact the as-
ymptotic results are the same as if these nuisance parameters were. lk®wn
pointed out by a refere¢his is somewhat unfortungtbecause there is ample
(simulation evidence documenting that the finite sample size properties of tests
can be very sensitive to the choice of nuisance parameter estimation method
(see McCabglLeybourne and Shin 1997 and references therginWe share
this view and encourage the reader to interpret the local asymptotic power curves
presented here as approximations to the finite sample size-adjusted power curves
(as opposed to the true power curye$the corresponding tests

In the previous sectigiwe argued that Wald tests based on conventional co-
integration methods can encounter severe size distortions when the series are
nearly cointegrated antlexceeds 50n the other handhe evidence presented
in Figure 2 indicates that even whan= 10 the power of the tests for cointe-
gration can be well below 5094 his suggests that even if the departure from
(exac) cointegration is substanti@in the sense that it severely affects the size
of the conventional teskstests for cointegration cannot be expected to detect
such departures very frequentiherefore whenever a researcher rejects a struc-
tural hypothesigon the coefficien{3) using cointegration methogdthe result
should be interpreted carefulljndeed it might be the case that the structural
hypothesis is correchereas thépossibly auxiliary assumption of cointegra-
tion is not This of course leaves open the question of how to interpret the co-
efficient vector in a noncointegrated systearguestion that we shall not attempt
to answer heré?

6. CONCLUDING REMARKS

Based on a new representati@nnotion of near cointegration was proposed
The notion of near cointegration was used to generalize several existing results
from the cointegration literature to the case of near cointegraiibroughouj

we have deliberately studied the properties of known inference procedures un-
der near cointegration rather than proposed new methixia resulf several
extensions are possiblEor instancea companion paper by one of ¢¥ans-

son 20019 takes the analysis of Section 5 one step further and uses a model of
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near cointegration to propose a new cointegration test (@gisentially opti-
mal local asymptotic power properties

NOTES

1. Earlier, Yule (1926 used the terrmonsense correlatioto describe a similar phenomenon

2. In the aforementioned papers? is computed from a long-run covariance matrix that is
itself defined by taking limits a§ — co. Thereforeit is not immediately obvious how to modgf
as a sequence of parameters that lie in a shrinking neighborhood of uriltynaseases without
bound By working with a representation wheg€ is a primitive parametewe circumvent this
potential problem

3. A previous version of this article€Jansson and Haldry@000 contains a detailed study of
the F-statistic

4. Cr(L) = Cr(1) + Cr(L)(1 — L), whereCr(L) = 32, Cy; L' is a lag polynomial with co-
efficients Cr; = =22, Cy;. These coefficients satisfy.;2 i Cri| < oo (as required under As-
sumption A1 which appears later in this sectio X2 ,i2|Cr| < co.

5. SupposeC(L) = >,C L' is a matrix lag polynomial and suppo$g:t € Z} is i.i.d.
with E(g) = 0 andE(g€) = S > 0. We can construct an orthogonal matiX such that
C(1)SY20 is upper triangulafwith nonnegative diagonal elemeht&iven any such?, define
C(L) = C(L)S¥20 ande = ©'s Y25 By construction C(1) is upper triangular anfl} is i.i.d.
with E(g) = 0 andE(g g) = O'S™ Y235 Y20 = |,

6. ForT =1, let

1 —pB
D:(L) = 0o | Cr(L).

mx

It is not hard to show tha€"(1)(1,0")" > 0 holds under the identificatiginvertibility condition
inf{|z|:|Dr(z)] =0} >1 0OT,A>0.
7. Notable exceptions include Park and Phillid®89 Sec 5.2), Choi (1994, and McCabe
et al (1997). See also Phillipg1995 and Chang and Phillipel995.
8. Indeed T-CX(1)67 = T(pr — D@y = O(T 1) under Al
9. Alternative conditions of near cointegration have appeared in Quintos and PKiBps
Sec 5) and Phillips(1998a p. 1025. The (multivariate extension of thenotion of near cointegra-
tion introduced by Quintos and Philligd993 is more general than the notion suggested in the
present pape©On the other handhe notion of near cointegration discussed in Phillip898a is
fundamentally different from ourdecause the serigh'y;} generated by equatiofd) of that pa-
per is nearly integrated
10. Details concerning the derivation of the triangular form of Tanaka’s models are available
from the authors upon request
11 Alternative estimators with identical asymptotic properties include the estimators proposed
by Johanseri1988 1991), Phillips (1991, Phillips and Hanseii1990, Saikkonen(1991 1992,
and Stock and Watsof1993.
12. For conveniencawve do not make the dependencedqf,, Quww, andliy, on T andbr explicit.
13. Using Tanaka’'s1993 notation the representation of the limiting distribution 'ﬁtBj -B)
in Theorem 6 of that paper should read

(AW A)THALWS + ALV (g — Ay (AL A) A )]
Upon subtraction of A} A;) 1A} 8, we arrive at the representation

(ATW A HTATW(8 — Ay(ALA) TALS) + ALVi(g — Ay(ALA,) AL D)),
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which is equivalent to the result in LemmaThe difference in the location parameter is due to the
fact that Tanakg1993 p. 49) defines the population value of the regression coefficieng as
(A A)EH(ALA, — ALS/T), whereas oup equals(AyA) 1AL A, in Tanaka's(1993 notation

14. It is a simple matter to generalize Theorem 3 to the case of nonlinear hypatfiesamn-
serve spacewe shall not do so here

15. Harris(1997) and Snell(1998 propose tests for cointegration that utilize principal compo-
nent methodsThese tests are not considered here

16. This particular choice of superfluous regressors is advocated by(P@®k). On the other
hand little guidance on the optimal choice kf andk; is provided although Remark ¢ of the paper
suggests that; + k, = 2 is preferable

17. Closely related tests have been proposed by Hafk@®2, Harris and Inde1994), Kuo
(1998, Leybourne and McCabg&1993, McCabe et al(1997), Quintos and Phillipg1993, and
Tanaka(1996. In Jansson and Haldru2000, we also study Hansenls, test(1992. The local
asymptotic power properties of that test are very similar to those of Shin'§1@84), as are the
local asymptotic power properties of the test due to Xia®39 (Jansson20013.

18. In its original formulation Shin’s test(1994 uses Saikkonen’s estimat@991). The for-
mulation based on the CCR estimator is due to Choi and @A895.

19. To see the equivalengcaotice that rows 1 through — 1 in the expression

t 1 1 -1 t
fo w(s) ds— fo W(s)Wi(s)ds( fo Wﬂs)Wi(s)ds) fo w,(s) ds

in Theorem 1111 of Tanaka(1996 are identically zeroAs a consequencehe limiting distri-

bution of Tanaka'sS;, (1996 depends on the vectax(J}, J;)/(y(1)J;) only through the scalar
¢/y(1). Indeed the variatecZ,(t) appearing in the statement of Tanak®96 has the following
simple representation

t 1 1 -1 t
ﬁ{fo wz(s)ds—fo Wz(s)wﬂs)ds(fo Wl(s)\m(s)ds) fowl(s)ds}.

20. That is ry; = (t,t?)" andry, is a two-dimensional random walk ii8). Changing the values
of k; andk, does not seem to affect the local power of theest much

21 Results for 2= my = 4 are qualitatively similar and can be found in Jansson and Haldrup
(2000.

22. For recent contributions to this discussieee Phillipg1998 and Phillips and Moo1(1999.
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APPENDIX

This Appendix outlines the proofs of the main results of the pafefacilitate the proofs
we start with two preliminary lemmas

LEMMAS5. Supposdzr} is generated by (1) and suppose A1-A4 hold. Tﬁwap
QWWa I‘ww _>p FWWv and EWw _>p Eww-

For1=t=T,letd = (d,X), vr. = yrn — B'%, Gy = (&, x]}), andvy, = yf, —
B/x;rt. Moreaver, let Yy = diag(T™M V2. tMetk= Y2 T, ) wherey,, is a k-vector
of ones.

LEMMA 6. Supposdzy} is generated by (1) and suppose A1-A3 hold. Then

@ Tl/ZlI’T;:LQLTJ =4 Qx(+),
(b) WflEtzl Gt U1t —d w&(xzx fo du, + fo dx/ﬂ;xlwxu + (0, '}’ux)/,
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where] - | denotes the integer part of the argument. Moreover, if A4 holds, then

© TY2W¥rq] 7., —a (),

d) T2 0] -4 0H2U,(),

(€) ¥r 'y tror —a 0l QdU,,

() TS oT)vd =d @u UndUy + vy
(@) TY2Y7r 1., =4 R(),

(h) YF 3L rvd =g o2 fRAU,,

Where‘ya—u.x = (la_w;uﬂ;xl) (Fww - 2Ww) (1,_(0)!(”9;)(1)/, Whereasqu» QX7 Uy, X, and R
are defined as in the text.

Proof of Lemma 5. For 1=t < T, let 0%, = CY(L)e — a+d, + (Br — B)'% and
U5f = 81 ¢,. Becausdir, = 0F, + 03, we can writeWy as the sum ofi, = (05, Ax{)’
andw;; = (057,0")". Using notation typified by

. LI [t—sl\ =
fi =13 S k(5w
t=1s=1 bT

the corresponding decomposition B, is T = [y + k= + T + [55*. Now,
[ —p Lww by Corollary 4 of Janssof2001b, which is applicable because A% of
that paper holds by Lemma 1 andALemrr(a)Gof the present papefo showliy —p
Lww it therefore suffices to show thay,, ™, Lyiv*, andIyy" areop(1).

The idea of the proof is the followingEach of the matrice§:s**, Ti:*, and 15"
can be written a¥ “* 3 5 k(br*i)My;, where{M;:0 =i =T - 1;T =1} is a trian-
gular array of random matricehe event| T~ 3 k(brti)My| > &} is a subset of

s
T izok<a'bT>MTi >8}.

Under A4 infr_q Pr(a; & [a,a]) can be made arbitrarily close to zero for suffi-
ciently large T, and appropriately selected € a = a < oo. We therefore have
T 230 k(brti)My; = 0p(1) if

T ;‘E)k<a~bT>M“

for every 0< a = a < oo, whereo,-(1) denotes convergence to zero in outer probabil-
ity. (To avoid measurability complicationeie consider convergence in outer probabil-
ity rather than convergence in probabiljtyfhe proof proceeds by applying additive
decompositions tdy:5**, [*** and [%* and establishingA.1) for each element of
these decompositiontn each instanceve make use of the fact that

i
k<ﬁ> ‘ My = 0p+(1)

if {mr;:0=i=T-1,T=1}is atriangular array of nonnegative random variables with
MaXp=i=7—1 E(My;) = O(T¥2).

a=a=a

{ar € [aal} U { sup

sup

a=a=a

= Op (1) (A.1)

T-1
sup T

a=a=a i=0
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Indeed by Markov’s inequality and the properties of ‘PE*, andk(-), we have

(e
¢ 'E (;E:EJ 2 (b)
— 71E T71/2T71R L T71/2

€ igo ab, My

<s’1T’1/2:i ( br><T Y2 max E(mn)>

0=j=T-1

T-1 i
=g! (Tl/z ogrpse}rx—l E(mTi)> <T1/2 2‘6 R(i)) =0(1)

for any ¢ > 0, where P#(-) andE*(-) denote outer probability and outer expectation
respectivelyand the Iast equality uses the assumption ongnax_ 1 E(my;) along with
the fact thafT ~%2 3 k((ab;) i) = o(1) under A5(Jansson2001h.

Definingi =t—s and applying the decompositio; = Wrs + (Wi — W), T
can be written af;;‘jg*(éﬁ + L 5 (&), where

(supT 12

a=a=a i=0

=1

)

T i T—i
|
*k* sk a 71 k W**w*w
wwl( ) |§0 a-bT Ts YTs »

_|

T
st (a) = 12‘6k<ﬁ>§ (Wr'ssi — Wro)Wig'
By subadditivity of | -|, |Tywi(a)] = Solk((@-bp)t)|- S Wi wis|, s
Lo (ar) = 0p(1) if maXosi—t- 15(25—1||W?§W?§'\|) = O(T%?). Using A2 and the
relation |5+ = O(T 1), we have

T—i
max E( 2 [Wse e’ |>

O=i=T—-1 s=1

T T
E( p) |W¢§W¢:/|) =12 3, E(éit)

s=1
T
= [8¢17 X m-s=0(1).
s=1

Next |Tvz (@] = T2 olk((a: br)” I)I'- IS 1 (Wi — Wi)Wi2'|. Therefore
W*C‘VE*(aT) = 0p(1) if maXgzi=t— 1E||E (WL, — We)Wee' | = O(T2). By the law
of iterated expectations and A2

E[(§s+i - fs)’(fwi - ft)féft] = E(E[(fsﬂ - fs),(§t+i - ft)|gmax(st)]§é§t)
= E[mmax(i — [t —s|,00£¢£:]

m? max(i — |t — s[,0)min(t, s)

=m?il{|t—s| <i}s
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forany 1= st =Tandi = 0, whereG, = o(es:s=1t) foranyt =1 and X-} is the
indicator function Using this relation the Cauchy—Schwarz inequalitgnd |51| =

o(T),
T 2 T—i 2
(E (W% — W) Wi )sE( > (W% — W) Wi )
=1 s=1

T—i T—i
= ELOWES — WE2)' (W — VI Ve Wiy ]
s=1t=1
T—i T—i
= m2 |5, ]%41{|t - s| <i}s
s=1t=1
T—i

= m?|8.]%2i %s

s=1
=m?||6|%2(T—i)(T—-i+1)
= m?|8:[*T* = 0(1)

for any 0=i = T — 1. Therefore [}:i5" (4r) = 0,(1) andiyii™ = 0,(1), as was to be
shown
Next, considerTy;v*, which can be written a5 (41) + Iis(ar), where

. T i T—i .
i@ =T"1 iZOk(E) > (Wr g — We )W,

s=1
H T—i

Lowa(@ =T71 Z k< > Wy W'
s=1

Because

aa _ ay 0 /\I' TV2g-1 A+ T-12
Wrsti =™ Weyi = :éT_B ol *T T Yo,

and |AB| = ||A|-|B| for conformableA and B, an upper bound odiy::i(a)| is
given by

ar
Wl A
T(mz%)

leE

i=0

(Tlé+)

i 1/2 1 ds+i
T TV v
a- bT ! Xsti

By Lemma 1 andr 5| = O(1), [¥r(&5,(Br — B)')'[(T[[8+]) = Op(1), so the follow-
ing condition is sufficient fol ;75 (4r) = 0,(1):

T—i

>

s=1

IT24.

T—i

max T~ 3 B(TY2wr (i, xen) [IT726) = O(TV2).

0=i=T-1 s=1



NEARLY COINTEGRATED TIME SERIES 1329
By A2, max,——1 E(|T ~Y2&|?) = E(| T ~Y2&1]?) = m. Moreover it can be shown that
max,——t E(TY2¥ 1(d{  X))'|?) = O(1). Using these relations and the Cauchy—
Schwarz inequalitythe proof ofI};;;% (1) = 0y(1) is completed as follows

|T1/2§s|>

T2yt s
! (Xs+i

T—i
-1
O<rp<§I'X—1E<T sgl
= max T~ 2\/E<||T V2 )BT Y0 (i X))
= || max E(IT~22)4) max E(IT2 (e, x0)'[) = O(1)
1=t= 1=t=T
Let 320 CLY = (CY(L),C*(L))". Becausewr; = 61 22,1{l =t — 1} and
= S0Cle i Luis(ar) can be written a&, T (&r), where
R T
Lo (@ =Tt Y k((@-bp) M)M5,  1=j=3,
i=0
with
o oo T—i
=2 2 QY el =s— Uk # 1 +i}(57,0),
k=01=0 s=1
M5 = 2 CY, 2 (68— Im) Ll = 5= 1}(57,0),
2 CY, 2 Im{l = s—1}(37,0).

T i, 3
By the law of iterated expectations and A2

2
<H lZes+. e Wl =s— 11k # 1 +i} )
3 E(eiri—kCri—k— & Hk#1+i})

=72
s=l+1t=I1+1
T T
=T E[E(€l ik keé—let—ll{k¢|+i}|gmax(st)+max(| k—1)—1)]
s=l+1t=I+1
T-i
=Uk#1+i}T 2 IE E(€lti—kesti— E(8i_ 165 ))
s=1+1
T—i
= T72 2 m2
s=1+1

=mT {I=T-1}
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for anyi,l = 0. The conclusiorfv’;;,’;’*zvl(éT) = 0p(1) now follows because

max E([M71])
0=i=T-1
w o T—i
=T[8:] > > IC| max E<”T12es+ikeg.1{lss1}1{k¢l+i}H>
k=01=0 O=i=T-1 s=1

= T||8T”k2 o Z mT21{l =T -1}
0

= (Ta:hmT¥2 X [C¥] = O(T2),
k=0

where the second inequality uses the Cauchy—Schwarz inequality and the previous dis-
play, whereas the last equality us&4s+| = O(1) and the fact thal, ,|CY| < o
under Al _
Next [Myis] = TIorIZiZolCHilIT * 2ol iy — Im) Ul = s — 1} for any
i =0and

for anyi,| = 0. By A2, {vede e — I):t =1} is a uniformly integrable martingale
difference sequen¢so

T—i—l
<H lZ(es 1€l .—Im)l{lss—l}H> —E<HTl 21 (es€l— 1)

ap o ([ S v

1=0 0=i=T—-1
) =0(1)

by an argument analogous to the proof of Theoreg® »f Hall and Heyd€1980. In
particular

= SUpE(H -t E (esel—Irn)

1=0

max E(|M7%])
0=i=T—-1
<T||6T||EHC.+.|| max E(H 1E(es|es| m>1{lss—1}H>

ST||5T|[SUIO max E(H 12(95 166 |—|m)1{|SS-EH)]IZOIIQWII

1=0 O=i=T-1

=0(1),
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sof; W 2(81) = 0p(1). Finally, \;\,’3*2 s(ar) = o(1) because

O=i=

oo T—i
max [Myis] = T|or| max [Z |CIV~VH|<T1 > Hl=s— 1}>]
O=i=T-1| |=¢o s=1

=T[5, max < e, ||>
=i=T— -0

2]

=T|s| .:EOHC'WH =0(D).

The proof of {4 = 0p(1) is analogous to that dtis = 0p(1) and is omitted to con-
serve spaceThe proof ofEWW —p Zuwis a spemal cas(a/vlth ET 3 replaced by2? ,
throughouy of the proof Of Ly —p L ww- Finally, Qyw = = [ + FWW Sww iS consistent
for Quw = Tww + Tiw — Sww, becausd,y —p Lyw and Sw —p Sww |

Proof of Lemma 6. Let {w}, {&}, and{r,} be defined as in the texBy a multi-
variate analogue of Phillips and Sal®992 Theorem 34), we have

LT-]

T2 w Qi 0\ [U0)
=1
T—l/zng.J =g Im O V() |, (A.2)
12 I,/ \Ra(")
T Y251,

whereU, V, andR, are independent Wiener processes of dimensjan,1andks, re-
spectively and

1/2 1/2
wuﬁ X wXUQ 2
Y2 =
ww M

0 oy
Moreover
1/U Uy
12 2 W =g Q3E f dl ., )| QU + T (A3)
s=1 (0] V V
T 1 uy
T712r21Wt' %df R,d Rz, (A.4)
t=1 0 V

by Phillips (1988, whereas

.
T2 WeW = Sy (A.5)

t=1

in view of the law of large numbers
Part(a) is standardFor 1=t = T, vry = U; + 85 &,, whereu, 61, and¢, are defined
as in Section 2By (10), (11), and part(a),

.
1S Qg 08 [ QU+ [ QX 0+ (0.7,
t=1
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Moreover
T

WS 0 ior g Mol [ QU
t=1

by (A.2), part(a), the relation limy_,.. T8+ = (Aw/2,0’), and the continuous mapping
theorem(CMT). Becausef Q,dU, = [Q,dU + A [Q,U, part(b) is obtained by com-
bining the preceding displays

Part(c) is standardDefineq, ' = (d/, %, ")’ andvTt =u/ "+ 8¢, wherex, = x, —

I Suiw, andu " = U — wl QtAX, = - (L -0, Hw,. Let (c) — (hTT) denote the
counterparts of partc)—(h) in which th andv% are replaced witty, " andth, respec-

tively. Part(c') follows from part(a). By (10), lim1_,.. T8} = (Aw}3,0'), and CMT

[T-] [T-]
_ 1 _ —
T 23U =T 723 (L -0 W =g 05U (),
=1 t=1

1T LT :
T V23 616 = (Tor) T ¥2 X & —q w&ﬁzx)tf U(r)dr.
o]

t=1 t=1

Combining these resultpart (d') is obtained Next,
T

(diag(T*2..., T /2) 7 3 dhoy ' =g 0l f Ddy,
t=1

by (a), (d'"), and CMT, whereas

lEXTT = ( lEXtWt | ol B 12Wtwt>

t=1

1
X - wl/zfo du
<_Q;xlwxu> @

and
i T
lEX &or = (nglxx Tf{)(T‘ST) —d wj{fx)lfxu
t=

in view of (A.3), (A.5), (c'), (A.2), and CMT Part(e') is established by using these
results and the relation

.
(diag(T¥2..., TMY2))=1 3 ¢ "
t=1
%12 ool -
1Ex” T 12x &ldr
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Because

3 ( Sl

_T12<2 > +T18Té(2§5> +T1é(§uy)§{5n

s=1 t

part(f™") can be obtained by combining the following respétach of which is obtained
in standard fashion usin@.2), (A.3), (A.5), and CMT.

T t—1 T
le(zu?)ut 12(2 ):*leu:*u:*
t=2 \s=1 t=2

s=1

—d wuu.xfu du + yLTu.w

T t—1
T16+2<2 §s> u" g wuufoUdu,

t=2 \s=1
T t—1
T—122<E ul*) €81 >4 wuufouAu,
t=2 \s=1

whereU(r) = [ U(7) dr. Parts(g) and (h'") are proved in the same way &3 and
(e'T), respectively
Now,

A

Xt - XT1 (F 2w »’XE\XI\}V)Wt + F-’XE\TV\:}V(WTt - Wt)
and
Tt =144 A1 O ’ -
Ut — UTt (BT B)F~X2W\}VWTt + (wquxxl - wquxxl)AXt-

By Lemma 5 1", 2.% —p ThSwd and @, Ol —p 04, Q5k. Furthermore By — B =
Op(T™1) and max=¢=1 Wy — W] = Op(T ~¥2) by Lemma 1 the proof of which only
uses(a)—(b) of the present lemmaJsing these factsghe proof of(d) is completed as
follows:

LT-]
- Tttt
T2 E:l(UTt — Ugy)
t=

[T-1
= (BT - B)F~lx2\7v\%/T71/2 E WTI + (“A))/(uQ;xl - w;uﬂ;xl)Til/leT-J —d 0.
t=1

Analogously the proof of (€)— (h) can be completed by using elementary manipula-
tlons to show that\Ilezt (afol — ool g 0 TSI !, -
T3 (ST o1l =4 0, ete -
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Proof of Lemma 1. In view of the relation

&T T -1 T
\I,T<A _ ) :<WleQtQ{\I,T1> (WTIECHUTt):
BT :8 t=1 t=1

the stated result follows from Lemmdaa&—(b) and CMT |

Proof of Lemma 2. We have

At 1
aq T ,
Wr At = (vt E q;tq;tq,‘r vt 2 thth
Br—B t=1

>4 ( i QXQ;) (w&ﬁi i QxduA>,

where the limiting distribution is obtained using Lemme)6and (e) and CMT It fol-
lows from integration by parts thdtQ,dU, £ JQx 2dU. The mixture representation is
obtained by noting thaf Q, ,dU|x, £ N(0,/Q Q. ,) by the properties of the 1td
integral u

Proof of Theorem 3. The statisticGy can be written as

2

G, =

T —1 —1/2
[% (T ‘?xhxi@) %} o U AR C)

By Lemma 5 Lemma Gc), Lemma 2 and CMT,

T -1 -1
Dy (T—z tzlxiwx;’gd> Dy >4 Dy <fxD xg,) Py = fxgaxgw

and

-1
a)uu{f(l)BT(B —B) =4 q)B<fXD XB) fXDdU/\ = fXgBdUA,

whereXp = QY2V, and

—1 -1
Xpe(r) = q)ﬁ(fxD XE)) Xp(r) = (‘DBQ;xl/Z')(fVDVLS) Vo (r).

As a consequenc&r —q | SXTedU, |2 whereXZa(r) = (fX3eXEe ) Y2X D8 (r).

The distribution ofX2s depends oan and 0,/ through®; Q,,/?'. By the par-
titioned inverse formulaX2s = Vg5 when QXX = |y, and &g = (I,,0) and the
proof of part(a) can therefore be completed by showing that no generality is lost by
assuming®; Q.2 = (1,,0). E(X“’ﬂ) is invariant under transformations of the form
D05, % — KD Qxxl/z’(’) whereK is a nonsingulap X p matrix and® is an orthog-
onal my X my matrix Take O such thatd; Q7?0 = (L,0), whereL is lower trian-
gular Settingk = L™%, we arrive at the desired conclusion
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To establish partb), it suffices to show that

1
f@dUA £ N(o,|p+ ,\Zf @(r)@(r)’dr).
A 0

Using mtegratlon by partg VP dU, £ fVEde whereVD A= /\VDp(r) +V2(r) and
Vg(r) = ['V2(s) ds By the properties of the Itd integial

[av] (o [ V00 ).
A 0

Now, [3 V@ (r)VZ(r)’ dr = I,, and the result follows because

JO V(OVE(ry dr + f VIOV dr = < f \Zf(r)dr)( f VJ’(r)dr) —o,

where the equality uses integration by parts and the reIaf@Jk{D(r)dr = 0,
respectively |

Proof of Theorem 4. Letr{, =1y — (SL1 15010 (S1-1 G1e0re) o By Lemma 5
Lemma €c¢), (e), (g), and(h), and CMT,

L ~1/2 LN
‘JT(kl, kz) = ‘ (YTlE th,qut,qYT ) wou{(zYTlE rTt,qUTt
t=1 t=1
-1/2 2 _ 2
—q <fRQRb> (fRQdUA> = <fRQdU,\>

Next by Lemma 5 Lemma Gc)—(e), and CMT & {°T "~ Y25 1., —a Up(), so
Cly = oL T 231182 —4 U2, as claimed

Finally, using Lemma 5Lemma Gc)—(f), and CMT it is not hard to show that
BT Y28 1) =4 Upa(-) and @y in(T 12,5, A8 — Yuux) —d JUxcdUp 6,
where the notatlorjUA,QdUA g is shorthand foff U, gdU, — (JU,Q)(SQQ")~ 11U, QQ
As a consequeng@BDH = & T 2311 S —4 [UZ6, LMY =4 (JU, 6dU, 0)?,
andLMy = (SBDH:) LMt + 05(1) —q (JUZo)*(JU, qdU, 0)2 u



