
III. Stochastic Optimization in Continuous Time

The optimization principles set forth above extend directly

to the stochastic case. The main difference is that to do

continuous-time analysis, we will have to think about the right

way to model and analyze uncertainty that evolves continuously

with time. To understand the elements of continuous-time

stochastic processes requires a bit of investment, but there is a

large payoff in terms of the analytic simplicity that results.

Let’s get our bearings by looking first at a discrete-time

11stochastic model. Imagine now that the decision maker

maximizes the von Neumann-Morgenstern expected-utility indicator

8

s ------dth(19) E e U[c(t),k(t)]h ,0 t
t=0

where E X is the expected value of random variable X conditionalt
12on all information available up to (and including) time t.

Maximization is to be carried out subject to the constraint that

(20) k(t+h) ------ k(t) = G[c(t),k(t), q(t+h),h], k(0) given,

------------------------------------------------------------------------------------------------------------------------------------------------------------
11An encyclopedic reference on discrete-time dynamic programming
and its applications in economics is Nancy L. Stokey and Robert
E. Lucas, Jr. (with Edward C. Prescott), Recursive Methods in
Economic Dynamics (Cambridge, Mass.: Harvard University Press,
1989). The volume pays special attention to the foundations of
stochastic models.
12Preferences less restrictive than those delimited by the von
Neumann-Morgenstern axioms have been proposed, and can be handled
by methods analogous to those sketched below.
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8where { q(t)} is a sequence of exogenous random variables with
t=- 8

a known joint distribution, and such that only realizations up to

and including q(t) are known at time t. For simplicity I will

assume that the q process is first-order Markov , that is, that

the joint distribution of { q(t+h), q(t+2h), ...} conditional on

{ q(t), q(t ------h), ...} depends only on q(t). For example, the AR(1)

process q(t) = rq(t ------h) + u(t), where u(t) is distributed

independently of past q’s, has this first-order Markov property.

Constraint (20) differs from its deterministic version, (6),

in that the time interval h appears as an argument of the

transition function, but not necessarily as a multiplicative

factor. Thus, (20) is somewhat more general than (6). The need

for this generality arises because q(t+h) is meant to be

"proportional" to h in a sense that will become clearer as we

proceed.

Criterion (19) reflects inherent uncertainty in the

realizations of c(t) and k(t) for t > 0. Unlike in the

deterministic case, the object of individual choice is not a

single path for the control variable c. Rather, it is a sequence

of contingency plans for c. Now it becomes really essential to

think in terms of a policy function mapping the "state" of the

program to the optimal level of the control variable. The

optimal policy function giving c*(t) will not be a function of

the state variable k(t) alone, as it was in the last section;

rather, it will depend on k(t) and q(t), because q(t) (thanks to

the first-order Markov assumption) is the piece of current
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information that helps forecast the future realizations q(t+h),

q(t+2h), etc. Since k(t) and q(t) evolve stochastically, writing

c*(t) = c[k(t); q(t)] makes it clear that from the perspective of

any time before t, c*(t) will be a random variable, albeit one

that depends in a very particular way on the realized values of

k(t) and q(t).

Bellman’s principle continues to apply, however. To

implement it, let us write the value function--again defined as

the maximized value of (19)--as J[k(0); q(0)]. Notice that q(0)

enters the value function for the same reason that q(t)

influences c*(t). If q is a positive shock to capital

productivity (for example), with q positively serially

correlated, then a higher current value of q leads us to forecast

higher q’s for the future. This higher expected path for q both

raises raises expected lifetime utility and influences the

optimal consumption choice.

In the present setting we write the Bellman equation as

( )
------dh(21) J[k(t); q(t)] = max {U[c(t),k(t)]h +e E J[k(t+h); q(t+h)] },

t
9 0

c(t)

where the maximization is done subject to (20). The rationale

for this equation basically is the same as before. The

8contingent rules for {c(s)} that maximize
s=t+1

8

s ------dshE e U[c(s),k(s)]h subject to (20), given k(t) and thet t
s=t
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optimal choice c*(t), will also maximize

8

s ------dshE e U[c(s),k(s)]h subject to (20), given the probabilityt t
s=t+1

distribution for k(t+h) induced by c*(t).

Equation (21) is the stochastic analogue of (7) for the case

of first-order Markovian uncertainty. The equation is

immediately useful for discrete-time analysis: just use (20) to

eliminate k(t+h) from (21) and differentiate away. But our

concern here is with continuous-time analysis. We would like to

proceed as before, letting the market interval h go to zero in

(21) and, hopefully, deriving some nice expression analogous to

(9). Alas, life is not so easy. If you try to take the route

just described, you will end up with an expression that looks

like the expected value of

J[k(t+h); q(t+h)] ------ J[k(t); q(t)]
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------.

h

This quotient need not, however, converge (as h L 0) to a well-

defined random variable. One way to appreciate the contrast

between the present setup and the usual setup of the calculus is

as follows. Because J[k(t); q(t)] is a random variable, a plot of

its realizations against time--a sample path --is unlikely to be

differentiable. Even after time is carved up into very small

intervals, the position of the sample path will change abruptly

from period to period as new realizations occur. Thus,

expressions like the quotient displayed above may have no well-
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defined limiting behavior as h L 0. To proceed further we need a

new mathematical theory that allows us to analyze infinitesimal

changes in random variables. The stochastic calculus is designed

to accomplish precisely this goal.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Stochastic Calculus

Let X(t) be a random variable whose change between periods t

2
------ 1 and t, DX(t) = X(t) ------ X(t ------ 1), has mean m and variance s .

To simplify matters I’ll assume that DX(t) is normally

distributed, although this is not at all necessary for

13the argument.

We are interested in the case where DX(t), the change in

random variable X over the period of length 1 between t ------ 1 and

t, can be viewed as a sum (or integral) of very small (in the

limit, infinitesimal) random changes. We would also like each of

these changes, no matter how small, to have a normal

distribution. Our method, as in the usual calculus, is to divide

the time interval [t ------ 1, t] into small segments. But we need to

be sure that no matter how finely we do the subdivision, DX(t),

2the sum of the smaller changes, remains N( m, s ).

To begin, carve up the interval [t ------ 1, t] into n disjoint

subintervals, each of length h = 1/n. For every i e {1,2,...,n},

------------------------------------------------------------------------------------------------------------------------------------------------------------
13For a simplified yet rigorous exposition of these matters,
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let n(i) be a N(0,1) random variable with En(i) n(j) = 0 for i $

j. Suppose that DX(t) can be written as

n
s 1/2(22) DX(t) = mh + sh n(i)
t

i=1

Then since nh = 1, (22) is consistent with our initial

2hypothesis that EDX(t) = m and VDX(t) = s . For example,

n n n
2 s s s 2 2VDX(t) = s En(i) n(j)/n = En(i) /n = s .
t t t
i=1 j=1 i=1

Equation (22) expresses the finite change DX(t) as the sum

1/2of tiny independent normal increments of the form mh + sh n. It

is customary to denote the limit of such an increment as h L 0 by

1/2
mdt + sdz, where for any instant t, dz( t) = lim h n( t).

hL0

When this limit is well-defined, we say that X(t) follows the

Gaussian diffusion process

(23) dX(t) = mdt + sdz(t),

which means, in notation that is suggestive but that I will

not attempt to define rigorously, that

t

iX(t) = X( t) + m(t ------t) + s2dz(s) = X( t) + m(t ------t) + s[z(t) ------z( t)]
j
t

14for all t < t.

------------------------------------------------------------------------------------------------------------------------------------------------------------
14Again, see Merton, op. cit. , for a more rigorous treatment. To
make all this more plausible, you may want to write (22) (for our
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Think of X(t) as following a continuous-time random walk

with a predictable rate of drift m and an instantaneous rate of

2variance (variance per unit of time) s . When s = 0, we are back

in the deterministic case and are therefore allowed to assert

that X(t) has time derivative m: dX(t)/dt = m. But when s > 0,

X(t) has sample paths that are differentiable nowhere. So we use

a notation, (23), that does not require us to "divide" random

differences by dt. Because we are looking at arbitrarily small

increments over arbitrarily small time intervals, however, the

sample paths of X(t) are continuous.

Now that we have a sense of what (23) means, I point out

that this process can be generalized while maintaining a

Markovian setup in which today’s X summarizes all information

useful for forecasting future X’s. For example, the process

(24) dX = m(X,t)dt + s(X,t)dz.

------------------------------------------------------------------------------------------------------------------------------------------------------------
earlier case with t = t ------ 1) as

n
s q------

DX(t) ------ m = n(i)/ en ,
t

i=1

where n = 1/h is the number of increments in [t ------ 1, t]. We know
from the central-limit theorem that as n L 8, the right-hand side
above is likely to approach a limiting normal distribution even
if the n(i)’s aren’t normal (so my assumptions above were
stronger than necessary). Obviously, also, X(t) ------ X(t ------ h) will

2be normally distributed with variance h s no matter how small h
is. But X(t) ------ X(t ------ h) divided by h therefore explodes as h L 0

2(its variance is s /h). This is why the sample paths of
diffusion processes are not differentiable in the usual sense.
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allows the drift and variability of dX to be functions of

the level of X(t) itself, which is known at time t, and of

time.

There is a further set of results we’ll need before tackling

^the one major theorem of stochastic analysis applied below, Ito’s

chain rule. We need to know the rules for multiplying stochastic

differentials. We’re familiar, from the usual differential

calculus, with the idea that quantities of order dt are

mimportant, whereas quantities of order dt , m > 1, are not. For

2example, in calculating the derivative of the function y , we

-1 2 2 2compute h times the limit of (y + h) ------ y = 2yh + h as h L 0.

2The derivative is simply 2y, because the term h goes to zero

even after division by h. The same principle will apply in

stochastic calculus. Terms of order greater than h are

2 2discarded. In particular dt = lim h will be set to zero,
hL8

just as always.

What about something like the product dzdt? Since this is

3/2the limit of h n as h L 8, it shrinks faster than h and

accordingly will be reckoned at zero:

(25) dzdt = 0.

2 2Finally, consider dz = lim h n . This is of order h, and thushL8

does not disappear as h gets very small. But the variance of

2 15this term can be shown to be 2h , which is zero asymptotically.

------------------------------------------------------------------------------------------------------------------------------------------------------------
2 215To prove this, note that because n is N(0,1), Vhn = E(h n ------
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2By Chebyshev’s inequality, h n thus converges in probability to

its expected value, h, as h L 0, and so we write

2(26) dz = dt.

^Let’s turn now to Ito’s famous lemma. Suppose that the

random variable X(t) follows a diffusion process such as (24).

^The basic idea of Ito’s Lemma is to help us compute the

stochastic differential of the random variable f[X(t)], where

f( Q) is a differentiable function. If s(X,t) _ 0, then the chain

rule of ordinary calculus gives us the answer: the change in f(X)

over an infinitesimal time interval is given by df(X) = f ’(X)dX =

f ’(X) m(X,t)dt. If s(X,t) # 0 but f( Q) is linear, say f(X) = aX

for some constant a, then the answer is also quite obvious: in

this special case, df(X) = f ’(X)dX = a m(X,t)dt + a s(X,t)dz.

Even if f( Q) is nonlinear, however, there is often a

simple answer to the question we’ve posed:

^Ito’s Lemma. Let X(t) follow a diffusion process, and let f: R L

R be twice continuously differentiable. The stochastic

differential of f(X) is

1 2(27) df(X) = f ’(X)dX + ------f "(X)dX .
2

------------------------------------------------------------------------------------------------------------------------------------------------------------
2 2 4 2 2 2 2 2 2 2h) = E(h n ------ 2h n + h ) = 3h ------ 2h + h = 2h .
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Comment. If X follows the diffusion process (24), then,

2using rules (25) and (26) to compute dX in (27), we get

2s(X,t)
(28) df(X) = [ m(x,t)f ’(X) + ----------------------------------- f "(X)]dt + s(X,t)f ’(X)dz.

2

You’ll notice that (28) differs from the "naive" chain rule only

in modifying the expected drift in f(X) by a term that depends on

the curvature of f( Q). If f "(X) > 0 so that f( Q) is strictly

convex, for example, (28) asserts that E df(X) = E f[X(t+dt)] ------
t t

f[X(t)] is greater than f ’(X) m(X,t)dt = f ’(X) E dX = f[ E X(t+dt)]
t t

------ f[X(t)]. But anyone who remembers Jensen’s Inequality knows

that E f[X(t+dt)] > f[ E X(t+dt)] for convex f( Q), and that the
t t

^opposite inequality holds for concave f( Q). So Ito’s Lemma

16should not come as a surprise.

------------------------------------------------------------------------------------------------------------------------------------------------------------
16In case you don’t remember Jensen’s Inequality, here’s a quick
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^ ^Motivation for Ito’s Lemma. The proof of Ito’s Lemma is quite

subtle, so a heuristic motivation of this key result will have to

17suffice. Once again I’ll rely on a limit argument. For an

18interval length h, Taylor’s theorem implies that

f[X(t+h)] ------ f[X(t)] = f ’[X(t)][X(t+h) ------ X(t)]

1 2+ ------f "{X(t) + x(h)[X(t+h) ------ X(t)]}[X(t+h) ------ X(t)] ,
2

where x(h) e [0,1]. It may look "obvious" to you that this

converges to (27) as h L 0. Beware. It turns out to be quite a

chore to ensure that the right-hand side of this expression is

well behaved as h L 0, largely because of the complicated

dependence of the term f "{X(t) + x(h)[X(t+h) ------ X(t)]} on h.

Fortunately, as h L 0, the randomness in this term does disappear

quickly enough that we can safely equate it to f "[X(t)] in the

limit. The result is (27). It should now be clear how one would

------------------------------------------------------------------------------------------------------------------------------------------------------------
sketch of a proof. Recall that a convex function has the
property that gf(X ) + (1 ------g)f(X ) > f[ gX + (1 ------g)X ] Ag e [0,1].

1 2 1 2

sIt is easy to extend this to the proposition that p f(X ) >
t i i

i

sf( p X ) for ( p ,..., p ) in the unit simplex. (Try it.) So for
t i i 1 n

i

finite discrete probability distributions we’re done. (Obviously
concave functions work the same way, with the inequalities
reversed.) Now consider the case in which the random variable X
has an arbitrary continuous density function p(X). We can

sapproximate Ef(X) by sums of the form f(X ) p(X )h, each of which
t i i

i

smust be at least as great as f[ X p(X )h] if we choose the
t i i

i

17For Taylor’s theorem with remainder, see any good calculus text.
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^motivate a multivariate version of Ito’s Lemma using the

multivariate Taylor expansion.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

The preceding digression on stochastic calculus has equipped

us to answer the question raised at the outset: What is the

continuous-time analogue of (21), the stochastic Bellman

equation?

To make matters as simple as possible, in analogy with

section II’s time-stationary setup, I’ll assume that q(t+h)

= X(t+h) ------ X(t), where X(t) follows the simple diffusion

process (23), dX = rdt + sdz, for constant r and s. Under this

assumption E q(t+h) = rh always, so knowledge of q(t) gives us no
t

information about future values of q. Thus the value function

depends on the state variable k alone. Now (21) becomes

( )
------dh(29) J[k(t)] = max {U[c(t),k(t)]h + e E J[k(t+h)] }.

t
9 0

c(t)

Let’s carry on by adapting the last section’s strategy of

------dhsubtracting J[k(t)] from both sides of (21) and replacing e by

m1 ------ dh. (We now know we can safely ignore the terms in h for m

> 2.) The result is

)(
dE J[k(t+h)]h }.0 = max {U[c(t),k(t)]h + E J[k(t+h)] ------ J[k(t)] ------ tt 0c ( t ) 9

Now let h L 0. According to (20), dk = G(c,k,dX,dt), and I

assume that this transition equation defines a diffusion process
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^for k. Ito’s Lemma then tells us that

1 2(30) dJ(k) = J ’(k)dk + ------J"(k)dk ,
2

Thus as h L 0, E J[k(t+h)] ------ J[k(t)] L J’[k(t)] E dk(t) +
t t

1 2
------J"[k(t)] E dk(t) . Furthermore, as h L 0, E J[k(t+h)] L J[k(t)].

t t2

So we end up with the following:

PROPOSITION III.1. (Continuous-Time Stochastic Bellman Equation)

8 ------dtConsider the problem of maximizing E i e U(c,k)dt subject to a
0 0

diffusion process for k controlled by c, and given k(0) . At each

moment, the optimal control c* satisfies the Bellman equation

(31) 0 = U(c*,k)dt + J ’(k) E G(c*,k,dX,dt)
t

1 2+ ------J"(k) E G(c*,k,dX,dt) ------ dJ(k)dt
t2

( )1 2= max {U(c,k)dt + J ’(k) E dk + ------J"(k) E dk ------ dJ(k)dt }.
t t2c ( t ) 9 0

Equation (31) is to be compared with equation (9), given in

Proposition II.1. Indeed, the interpretation of Proposition

III.1 is quite similar to that of Proposition II.1.

Define the stochastic Hamiltonian [in analogy to (10)] as

2E dk E dkt 1 t
(32) H(c,k) _ U(c,k) + J ’(k) ---------------------- + ------J"(k) --------------------------.

dt 2 dt
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The Hamiltonian has the same interpretation as (10), but with a

stochastic twist. The effect of a given level of "savings" on

next period’s "capital stock" now is uncertain. Thus the

Hamiltonian measures the expected flow value, in current utility

terms, of the consumption-savings combination implied by the

consumption choice c, given the predetermined (and known) value

of k. The analogy will be clearer if you use (30) to write (32)

18as

E dJ(k)
H(c,k) = U(c,k) + t ,

----------------------------------------
dt

and if you use the ordinary chain rule to write the

Qdeterministic Hamiltonian (10) as U(c,k) + J ’(k)k = U(c,k) +

dJ(k)/dt.

The stochastic Bellman equation therefore implies the same

rule as in the deterministic case, but in an expected-value

sense. Once again, optimal consumption c* satisfies (11),

H(c*,k) = max { H(c,k)} = dJ(k).
c

Rather than proceeding exactly as in our deterministic

analysis, I will sacrifice generality for clarity and adopt a

specific (but widely used) functional form for the continuous-

------------------------------------------------------------------------------------------------------------------------------------------------------------
19The notation in (32) and in the next line below is common.

Since E dk, for example, is deterministic, ( E dk)/dt can be
t t

viewed as the expected rate of change in k. Since diffusion

processes aren’t differentiable, E (dk/dt) is in contrast a
t

nonsensical expression.
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time version of (20), dk = G(c,k,dX,dt). I will assume the

linear transition equation

(33) dk = kdX ------ cdt = (rk - c)dt + skdz

(since dX = rdt + sdz). What form does (31) now assume? To see

2this we have to calculate E dk and E dk . It is clear from (33)
t t

that E dk = (rk ------ c)dt. Invoking (25) and (26), and recalling
t

2 2 2 2 2 2 2that dt = 0, we see that dk = E dk = k dX ------ 2ckdXdt + c dt =
t

2 2
s k dt. We thus conclude that c* must solve

( )1 2 2(34) 0 = max {U(c,k) + J ’(k)(rk ------ c) + ------J"(k)k s ------ dJ(k) }.
2c ( t ) 9 0

In principle this equation is no harder to analyze than was

(9): the two are identical [if G(c,k) = rk ------ c] aside from the

^additional second derivative term in (34), due to Ito’s Lemma.

So we proceed as before, starting off by maximizing the

Hamiltonian.

Since k is predetermined and known at each moment, the

necessary condition for c* to maximize the right hand of (34) is

(35) U (c*,k) = J ’(k),c

which is the same as (12) because I’ve assumed here that G = ------1.c

We can also define the optimal policy function c* = c(k),

just as before. By definition c(k) satisfies the equation
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1 2 2(36) 0 = U[c(k),k] + J ’(k)[rk ------ c(k)] + ------J"(k)k s ------ dJ(k).
2

One would hope to understand better the implied dynamics of c

by differentiating with respect to the state variable. The

result is

2(37) U (c*,k) + J ’(k)(r ------ d) + J "(k)k s + J"(k)(rk ------ c*)k
1 2 2+ ------J’’’(k)k s = 0,
2

where I’ve already applied the envelope condition (35).

It is tempting to give up in the face of all these second

and third derivatives; but it is nonetheless possible to

interpret (37) in familiar economic terms. Let’s again define

the shadow price of k, l, by

l _ J’(k).

This shadow price is known at time t, but its change over the

interval from t to t + dt is stochastic. Equation (37) differs

from (13) only by taking this randomness into account; and by

writing (37) in terms of l, we can see precisely how this is

done.

^To do so we need two observations. First, Ito’s Lemma

discloses the stochastic differential of l to be
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1 2 2(38) d l = dJ ’(k) = J "(k)(kdX ------ cdt) + ------J’’’(k)k s dt
2

(verify this), so that

1E dl 2 2(39) t = J"(k)(rk ------ c) + ------J’’’(k)k s .
--------------------- 2

dt

2Second, the term J "(k)k s in (37) can be expressed as

2 2(40) J "(k)k s = ------J’(k)R(k) s ,

where R(k) _ ------J"(k)k/J ’(k) should be interpreted as a coefficient

of relative risk aversion.

Using (39) and (40), rewrite (37) in terms of l = J’(k) as

E dl
t2U (c*,k) + l[r ------ R(k) s ------ d] + ---------------------,k dt

or, in analogy to (14), as

2 2U + l[r ------ R(k) s /2] + [( E dl)/dt ------ lR(k) s /2]k t
(41) ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- = d,

l

To compare (41) with (14), notice that under the linear

transition equation (33), r corresponds to the expected value of

G ; we adjust this expectation downward for risk by subtractingk
2the product of the risk-aversion coefficient and s /2. An
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identical risk adjustment is made to the expected "capital gains"

term, ( E dl)/dt. Otherwise, the equation is the same as (14),
t

and has a corresponding "efficient asset price" interpretation.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Example

An individual maximizes the expected discounted utility of

8 ------dtconsumption, E i e U(c)dt, subject to a stochastic capital
0 0

accumulation constraint that looks like (33):

dk = rkdt + skdz ------ cdt, k(0) given.

What is the meaning of this savings constraint? Capital has a

mean marginal product of r, but its realized marginal product

fluctuates around r according to a white-noise process with

2instantaneous variance s . The flow utility function is

1 ------(1/ e)c ------ 1
U(c) = -----------------------------------------------------------------------,

1 ------ (1/ e)

as in the second part of the last section’s example.

To solve the problem I’ll make the same guess as before,

that the optimal consumption policy function is c(k) = hk for an

appropriate h. As will be shown below--and as was the case in a

deterministic setting--the value function J(k) is a linear

1 ------(1/ e)function of k , making the risk aversion coefficient R(k)
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defined after (40) a constant, R _ 1/ e. For now I will assume

this, leaving the justification until the end.

How can we compute h in the policy function c(k) = hk? The

argument parallels our earlier discussion of the nonstochastic

case, which you may wish to review at this point.

Start by thinking about the implications of the

postulated policy function for the dynamics of capital. If

c(k) = hk, then

dk = rkdt + skdz ------ c(k)dt = (r ------ h)kdt + skdz.

But as optimal c is proportional to k,

dc = (r ------ h)cdt + scdz.

Above we defined l as J ’(k); but first-order condition (35)

-1/ e ^implies that l = U’(c) = c . Application of Ito’s Lemma to l

-1/ e= c leads to

( ) ( )( )( )
2 2 2 22 22 21 - 1 ------(1/ e) 1 1 1 -2-(1/ e) 2dl = ------2 2c dc + 2 22 22 2c dc .------ ------ ------ 1 + ------
2 2 2 22 22 2e 2 e e
9 0 9 09 09 0

Because we’ve already established that E dc = (r ------ h)cdt and
t

2 2 2that dc = s c dt, we infer from the equation above that

E dl -(1/ e)
t c # &1*& 1 * 2$

----------------------- = -------------------------------- h ------ r + ------ 1 + ------ sdt e 3 7287 e 8 4
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But there is an alternative way of describing the dynamics

of l: equation (41) can be written here as

E dl
t 2 -1/ e 2

--------------------- = l[ d ------ (r ------ Rs )] = c [ d ------ (r ------ s / e)].
dt

So we have derived two potentially different equations

for ( E dl)/dt; clearly the two are mutually consistent if
t

and only if

( )q e
( )2 22 22 1 2 2 1[ d ------ (r ------ s / e)] = 2 22 1 & * 2 2,------ h ------ r + 2 2 1 + ------ s2 22 ------ 2e 2 7 8 22 2 e9 0 2z c

or, solving for h, if and only if

( e ------ 1) 2
h = r ------ e(r ------ d) + -----------------------------------------s .

2e

The implied consumption rule is similar to the one that arose in

the nonstochastic example analyzed earlier, but it corrects for

the unpredictable component of the return to capital. (Notice

that we again obtain h = d if e = 1.) The analogy with (16) will

be clearest if the rule is written as

1 2(42) h = (1 ------ e)(r ------ ------Rs ) + ed.
2

In (42), h appears as the weighted average of the time-
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preference rate and a risk-adjusted expected return on

investment.

Problems still arise if h < 0. In these cases an optimum

fails to exist, for reasons essentially the same as those

discussed in section II’s example.

As a final exercise let’s calculate the value function J(k)

and confirm the assumption about its form on which I’ve based my

analysis of the optimal consumption policy function. In the

^process we’ll learn some more about the importance of Ito’s

Lemma. One way to approach this task is to calculate the (random)

path for k under an optimal consumption plan, observe that the

optimal contingency rule for consumption is c = hk, and then use

this formula to compute the optimal (random) consumption path and

lifetime expected utility. Indeed, we took a very similar tack

in the deterministic case. So we start by asking what the

optimal transition equation for the capital stock, dk = (r ------

h)kdt + sdz, implies for the level of k . [Throughout the

following discussion, you should understand that h is as

specified by (42).]

Observe first that the optimal capital-stock

transition equation can be written as

dk/k = (r ------ h)dt + sdz.

A crucial warning. You might think that dk/k is the same thing

as dlog(k), as in the ordinary calculus. If this were true, we
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would conclude that the capital stock follows the stochastic

process

t

ilog[k(t)] = log[k(0)] + (r ------ h)t + s2dz(s),
j
0

or, equivalently, that

(r ------h)t + s[z(t) ------z(0)]k(t) = k(0)e .

^But this is incorrect. Ito ’s Lemma tells us that dlog(k) =

1 12 2(dk/k) ------ ------s dt = (r ------ h ------ ------s )dt + sdz. [The reason for this
2 2

divergence is Jensen’s Inequality--log( Q) is a strictly concave

function.] It follows that the formula for k(t) below is the

right one:

2(r ------h------s /2)t + s[z(t) ------z(0)](43) k(t) = k(0)e .

At an optimum, k(t) will be conditionally lognormally

distributed, with an expected growth rate of r ------ h: E k(t)/k(0) =
0

(r ------h)t 20e .

As a result of (43), the value function a t t = 0 is

------------------------------------------------------------------------------------------------------------------------------------------------------------
2 X20If X is a normal random variable with mean m and variance s , e

is said to be lognormally distributed. The key fact about
lognormals that is used repeatedly is that when X is normal,

2X m+s /2Ee = e .

For a proof, see any good statistics text.
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8
q e

-1 ( )2 2 11 i ------dt 1 ------(1/ e)J[k(0)] = 2 2 E { 2e [ hk(t)] dt ------ ------ }1 ------ ------ 0 j2 2 de 9 0
z c

0

8
q e

-1 ( 2 1 ------(1/ e) )2 2 11 i ------dt # (r ------h------s /2)t+ s[z(t) ------z(0)] $= 2 2 {2e E hk(0)e dt ------ ------ }1 ------ ------ j 03 42 2 de 9 0
z c

0

8
q e

-1 ( 1 ------(1/ e) 2 )2 2 q e 11 i ------dt [1 ------(1/ e)](r ------h------s /2 e)t= 2 2 {2hk(0) 2 2e e dt ------ ------}1 ------ ------ j2 2 z c de 9 0
z c

0

( )q e
2 1 ------(1/ e) 22 12-1 2 [ hk(0)] 1 2

= 21 ------ ------2 {------------------------------------------------------------------------------------------------------------------------------------------------------ ------ ------}.
2 2 d22 e2 2d ------ ( e ------ 1)(r ------ Rs /2 ------ d) 2

z c 9 0

You’ll recognize the final product above as the same formula

for J[k(0)] that we encountered on p. 16 above, with the sole

2amendment that the risk-adjusted expected return r ------ Rs /2

21replaces r everywhere [including in h; recall (42)]. Because

2
d ------ ( e ------ 1)(r ------ Rs /2 ------ d) = h, h > 0 ensures convergence of the

integral defining J(k). Finally, J(k) is a linear function of

1 ------(1/ e)k , as claimed earlier.

There is another, more direct way to find the value

------------------------------------------------------------------------------------------------------------------------------------------------------------
21To move from the second to the third equality above, I used the

fact that the normal random variable [1 ------ (1/ e)] s[z(t) ------ z(0] has
2 2mean zero and variance [1 ------ (1/ e)] s t conditional o n t = 0

information.
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function, one that also applies in the deterministic case. [Had

we known the value function in advance, we could have used (35)

to compute the consumption function without trial-and-error

guesses.] By (35), the optimal control must satisfy

------ec(k) = J ’(k) .

Thus by (34),

1 ------e[J ’(k)] 1------e 2 20 = ---------------------------------------------------------- + J’(k)[rk ------ J’(k) ] + ------J"(k)k s ------ dJ(k).
1 ------ (1/ e) 2

This is just an ordinary second-order differential equation which

in principle can be solved for the variable J(k). You may wish

to verify that the value function J(k) we derived above is indeed

2a solution. To do the nonstochastic case, simply set s = 0.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

The similarities between this example and its deterministic

analogue are striking. They are not always so direct.

Nonetheless, it is noteworthy that for the linear state

transition equation considered above, there exists a stochastic

version of Pontryagin’s Maximum Principle. One could attack the

22problem in full generality, but as my goal here is the more

modest one of illustrating the basic idea, I will spare you this.

------------------------------------------------------------------------------------------------------------------------------------------------------------
22As does Jean-Michel Bismut, "Growth and the Optimal
Intertemporal Allocation of Risks," Journal of Economic Theory 10
(April 1975): 239-257.
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PROPOSITION III.2. (Stochastic Maximum Principle) Let

c*(t) solve the problem of maximizing

8

i ------d(s ------t)E 2e U[c(s),k(s)]ds0j
0

subject to the transition equation

dk(t) = rk(t)dt + sk(t)dz(t) - c(t)dt, k(0) given,

where z(t) is a standard Gaussian diffusion. Then there exist

costate variables l(t) such that if z(t) is the instantaneous

conditional covariance of l(t) and z(t) , the risk-adjusted

Hamiltonian

~
H[c,k(t), l(t ) , z(t)] _ U[c,k(t ) ] + l(t)[rk(t) ------ c] + z(t) sk(t)

is maximized at c = c*(t) given l(t), z(t), and k(t) ; that is,

~
dH

(44) ------------(c*,k, l, z) = U (c*,k) ------ l = 0cdc

at all times (assuming an interior solution). Furthermore,

the costate variable obeys the stochastic differential

equation

~
dH

(45) d l = lddt ------ ------------(c*,k, l, z)dt + zdz
dk

= lddt ------ [U (c*,k) + lr + zs]dt + zdzk
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for dk = rkdt ------ c*dt + skdz and k(0) given

To understand how this proposition follows from our

earlier discussion, observe first that because l will again

equal J ’(k), the instantaneous conditional covariance of l(t)

and z(t) can be seen from (25), (26), and (38) to be

(46) z = ( E dldz)/dt = J "(k) sk.
t

Thus, with reference to the definition (32) of the unadjusted

stochastic Hamiltonian, given here by

1 2 2
H(c,k) = U(c,k) + J ’(k)(rk ------ c) + ------J"(k) s k ,

2

we have

1~ 2 2 2
H(c,k, l, z) = H(c,k) + ------J"(k) s k = H(c,k) ------ lR(k) s k/2,

2

where R(k) is the relative risk-aversion coefficient defined

~above. Accordingly, we can interpret H as the expected

instantaneous flow of value minus a premium that measures the

riskiness of the stock of capital currently held.

With (46) in hand it is easy to check the prescriptions of

the Stochastic Maximum Principle against the results we’ve

already derived through other arguments. Clearly (44)

corresponds directly to (35). Likewise, if you multiply (37) by
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dt and combine the result with (38), you will retrieve (45).

IV. Conclusion

These notes have offered intuitive motivation for the basic

optimization principles economists use to solve deterministic and

stochastic continuous-time models. My emphasis throughout has

been on the Bellman principle of dynamic programming, which

offers a unified approach to all types of problems. The Maximum

Principle of optimal control theory follows from Bellman’s

approach in a straightforward manner.

I have only been able to scratch the surface of the topic.

Methods like those described above generalize to much more

complex environments, and have applications much richer than

those I worked through for you. The only way to gain a true

understanding of these tools is through "hands on" learning: you

must apply them yourself in a variety of situations. As I noted

at the outset, abundant applications exist in many areas of

economics. I hope these notes make this fascinating body of

research more approachable.
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