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1 Proofs

Proof of Lemma 4. Define B, =1 ZZ 1 B,oi(1—Py)~ (2 ZE# P3(1— Pn-)Q). Letting
(éJLA—é)Z be a second order approxnnatlon of 0, ,—0, we first show that E [(HAJLA—QA)Q} =B,
and V[f]—1 (V[(éJLA — é)g]) = O(1/p). Then we finish the proof of the first claim by showing
that the approximation error is ignorable. The bias bound follows immediately from the
equality Z#Z Pj = P,;(1 — P,;) which leads to 0 < Z# Py < P}(1 - P,)%

We have 0,4 — 60 = (0,,4 — 0)y + AE, where

. . n . R 13P; + P}
0 —60), = E 2(B. —B. —B.ag.—B. [g2—-22#'"u
( JLA )2 im1 0; ( 1 1 i@ i (az P 1 — P ))

for a; = (1 — P,;) *(P; — P;) and approximation error

AB,=Y" &8, 13RI+ PI-BPi+ P +a)”  a |
=1 p (1+a,)*(1 - Py) 1+ a,

For the mean calculation involving (é JLA — é)2 we use independence between ém ]%i, and

02 unbiasedness of B... P.,. and 0 , and the variance formula

(8] (3

2P PL 13P 4+ P2 Pi(1—Py)* =2, Py
D “py 1P —p )

i

Via;] =
Taken together this implies that

L 13P)+ Py
[(QJLA - } Zl_ Byo; ( ] — 51_—]3”> =B,



For the variance calculation we proceed term by term. We have for y = (v, ...,¥,) that

S e 8] Y[ B < S S sl

=0 <p_1trace(f12)> :

=0 (piltrace(AQ) + pfztrace(fl%)1/2trace(/~1§)1/2>
where A, = ;.2 4,A,8;Y% for ¢ = 1,2,

V:Z; o7 B (a7 — } ZZ IZE_ [B“Ba} [6767]Cov(a3, ay)

_O<p trace( )+p trace(AQ)1/2trace(A2)1/2>

A?
\Y Zn 67 (B - B~> 25t Pl p 3trace(/~12)>
i=1 "\ v p(1— P“)

VI Ba(e? - o)) 22%{1’ P)(i f) ] — 0( i)

From these bounds it follows that V[é]_l/z((éJLA —0), — B,) = o0,(1) since trace(A?) =
O(VI]) and 5~ VIO V[, V[d] = o1).

We now treat the approximation error while utilizing that E[a;] = O (1/p°), Ela 1=
O (1 /p2), and max;|a;| = o,(log(n)//p) which follows from (Achlioptas, 2003, Theorem 1.1

and its proof). Proceeding term by term, we list the conclusions

S Bl + Y 6iByal = p 20, (Elfypr — 01] + Eldypr — 0,))

n o oae & o i .
Zi ) 67 By e lp%szl)op (E[QI,PI — 01] + E[fypr — 92])
+

n A~ 2 A~ ~
L Zl . 57 By 3Pt Pi- (3P”+P”) L= (p_2 + 1‘;%(/?)010 (E[al,PI — 0]+ E[fypr — 92])

p gl (1+a;)%(1-P;

which finishes the proof. n

Proof of Lemma B.1. The proof of Lemma B.1 uses the notation and verifies the conditions
of Lemmas A2.1 and A2.2 in Sglvsten (2020) referred to as SS2.1 and SS2.2, respectively.
First, we show marginal convergence in distribution of S,, and U,,. Then, we show joint
convergence in distribution of S,, and U,,. Let V,, = (vy,...,v,) where {v;}; are as in the setup

of Lemma B.1. Before starting we note that max; o; > = O(1) and 23", > i Wi 2otor =1



imply trace(W?) = S" | D et Wi = O(1) so that Ay (W?) = o(1) & trace(W*) = o(1).
We first consider the marginal distribution of S,,.
Result 1.1. If max; E[v/] + o; 2 = O(1), S, wio? = 1, and max;w; = o(1), then S, 4,
N(0,1).
In the notation of $52.1 we have, AYS, = iyv; and E[T}, | V,] = 1 + D W (v} — o?),
so it follows from max; E[v;] + ;> = O(1), Y. w;o; = 1, and Lemma B.1(i) that

BT, V)51 Y E(AN) =1 Y E[(AS,)Y] < max

so Result 1.1 follows from SS2.1.

Next we consider the marginal distribution of U,,.

Result 1.2. If max; E[v;] + 0, = O(1), 231, D i Wsﬂag?iaij =1, and trace(W*) =
o(1), then U, % N(0,1).

In the notation of SS2.1 we have,

AU, = 2v; Z Wi, and E[T, | V,] Zl 125#2#2” + oYWy Wi v,
and

" 077121 _ " 07, \4 5 412
> Bl =2 Y E[(AMU,)"] <2 maxE[y]* maxo; maXZ Wi,
where max; ), Wi < trace(VVél)l/2 = o(1). Now, split E[T,, | V,,] — 1 into three terms

Zzlz# io(ve + v — 07)
by _2ZZ 12#22# , kWekVVkuUN'ZﬂZ Wigvi (v — 07)
Cn = Zi:1 Z#i Zkﬁj WieWir( Vi — Uz‘)WUk-

Convergence in L' The random variables a,,, b,, and ¢, are a linear sum, a quadratic sum,
and a cubic sum. We treat similar sums later, so we record sufficient conditions for their
convergence in £'. For brevity, let Dozt = i1 Dpr A0 D = DT D sy D i
etc. Use the notation u; = (v, Vs, Uiz, Uiy) € R* to denote independent random vectors in
order that the result applies to combinations of v; and v; — o7 as in a,, b,, and ¢,. For the

inferential results we also treat quartic sums and provide the sufficient conditions here.



Result 1.3. Let S, = > i1, wiviy, Spy = Z?# WigVi1 Vg, Spz = Z:‘;z;&k Wigk Vi1 Vg2 Vg3, and
Spa = Z?##k?ém WipkmVi1VeaVk3VUma Where the weights w;, wyyp, Wig,, and Wi, are non-random.
Suppose that E[u;] = 0, max; Elu;u;] = O(1).

1 IS0 Wl =o(1), then Sy, £50.
1
2. 1If 3 i wi = o(1), then S, £50.
1
SAN D win = o(1), then S, £50.

n c!
4. [f Zl#f#k;ﬁm wizﬂk;m = O(l), th@n Sn4 — 0

Consider S,,5, the other results follows from the same line of reasoning. In the notation
of SS2.2 we have,

0
A;Sps = vy E E Wik Ve2Vk3 + Vj2 E E Wik Ve Vg3 + V;3 E E Weki V1 Vg2 -

0#i ki, (£i kil 0#i ki,
Focusing on the first term we have,
n 2 /13 n 2
Zi:l E {(Uu ZE# Zkﬂj wiékvmvki%) } < mZaXE[UzUz] Zi## (Wz'ek + WiZkWiké)
n

< 2 max E[uu,;)? Z

2
w.
H i £k bk

so the results follows from SS2.2, Z?# 2k wir = o(1), and the observation that the last bound

also applies to the other two terms in A}S, .

1 1 1
Returning to Result 1.2, we need to see how a,, £, 0, b, £.0and Cp £ 0 follows from
Result 1.3. Let W, = S_1_, Wi, Wy, and note that trace(W*) = Sr 37 W, We have

S (X, 0w < maxol 3 W2
Zj:l Z@éi <Zk7£i,€ UiWEkWik) 2 = max Uf Zj:l Z::l W’%
S5, k=0 (maiv)
Zj:l Ze;éi Zk;ﬁi,@ W’%M/ﬁ“ =0 (mgxx 0£i VV’%) ’

all of which are o(1) as trace(W™") = o(1).



Finally, we consider the joint distribution of (S,,U,)". Let (u;,us) € R® be given and
non-random with u; + u3 = 1. Define W, = w;S,, + uyld,,. Lemma B.1 follows if we show
that W, LN N(0,1). In the notation of SS2.1 we have,

0 .
AW, = wi;v; + up2v; Z#i Wigvg

and

E[T, | V,] = ui (1 +%Zj:1 i (vf > +up ZZ 12#1 Zk;é vi + 07 ) Wi Wigvguy

+ U1U23 Zi:l Z[;ﬁl 'Ui + g, )lez[UJ

The proofs of Results 1.1 and 1.2 lead to 3.1 E[(AW,)?] = O(1), S0, E[(AIW,)!] = o(1),
and that the first two terms of E[T}, | V},] converge to u; +u5 = 1. Thus the lemma follows if
we show that the conditional covariance 3% | >, 7éi(vi2 + 07 )i Wi, converges to 0 in L£'.

This conditional covariance involves a linear and a quadratic sum:

ijl <Z#i a?wgVVM)Q < max of max (W) Zn W = O(m?X A (W)

=1
" 2012 n 9 o L
212 < : 2 _ :
Zi:l Zfsﬁi Wi Wie < Zi:l (i Wi maxw; O(m?X w;)
and Result 1.3 ends the proof. 0O

Proof of Lemma 5. The proof continues in two steps. First, it shows that V[é] has positive
bias of smaller order than V[d] when |B| = O(1). Second, it shows that V[d] — E[V[]]] =
op(V[é]). Combined with Theorem 2, these conclusions establish the claims of the lemma.

Bias of V[0] For the first term in V[d], a simple calculation shows that

42(2 Cune) & ]_42(2 i) 2 1YY oo

i=1 (i

+4ZZZCmiCm€(Pmi,1Pme,z+Pm P “)0 or

i=1 {#£i m=1
= V[0] + 2 Z Z Cyolor.
i=1 (A

For the second term in \A/[HA], we note that if Py, _,Py, _;, = 0 for all k, then independence

/‘\

between error terms yield Elo7o;] = ]E[@'i_g]E[O'&_i] = o70;. Otherwise if Pyy+ Py =0,



then

E[U?Uﬂ =K [(52 - Z#i Pij,1€j><5i - Zk# Pik,28k>(xléﬁ + 5e)<€e - Zm# Pém,—igm):|
= 0i0; + 7R [(57, - Z#i Pij,15j> (51' - Zk# Pik,25k> Zm# Pem,—ifm]

where the second term is zero since P _; = 0 and P;;; P;; 5 = 0 for all j. The same argument
applies with the roles of ¢ and ¢ reversed when P ; + P o = 0.
Finally, when (i,¢) € B we have

—

E[o}0;] = (o7 (07 + ((z¢ — 7)'B)") + O (7)) L <y

where the remainder is uniform in (7, ¢) and stems from the use of § as an estimator of Z'f3.

o

Thus for sufficiently large n, E[C’iéaf ag] is smaller than Cjol0; leading to a positive bias in

VI[#]. This bias is

Z(i,é)eB Cuts (Jlgl{@pO} + (2 = f)lﬁ)Ql{c}Ko}) +0 <V[é]/n>

which is ignorable when |B| = O(1).

Variability of V[0] Now, V[f] — E[V[f]] involves a number of terms all of which are lin-
ear, quadratic, cubic, or quartic sums. Result 1.3 provides sufficient conditions for their
convergence in £' and therefore in probability. We have already treated versions of linear,
quadratic, and cubic terms carefully in the proof of Lemma B.1. Thus, we report here the
calculations for the quartic terms (details for the remaining terms can be provided upon
request) as they also highlight the role of the high-level condition A,..(P,P.) = O(1) for
s=1,2.

2
The quartic term in 4" <ZE# Cigyg> 57 is D ittpmsk WitmkEi€(EmE Where

1, if i =,

n
Wiemk = E CjiCjﬁMjm,lek,Q and Mz‘e,s = o
j=1 —Py,, ifi#L



Letting ® denote Hadamard (element-wise) product and M, = I, — P,, we have

n n
Z W?Emk < Z Wz?émk - Z(CQ)Z'(M1M1>jj'(M2M£)jj'
iAlAmMAk i,0m,k g

= trace ((C* ® C?)(M,M; ® M,Mj3))
< Amax (MM © MyM;) trace (C? @ C?) = O (trace (C*)) = o (V[é]2>

where A\« (MlM{ ® MgMé) = O(1) follows from A, (P, P.) = O(1) and we established the

—

last equality in the proof of Theorem 2. The quartic term involved in 2377, >, ; Cyolop

has variability of the same order as Z:.L# Lmtk WitmkEi€EmE), Where
~ n ~
Wigmk = CioMpy 1 My 1 + E i1 CiiMipa Mg 1 Mg 5.

Letting C' = (CYM%’Z, we find that

Z Wipmk < 2 Z Co(My M) 35 (Mo M) g + 2 Z Z éijéij/(MlM{)ii(MlM{)jj/(M2Mé)jj/
it

iAlFmAk gg

=0 (ij C?, + trace ((5’2 © M, M7)(M,M{ ® M2M§)>) =0 (trace (6’2)) .
We have C' = C O C +2(C o P)(C o P,)+2(CoPR,) (C® P,), from which we obtain that
trace(C?) = O ((max,; C% + Anax(C?)) trace(C?)) = o <V[é]2)

where we established the last equality in the proof of Theorem 2. O

Section 6.2 proposed standard errors for the case of ¢ > 0, but omitted a few definition
as they were analogous to those for the case of ¢ = 0. Those definitions are éigq = OZ'ng +
2 ZZ’L:I Cmiqcqu(Pmi,IPmE,Q + Pmi,QPmﬁ,l) where Ciﬁq = Bifq - 2_1Mi€ (Mzleuq + MéleZEq)

for By, = Biy — > 1, Asw;swys. Furthermore,

(
22 A2 :
Ti— " Ot—i> if Py _¢Py, —; = 0 for all k,
<2 .2 .
22 05 O —i else if Py, + Py =0,
0,09 =
~2 =2 :
Oi—¢ " 0¢; else if Py + Pyo =0,
~2 N2 .
[ Ti,—¢ (ye — ) 1{Cwq<0}, otherwise.



Proof of Lemma 6. The statements V[BQ]AV[BA % 1, and V[éq]fl@[éq] 2, 1 follow by ap-
plying the arguments in the proofs of Theorem 1 and Lemma 5. Thus we focus on the

remaining claim that

Clv'b,,8,] — C[v'b,, 0,] » R
5(v) == 4 — 9 20 where Clv'b,,0,] =2 v'w, C;
( ) V['U/bq]l/QV[eq]l/Q Z q ZZ#Z equ
for all non-random v € R? with v'v = 1.
Unbiasedness of C[v/ bq, Qq] Since &7 is unbiased for o7, it follows that
E [é E)q, éq } = QZU Wig (Z C’qua:gﬁ> o; + QZU Wig (Z Cio Eles ) Clv Bq, éq]
LFi 0+£q

as split sampling ensures that Ele,d; ]A—AO for £ # i.
Variability of C[v/ bq, Gq] Now, C[v'b,,0,] — C[v'b,,0,] is composed of the following linear,

q7q q’7q
quadratic, and quartic sums:

Z U/Wiq [( €; ) Z Czeqﬁceﬁ +o7 Z Cirg€e + Z Czeqae Z 01 Migo + MiZ,QMik,l) Ek]

L#i 2= 1z k#L
2 2

Z U Wiq Z C'qufﬂ Z Z im, lMik,ngskr + Z Ciéqgé (62’ - ai)

0F#i m k#m L#£4

+chqz w01 Mik o + Mig s My, 1) e (5e —Uz>]

0Fi kA4

Z v qu Z Cz[q Z Z im, lMik:,ngemgk
i=1 01 m#AL k#m L



These seven terms are o, (V[v/Bq]l/ 2V[éq]1/ ?) by Result 1.3 as outlined in the following.

2
> (W'wg)? (Zqquéﬂ) = O(maxwi,w;, V0,]) = o(V['b,]VIA,])

i=1 01
> (X ) O CAVIVby)) = OO, VI, = o V1B,
/=1 =1
n n 2
Z (Z v'w Wig Z CiegM, ) O(maxwlqw Jtrace(C, My © C My)) = O(V[U/Bq]V[éq])
k=1 \i=1

iM:

k=1 =1 £33 L

2
Z (ZU qu Z szqxfﬁ im, 1 ik 2) =0 Z v W (Z Clqu86>
i=1

ZZCZZ‘I v'wy, —O(maxw w; V[é )

i=1 0#£1

n n n 2
> (Z v'WioCigg My, 1Mik,2> =0 (V[v’bq]xmax(wq ® M;)(Cy © My) )) = o(V[v'by]V[8,])
k=1/4=1 \i=1

n n n n 2
Z (Z vlwiqciﬁthrz,lMik,Z) =0 (V[vlbq])‘max(cﬁ)) O
(=1m=1k=1 \i=1

Before turning to a proof of Lemma 7, we give precise definitions of the curvature and
critical value used in the construction of our proposed confidence interval. The curvature as
introduced for the general problem considered by Andrews and Mikusheva (2016) does not
have a closed-form representation, but we show that it does in the special case considered
here. For implementation, the a closed form solution circumvents numerical approximation.
Critical value function For a given curvature x > 0 and confidence level 1 —«, the critical

value function z, , is the (1 — «)’th quantile of

2
], 1 1
p (Xgs X1, 8) =/ Xg + xit—) ——

where Xz and y? are independently distributed random variables from the y-squared distri-

bution with ¢ and 1 degrees of freedom, respectively. p (an X1s /{) is the Euclidean distance
from (x,, x1) to the circle with center (0, —<) and radius <. The critical value function at
x = 0 is the limit of 2, , as x | 0, which is the (1 — «)’th quantile of a central v? random
variable. See Andrews and Mikusheva (2016) for additional details.

Curvature For generic 2(1, our proposed confidence interval C’z(ﬁ’q) inverts hypotheses of



the type H, : 0 = c versus H, : 0 # ¢ based on the value of the test statistic

~ / ~
b,—b ~ b, —b
min K 1 Zq_l A I
bg.04:9(bg.04,0)=0 \ 0, — 0, 0,—10,

where g(by, 0y, ¢) = Y20 M + 60, — c and b, = (by,...,b,)". This testing problem depends

@ TqQ

on the manifold S = {z = ZN'q_I/Q(bq,Gq)' : g(b,,0,,¢) = 0} for which we need an upper
bound on the maximal curvature. We derive this upper bound using the parameterization
x(9) = £,

q
has a Jacobian of full rank:

Uy Ugp C— 2 i A7) which maps from R? to S, is a homeomorphism, and

dx(j) = X2 [ diag(1,...,1) ]

2\ =200
The maximal curvature of .S, K(Eq), is then given as H(E ) = max,cgs Ky Where

I1—-—P)V N 0
o = PVEOW s |
ueR? || dx(y )u|| —2A1, ..., =2,

and P, = dx(y)(dx(y) dx(y))~ Ydx(y) .

Curvature when ¢ = 1 In this case the maximization over u drops out and we have

N Jvvoen?
k(X)) = max +———— where v = X, 2(1, —2),9)’

jeR v

and V = ﬁfl/Q(O, —2X;). The value §" = —Zii]g[‘é]l] for p = % is both a minimizer
R q
of v'v and (v'V)?, so we obtain that k(%) = %.
q —p

Curvature when ¢ > 1 In this case we first maximize over y and then over u. For a fixed

u we want to find

max mf) where V Z 1/2 ;=2 Z )\ZUZ Uy = Zq—l/?(u/’ _2U,qu)/’

yeR? Vu, g Vu,y

and D, = diag()\;,...,A,). The value for y that solves —2D,y = V[Bq]_l(&[ﬁ

10



e / .
P,V,, = 0 and minimizes v, 4v, ;. Thus we obtain

R QmaxueRq u’lggﬁDi{Llu 2|>\1(V[B }1/2D V[B ]1/2)|
K(Zq) _ q _ q q q

(V18] - Clby. 0,] Vb, ™ Clb,, oq])l/ ’ (V10,] - Clby. 0,]' Vb, ™' Clb,, éq])” i

where )\1() is the eigenvalue of largest magnitude. This formula simplifies to the one derived

above when ¢ = 1.

Proof of Lemma 7. The following two conditions are the inputs to the proof of Theorem 2
in Andrews and Mikusheva (2016), from which it follows that

A~ / A~
. b, — b - b, —b
lim inf P («9 e’ q> = liminf P min A E;l 4 <22
n—00 ’ n—00 (by.04)":9(by,0,.0)=0 \ 0, — 0, 0,—10, e

>1—«

where g(by, 0,,0) = S0 \b; + 60, — 0 and b, = (by, ..., b,)"

g Y
Condition (i) requires that ﬁ’;lﬂ ((B;,éq)' - E[(B;,éq)’D 4N (0,7,41) , which follows
from Theorem 3 and Zq_lﬁ’q LN Ipiq
Condition (ii) is satisfied if the conditions of Lemma 1 in Andrews and Mikusheva (2016)

are satisfied. To verify this, take the manifold

S={ieR™ :§(&)=0}
for
Dq

. NESED)
g(x) :xlzq/ 0

0 1

0] « - D, 0] «
o] 5% + (2E[b,)', 1) [ “ ] i,

The curvature of S is &, §(0) = 0, and § is continuously differentiable with a Jacobian of
rank 1. These are the conditions of Lemma 1 in Andrews and Mikusheva (2016). O

11



2 Calculation of C’(X,) in practice

To calculate our proposed confidence interval one can rely on an implicit representation of
c? (ZI) which is C? (El) [)\ b2 40N b + 9174 where b; . and 6,  are solutions to

by =b £ Za,k(5y) (v[i)l](l - d(bLi)))l/z ; (1)
- VIe V2 . i 1/2
=0, - p@&jl by = b0.8) & 2 s, (V01— a0 2)) @)

for a(hy) = (1+ (sgn()\ Ve(E)by Vb2 + 5/3/1 — ~2> )

This construction is fairly 1ntu1t1ve. When p = 0, the interval has endpoints that combine

1/2

S CESN (V[611<1—a<b1,i>>)”2)2 and 0, % 2, 5, (VIBJalb,.0))

where a(b,) estimates the fraction of V[f] that stems from 0, when E[b;] = b;. When p is
non-zero, C%(2,) involves an additional rotation of (b, ;). This representation of C% (%) is
however not unique as (1),(2) can have multiple solutions. Thus we derive the representation
above together with an additional side condition that ensures uniqueness and represents b; ;.

and 6, ; as solutions to a fourth order polynomial.

Derivation The upper end of 02(21) is found by noting that maximization over a lin-
ear function in 6; implies that the constraint must bind at the maximum. Thus we can
reformulate the bivariate problem as a univariate problem

25 PR - P A a2 (b=by)?
(51,91)m€aE}i(§1) Ay + 0, = H})?X Abi+6; —p V6,7 (by —by) + \/V[Ol](l p) (Za,n(zl) N )
where we are implicitly enforcing the constraint on b, that the term under the square-root
is non-negative. Thus we will find a global maximum in b; and note that it satisfies this

constraint. The first order condition for a maximum is

Vib4] V[b4] 2 (b —by)
a,k(X) V[by]

. ; “1a 2
2, by +ﬁY[91]1/2 + b1jb1\/ Va5

7 i \2 .
which after a rearrangement and squaring of both sides yields % =(1- a(b))zzﬁ( 5

This in turn leads to the representation of b; 4 given in (1). All solutions to this equation

12



satisfies the implicit non-negativity constraint since any solution b satisfies

2 (81 - 61>2 ] 2
z Sy =~ — =4a by)z = > 0.
a,k(Xy) V[bl] ( 1) a,k(2)

A slightly different arrangement of the first order condition reveals the equivalent quartic

condition

2
Gob)® [ 4 [ smOOsEDh 5 [ sen()x
v Vb V17 Vib,]

which has at most four solutions that are given on closed form. Thus the solution b, ; can

~ . 2
(Zl)bl ] 2
1/2 + \/f_ﬁz k() (3)

be found as the maximizer of

. 5 1/2 . ~ . 1/2
Wb+ 01— P (b — Br) + 205, (VIiJa(bn))

among the at most four solutions to (3). More importantly, the maximum is the upper end
of C’z(El). Now, for the minimization problem we instead have

. 1/2 . ~ A D) 2 bo—b 2
b, élf)rélél &) MbE 40, = H;m)\ b7+ 6, — %b }1/2 (bl —by) — \/V[Hl](l ) (Za,n(il) -4 %/[1;11]) )

which when rearranging and squaring the first order condition again leads to (3) as a nec-
essary condition for a minimum. Thus b; _ and the lower end of 02(21) can be found by

minimizing
RV TRLL: . . N1/2
A2+ 6, — p‘f[? L7 by = by) = 20 <V[0q]a(bl)>

over the at most four solutions to (3).

3 Inference with non-existing split sample estimators

The standard error estimators considered in Lemmas 5 and 6 relies on existence of the
independent and unbiased estimators ;;'Efi,l and @%,2. Here, we propose an adjustment
for observations where these estimators do not exist. The adjustment ensures that one can
obtain valid inference as stated in the lemma at the end of the section. e

. . . A s /
For observations where it is not possible to create x;5_; ; and z;5_, 5, we co construct x;8_;

to satisfy the requirements in Lemma 6 and set P, 5 = 0 for all £ so that xZB ;2 = 0. Then

13



we define Q; =1, P ,—0) S an indicator that 2;3_;, could not be constructed as an

unbiased estimator.

Based on this we let

n

Wl =132 (32, Con) 5222303 Cudtoty

i=1 i=1 O£

where 522 =(1- Qi)@z + Qi(y; — 5)2 and

f R oe iy if Py, _¢Py,—; =0 forall kand Q;, = Qy; =0
G} 7 else if Py + Pyyo =0and Q; = Qy =0,
0/220\?2 _ ‘:T;a—f 67, . else ?f Pri1+ Pyp=0and Q, = Q; =0,
i~ (We=9)" 1, <0p else if Q;p =0,
(yi —9)° 67 “Lea,,<0p else if Q, =0,
(v ) (ye ) 1{C[<0}, otherwise

where we let Q;y = 1p, s0.0,}- The definition of V,[6] is such that V,[0] = V][] when two
independent unbiased estimators of ;3 can be formed for all observations, i.e., when Q; = 0
for all 7.

Similarly, we let

2 2

. i Wqu;qO-i,Q 2w, (Ze# Ciﬁqyz) 02
q72 = ~2 2 /\/2
i=1 2W;q (Ze# Cizqye) 052 4 (Zz;ﬁi Cizqyz> 0 -2 Zz;ﬁz eqU O¢9

where 62-2, o= (1—0,)67 + Q;(y; —7)* and 070}, is defined as 070}, but using éigq instead of
Ciy.
The following lemma shows that these estimators of the asymptotic variance leads to

valid inference when coupled with the confidence intervals proposed in Sections 5 and 7.
Lemma 3.1. Suppose that 3, Py xy3 = 233, either Do Py oz = 78 ormax, Py, =0,
Py1 Py =0 for all €, and \yax(P,P.) = O(1) where Py = (Piyy)is-

(2

1. If the conditions of Theorem 2 hold, then liminf,_, P (0 € [é + 2, V, [9}1/2]) > 11—«

2. If the conditions of Theorem 3 hold, then liminf, , P (9 € Cg(§q72)> >1—a.

Proof of Lemma 3.1. As in the proof of Lemma 5 it suffices for the first claim to show that
V,[f] has a positive bias in large samples and that V,[0] — E[V,[0]] is op(V[é]). The second

14



claim involves no new arguments relative to the proof of Lemma 5 and is therefore omitted.

Thus we briefly report the positive bias in V, [é]
We have that

B[00)] = vl +4 Y (30, Curtd) (@i —a)8)

:Q,;=1

+ 2 Z éigU? (O’?l{éi[>0} + ((xl — j)/ﬁ)zl{éi[<0})
(i,0)eB,

+ 2 Z CVMO'? (O’?l{éiz>o} + ((ifz — .’E)/ﬂ)21{éﬂ<0}>
(i,)EB,y

+2 3" Cu(020tlg,m0 + (207 (00— )8 + (2 — 2 Blar — 2 6)°) 1 <oy )

(i,0)€B;
0 (V[é} /n)
where the remainder stems from estimation of § and B;, B, /Bg\ refers to pairs of observations
that fall in each of the three last cases in the definition of o7op,.

The proof of the second claim contains two main parts. One part is to establish that
the bias 2(172 is positive semidefinite in large samples, and that E[2q72]_1ﬁq72 — 1,41 15 0,(1).
These arguments are only sketched as they are analogues to those presented in the proof
of Lemma 5 and the first part of this lemma. The other part is to show that this positive

semidefinite asymptotic bias in the variance estimator does not alter the validity of the

confidence interval based on it.

Validity First, we let QDQ’ be the spectral decomposition of E[ﬁ’qa]_1/2ZqIE[ZA’q’2]_1/2. Here,
QQ = Q'Q = I,,, and all diagonal entries in the diagonal matrix D belongs to (0,1] in large
samples. Now,

~ / ~
R b, —b N b,—b
P(oeccC? =P min T 1 E I 7] < 22 . +0(1
( a( Q72)) <(b;70q)/:g(bq,9q76)_0 (9(1 _ 9q> [ Qv2] (6(1 _ 6(1) — Q,K(]E[Eqvg]) ( )

where the minimum distance statistic above satisfies

b, — b, .« b, — b
min EX, 7 [ 7| =min(¢ —2) (¢ — )
(bl,04) :9(bgs04.0)= 9 -0, ’ 0,—0, TESy

where Sy = {z: 2 = Q]E[ 2l 1/2 ((b 0,) —E[(b,,0 )]) g(by, 0,,0) = 0} and the random

q’7q qr7q qrVq
vector £ = QE[S, ]/ ((bq, 0,) —E[(b,8,) }) has the property that D™Y/2¢ % A7(0, I,4,).
From the geometric consideration in Andrews and Mikusheva (2016) it follows that S, has
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~

curvature of k(E[Y, 5]) since curvature is invariant to rotations. Furthermore,

min(¢ — 2)' (€ — ) < p* (€11 16l R(ELS,0]) )

TESy
< ” (I072) 1)1 |07, K(ELZ,.)))

where £ = (&,¢,)" and D™Y2¢ = (D7Y2¢),, (D""2¢)"}) and the first inequality follows
from the proof of Theorem 1 in Andrews and Mikusheva (2016). Thus

lim inf P (9 € CB( )) = liylggolfp (;Tég:(f —z)'(¢—x) < Za (B[, 2]))

n—oo
> liminf P (p2 <Xq7 X1 K(E[ﬁqa])) < Zi,n(ﬂ%,ﬁ) =l-a

n—oo

. d
sice (Hf—lHa |€1|) - (Xq7 Xl)
Bias and variability in X, , We finish by reporting the positive semidefinite bias in X, ,

We have that

W, / 0 0 A
E o, + LN o (V[i/n
[ ] 1;_1 (2 >0 C z€x€ﬁ> <2 D iz waeﬁ> 0 B < )
where
B=2 Z éiéqgi2 <Ul?1{c~’wq>0} + ((zg — j>/ﬁ>21{c~‘wq<0})
(i,0)eB,
+2 Z itq0t (U 1{C 4>0} + (( - j>lﬁ>21{c~‘wq<0}>
(3,0)EBy
+ 2 Z Cz'zq (U?Ugl{éﬂqw} + (2012«% - f),B)Q + ((z; — f)/ﬁ@% - f)lﬂf) 1{éieq<o}>
(3,0)€B;

for By, By, Bs referring to pairs of observations that fall in each of the three last cases in

the definition of o 07,. O

4 Verifying Conditions
This section fills in details omitted from the discussion of Examples 1-3 in Sections 2 and 8.

Example 1. We first derive the representations of 62 given in section 2. When there are no
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common regressors, the representation in (4) follows from B;; = #() (1 —Tywy/ n) and
g

T,
221 g 1 _ 1 2
9 = 1, Zt:l Yot (ygt - Tyl Zs;ét ygs) T, Zi:g(i):g T
which yields that

" A2 1 N Ty\ A2
- Byo7 = = 29:1 (1 — 79> Og-
With common regressors, it follows from the formula for block inversion of matrices that

/

X' = A8/ (D, X) = L (1= (1= Pp)X (X'(1 = Pp)X") ™ X') (D = d1,) ,0)

=1 (D—d1, — (I - Py)XF, 0)'

where D = (dy,...,d,)', X = (Zy0)1)s - - - » Tginy(m)s Po = DSgg D', 1, = (1,...,1)’, and
S,y = D'D. Thus it follows that

-1 (di —d = I"(@g(ina) — l”gm)) ‘

The no common regressors claims are immediate. With common regressors we have

—1 —1 / —1 —_ —1 —1
P =T, gty=g0)y T @gtipeiy — To) W (@goe0) — To()) = Tyiy L=y + O(n)

where W = % Zévzl Zle(xgt—ig)(xgt—fg)/ so P; < C < 1in large samples. The eigenvalues

of A are equal to the eigenvalues of
1 (IN - ns;d1/2cici’5;d1/2> (IN + %S;C/IQD’XW‘IX’DSQ/2>

which in turn satisfies that & <\, < 2 for/=1,...,N —1 and ¢; > ¢; > 0 not depending

on n. wyw; = O(P;;) so Theorem 1 applies when N is fixed and min, T, — oc. Finally,
m?XV[é]il(fgﬂ)Q =N"'O (maxg,t 043 + ||xgt||2% Zizlnxg(i)t(i)HQUi)

mZa,XV[é]il(f;ﬂ)Q =N"'0 (maxi:j(x;ﬂ)z <Zn |MM|>2)

(=1

and >, _,|M;| = O(1) so Theorem 2 applies when N — oo.

TQ
Szz,g

_ 1 Ty
» SO >‘g T onS..,

Example 2. A is diagonal with N diagonal entries of % for g =

17



1,...,N. trace(4?) < —X lZéV:ng = O(\). max;wjw; = max,, (ZQS = o(1)

ming S, 4 220g
. P n?
when min, S,, ;, — co. Furthermore, V[0]™" = O(%;), so
A1— 22t52
W max( B)? = (maxg’t N%;g) =o(1),

and M;, = 0 if g(i) # g(£) so

\/7577: 1

both under the condition that N — oo and — 00. Used above:

_ 1 (Zg()t() =Z0(0) Za (1)t () =29 (1)) _ 1 %)% Lo
Fie = Ty Lg)=g0y + ) Lgw=ewy  Bi =0 s

Finally,

under the conditions that ‘/TJYSZZ,Q — oo and S,,; — oo. Thus, Theorem 3 applies when

\/75221 O<1)

Example 3. Let f, = (Lgign=01 f1) = Mgitn=o1: Lijtgn=11» - - - Lj(gy=ry) and define the
following partial design matrices with and without dropping 1, from the model:

Spp=D__ Jifi Sy =3 Bifls Sapap=2_ _ ALAe Sapa=20,_ AlA

where Afg = fi(g,g) — fi(gJ). Letting D be a diagonal matrix that holds the diagonal of Sajaf

we have that
Aol 1/2 -1/2.
E—DSff and L =D SAfAf

Sajns is rank deficient with Sy ja ;15,1 = 0 from which it follows that the non-zero eigenval-

ues of EV?LE"Y? (which are the non-zero eigenvalues of S;fl Sajaj) are also the eigenvalues
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1JJ

). Finally, from the Woodbury formula we have that A;; is invertible
f11

Of SAfAf(Sff
with

A=l — (S Fn—1 g1 SIS\ g- 1,1,
ri = 0Spp =nff) =0 Sy +ngTt i+ si)

1—nf'Ser f Sijan
SO

1 _ 1
>\Z )\Z(AffSAfAf) AJ+1—£(SAfAfA;f1) - n>\J+17£(E1/2£E1/2)'

With E;; =1 for all j, we have that

J)ﬁ 7 — J).\;2' 7 < = 2
D=1 A Simi AT T (VIA))

since A\, < 2 (Chung, 1997, Lemma 1.7). An algebraic definition of Cheeger’s constant C is

B Zjex Zng. SAfAf,jk

C = min
> jex Djj

. 1y -
XCHo,..., J}:ZjeXDjjgizj‘:oDjj

and it follows from the Cheeger inequality A\; > 1 — /1 —C? (Chung, 1997, Theorem 2.3)
that vVJA; — oo if VJC — .

For the stochastic block model we consider J odd and order the firms so that the first
(J 4+ 1)/2 firms belongs to the first block, and the remaining firms belong to the second

block. We assume that A fg is generated i.7.d. across g according to
Af=W(1—-D)+BD

where (W, B, D) are mutually independent, P(D = 1) =1—-P(D =0) = p, < 3, W is

uniformly distributed on {v € R7*!

0’1, = 0,v'v = 2,max;v; = 1,v'c = 0}, and B is
R0/l = 0,0 = 2,max;v; = 1, (v'e)* = 4} for ¢ =

(17412 —1(s41)/2)"- In this model E;; = 1 for all j. The following lemma characterizes the

uniformly distributed on {v €

large sample behavior of Sy and L. Based on this lemma it is relatively straightforward

(but tedious) to verify the high-level conditions imposed in the paper.

log J) + Jlog(J)

Lemma 4.1. Suppose that — 0 asn — oo and J — oo. Then

|21 228 pap = L + 2258 | =0, (1) and || L2~ Ly + 22| =0, (1)
where £ = I;,, — hfjl—jf“ —(1- 2pb)Jc—i’1 and ||-|| returns the largest singular value of its
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argument. Additionally, maxg&_l‘)'\z _Ag‘ = 0,(1) where N> > AJ are the non-zero

eigenvalues of L.

Proof. First note that

!
J+1 . 2+2Pb 101500 o dpy  cc
n E[SAfAf] é J— IJ+1 J+1 J+1 + J—1J+1

!
T_ oLyl ! o
and L' = 1,4, JH1 L=5,) 751 80

_ || 2+2py T _ Llifﬂ _ _}_L o 2+2py
| J-1 J+1 J+1 J+1 J—1J+1 J—1

Ji1 1,1
HQ%E[SMM] — Ly + =T =

Therefore, we can instead show that ||.S|| = 0,(1) for the zero mean random matrix

N / /
S = (éT)l/Q% (SAfAf - E[SAfAf]) (ET)UZ Zg:l 5989 — E[Sgsg]

where s, = (/== J+l Afg Afg \/ﬁ Now since

N
' J 1 J 1
5,5, = O (H + npb> and H g - E[s,s,8,54)|| = O (; + npb>

(Oliveira, 2009, Corollary 7.1) yields that P(||S]| > t) < 2(J+1)exp(—t2(% + L)/(80 + 4ct))

for some constant ¢ not depending on n. Letting t \/ 1ogg){) %) y Jlog( J/ o) for 0,, that
10g5;;/bz§n) + Jlog(J/é,)

approaches zero slowly enough that
15]] = 0, (1)-

Since £ = D728 Af AfD /2 the second conclusion follows from the first if HJHD
Il = 0,(1). We have ZHE[D] = I,,, and 22D, = /1L Zgzl(Afg e;)” where e; is the
j-th basis vector in R’™ and P((Afle;)? = 1) = 1 — P((Afle;)? = 0) = 4. Thus it

follows from V(%Djj) < 22%1 and standard exponential inequalities that || %D —I;4] =
Jlog(

- — 0 yields the conclusion that

maxﬂ%Djj — 1] = 0,(1) since — 0.

Finally, we note that H LL—1,.,+ 1“}—:{“ < e implies

v Lo(1l —€) <v'Lv <v'Lo(l +e)

which together with the Courant-Fischer min-max principle yields (1—¢) < i—] <(l+4e¢). O
=j
Next, we will verify the high-level conditions of the paper in a model that uses 5L in
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_n_

7471741 In place of D. Using an underscore to

place of Sy and %QT in place of A and

denote objects from this model we have

mgaxﬂgg = max %Af;éTAf'g =244 4 ZO;T?S”) =o(1),

72 race((£1)? —
trace(A ) = tci# = % + 4(n;b)2 = o(1),

A 1 1

ZZ:1A§ o Aitrace((éT)Q) o (J71)4p§+1

which is o(1) if and only if v/Jp, — oo, and 2%—2/\ < % Furthermore,

2
(=12¢

2 -1 1 pt\1/2 )2 2 2 2
maxwy, = n mgx(c(é) Afg> = (\/m) = = =o(1),

mgax(i;ﬁ)z =n 2 m;lx (iﬂ,éTAJég)Q <on? lm?X(Afglyw)Q + <1 — 2—11%)2 (1/_1.31,1 — &01’2)2}
=0 (”72 + (”Pb)ﬂ)

~2 A

which is o (V[é}) if v/ Jp, — 0o as trace(A”) = O(V[]) and

rngax(fglﬁ)2 =n? max (¢'Afg>2 =0(n?) =o (V[é]) .

Finally,
2 N o i
mgax(:v'gﬂ) =0 (Zgzl ng> =0 (mgax ngtrace(A))
where
m;nxﬁgg = max Af;%(éTfAf.g = 2‘]7;21 + (17;”;1;2 =0 <trace(£)>

trace(4) = =1 + ﬁ =o(1)

SO max, Eggtrace(é) = O(trace(4%))o(1).
Finally, we use the previous lemma to transfer the above results to their relevant sample
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analogues.

J+1 pt ¢
AfAf n é )Afg|
=4 mgax‘Afg(ﬁ)Uz (ﬁl stooLVr 1 1‘7517:{“) (£h)72Af,

= J+1 AfAFE
) mgaxﬂgg =o0 (ngaXng>

) = o, (trace(4"))

max| Py, — P, | = maX|Afg(
g

J 14,1
=0 (HLT%SAJ&AJ" Iy + ]?HIH

= trace (
Z

Af o) ()\J.)\‘ ;| |trace(A A )l)

“solUs

)\/ Ay

‘traceA A ’—’ZZln)\[—

2
‘ % 22

T 2 T 2
Ze:l Ab Z[:l Ay

)‘2

2
A3 R
~ urthermore,
Zé: 1 )‘Z ZZ 1 Z

with a similar argument applying to

. 2
maxwy; = max (Af,(ZLLN (L2880 Pa) < L7 SE )" I max Py, = 0,(1)
g

9 9 JHTAfAf JHITAfAf
and max,|(Z gﬁ) (Nlﬁ = (trace(ﬁ)) since
’ 2
max(F8 — Z,4)" = 5 max (AL (LSajarD — L + 2552 ) o)

HLSAfAfD Iy + 71”11"“

max B, L — (trace(A?))
o =99 T+1 P £

and this also handles max;| (7, 3)* — (Z 8)%| = 0,(1) as the previous result does not depend
on the behavior of v/ Jp,. Finally,

max|B,, — B :J—";lmax‘Af;LT< cst . DSt .L- 1J+1+1J+11J+1)£TAfg\
g n

99|

JH1I=YAFASf AFAFZ
i J41 T 1,,,1
= ‘ FLS pap DT Sk jagl = L + =55 | max By, = op(max B)
11 A A A
’trace ’ = ‘Zé . M[ M = trace(4)O <m§mx Y > =0, (trace(A))

5 Relation To Existing Approaches
Fyi).

Next we verify that the bias of 9Ho is a function of the covariation between o7 and

(B;
Spe(nﬁcally, the bias of fyq is o Boo 2+SB "o, 2whereo , =31 1Bm( T—0 ), 52 =
AN 0l Sg=>1 By, o Pyo? = IS Pylol -5 ).ThlSlSSOSlIlCGO’ =530 (v
)% = LS > iy Myeie, from which we get that
~ B n 9 9
Elfnol —Q—Z, Bjo7 — <ZZ 1 zz) n— kz M;;o;
_Z O' —O' _SBEZ»,IM“UZ?_a-Z):JnB 2+SBnkP
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From this formula and the discussion of Example 1, it immediately follows that the
homoscedasticity-only estimator éHO is first order biased in unbalanced panels with het-

eroscedasticity

Comparison to Jackknife Estimators

We finish by comparing the leave-out estimator 6 to estimators predicated on jackknife bias
corrections. We start by introducing some of the high-level assumptions that are typically
used to motivate jackknife estimators. We then consider some variants of Examples 1 and
2 where these high-level conditions fail to hold and establish that the jackknife estimators
have first order biases while the leave-out estimator retains consistency.

High-level Conditions Jackknife bias corrections are typically motivated by the high-level
assumption that the bias of a plug-in estimator épl shrinks with the sample size in a known

way and that the bias of % S épL_i depends on sample size in an identical way, i.e.,

E[fp]) = 60 + % +% E [l Z;l épl,ﬂ} =0+ % + 22 for some Dy, Dy, (4)

n n (n—l)2

Under (4), the jackknife estimator Oy = nbp; — ”T’l S épI’_i has a bias of —%.

For some long panel settings the bias in fpy is shrinking in the number of time periods T’
such that

E[fpy] = 0 + DT + 22 for some D, D,.

=2

In such settings, it may be that the biases of %Zthl épL_t and %(épm + épm) depend on T’

in an identical way, i.e.,

T ~ . . ~ ~ . .
E [% thl QPH} =0+ 2% + (1}3—2’1)2 and B |$(0pry + Opro) | = 0+ 22 + 22
From here i’g follows that the panel jackknife estimator ép K = Tépl — % ZtT:l épl,_t has a

bias of — and that the split panel jackknife estimator éSpJK = 2épl — %(épm + HAPLQ)

_Dy
T(T-1)
has a bias of —%, both of which shrink faster to zero than % if T'— oo. Typical sufficient
conditions for bias-representations of this kind to hold (to second order) are that (i) 7" — oo,
(ii) the design is stationary over time, and (iii) that fp; is asymptotically linear (see, e.g.,
Hahn and Newey, 2004; Dhaene and Jochmans, 2015). Below we illustrate that jackknife

corrections can be inconsistent in Examples 1 and 2 when (i) and/or (ii) do not hold.
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Examples of Jackknife Failure

Example 1 (Special case). Consider the model
Ygt = Qg+ gy (9g=1,...,N, t=1,...,T > 2),

2 _ 2 : g LN 2
where 0, = 0” and suppose the parameter of interest is 6 = £ > g=1 Q- For T' even, we

g
have the following bias calculations:

E[éPI]:0+%a [ 9P1 z}:9+%+ﬁ7
1
2

[ (0P11+6PI2)} :0+%~

The jackknife estimator 0 si has a first order bias of — , which when T" = 2 is as large

! T(T 1)
as that of fp; but of opposite sign. By contrast, both of the panel jackknife estimators, 6p K

and the leave-out estimator are exactly unbiased and consistent as n — oo when 7' is fixed.

This example shows that the jackknife estimator can fail when applied to a setting where
the number of regressors is large relative to sample size. Here the number of regressors is N
and the sample size is NT, yielding a ratio of 1/T and 1/T — 0 is necessary for consistency of
éJK. While the panel jackknife corrections appear to handle the presence of many regressors,

this property disappears when adding the “random” coefficients of Example 2

Example 2 (Special case). Consider the model
Ygt = Qg + T 40y + €y (g=1,...,N, t=1,...,T > 3)

where 0, = ¢ and 6 = Nzg L0z,

An analytically convenient example arises when the regressor design is “balanced” across
groups as follows: (w1, Ty, ..., Tyr) = (T1, %, ..., 27), where x1, 24, 23 take distinct values
and ) ,_, x; = 0. The leave-out estimator is unbiased and consistent for any 7" > 3, whereas

for even T' > 4 we have the following bias calculations:

2
Elfp ] =6 Sl
[ PI] + Zt 1 T
1 T A o 1
B> O] =0+ S o ——
N A 2 2
E [ for s + 0 2} -y o ,
( PL1 + PLQ)/ + ZT/2( z,)* + 22{=T/2+1(95t*52)2
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2 T/2 - 2 T
T2l Ty, and Ty = Zt:T/2+1 Ly

The calculations above reveal that non-stationarity in either the level or variability of z,

— _ 1 — o
where T_, = 75 ZS# Ty, Ty =

over time can lead to a negative bias in panel jackknife approaches, e.g.,

N 2 2 2
E[GSPJK}_0< s — 2 - =7 5 <0
= Siawm 2 2> i=rj2p1 Tt

where the first inequality is strict if Z; # T, and the second if ZtT:/ f z; # ZtT:T 241 z7. In
fact, the following example (x, 2, ..., 2z7) = (—1,2,0,...,0,—1) renders the panel jackknife
corrections inconsistent for small or large 7"

]E[éPJK] =0- %02 +0 (%) and E[éSPJK] =0 — %02 +0 (%) '
Inconsistency results here from biases of first order that are negative and larger in magnitude
than the original bias of fp; (which is o /6).
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