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1 Proofs

Proof of Lemma 4. Define Bp = 1
p

∑n
i=1Biiσ

2
i (1− Pii)−2

(
2
∑n

`6=i P
4
i` − P 2

ii(1− Pii)2
)
. Letting

(θ̂JLA−θ̂)2 be a second order approximation of θ̂JLA−θ̂, we first show that E
[
(θ̂JLA−θ̂)2

]
= Bp

and V[θ̂]−1
(
V[(θ̂JLA− θ̂)2]

)
= O(1/p). Then we finish the proof of the first claim by showing

that the approximation error is ignorable. The bias bound follows immediately from the

equality
∑n
6̀=i P

2
i` = Pii(1− Pii) which leads to 0 ≤

∑n
`6=i P

4
i` ≤ P 2

ii(1− Pii)2.

We have θ̂JLA − θ̂ = (θ̂JLA − θ̂)2 + AE2 where

(θ̂JLA − θ̂)2 =
∑n

i=1
σ̂2
i

(
Bii − B̂ii − B̂iiâi − B̂ii

(
â2
i −

1

p

3P 3
ii + P 2

ii

1− Pii

))
for âi = (1− Pii)−1(P̂ii − Pii) and approximation error

AE2 =
∑n

i=1
σ̂2
i B̂ii

(
1

p

3P̂ 2
ii + P̂ 2

ii − (3P 2
ii + P 2

ii)(1 + âi)
2

(1 + âi)
2(1− Pii)

− â3
i

1 + âi

)
.

For the mean calculation involving (θ̂JLA − θ̂)2 we use independence between B̂ii, P̂ii, and

σ̂2
i , unbiasedness of B̂ii, P̂ii, and σ̂2

i , and the variance formula

V[âi] =
2

p

P 2
ii −

∑n
`=1 P

4
i`

(1− Pii)2 =
1

p

3P 3
ii + P 2

ii

1− Pii
+
P 2
ii(1− Pii)2 − 2

∑n
`6=i P

4
i`

p(1− Pii)2 .

Taken together this implies that

E
[
(θ̂JLA − θ̂)2

]
= −

∑n

i=1
Biiσ

2
i

(
V[α̂i]−

1

p

3P 3
ii + P 2

ii

1− Pii

)
= Bp.
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For the variance calculation we proceed term by term. We have for y = (y1, . . . , yn)′ that

V
[∑n

i=1
σ̂2
i (Bii − B̂ii)

]
= E

[
V
[∑n

i=1
σ̂2
i B̂ii | y

]]
≤ 2p−1

∑n

i=1

∑n

`=1
B2
i`E
[
σ̂2
i σ̂

2
`

]
= O

(
p−1trace(Ã2)

)
,

V
[∑n

i=1
σ̂2
i B̂iiâi

]
= E

[
V
[∑n

i=1
σ̂2
i B̂iiâi | y,RB

]]
≤ 2p−1

∑n

i=1

∑n

`=1
P 2
i`

E[B̂iiB̂``]E[σ̂2
i σ̂

2
` ]

(1−Pii)(1−P``)

= O
(
p−1trace(Ã2) + p−2trace(Ã2

1)1/2trace(Ã2
2)1/2

)
where Ã` = S−1/2

xx A′`A`S
−1/2
xx for ` = 1, 2,

V
[∑n

i=1
σ̂2
i B̂ii

(
â2
i − V[âi]

)]
=
∑n

i=1

∑n

`=1
E
[
B̂iiB̂``

]
E
[
σ̂2
i σ̂

2
`

]
Cov

(
â2
i , â

2
`

)
= O

(
p−2trace(Ã2) + p−3trace(Ã2

1)1/2trace(Ã2
2)1/2

)
V
[∑n

i=1
σ̂2
i

(
B̂ii −Bii

)
2
∑n
6̀=i P

4
i`−P

2
ii(1−Pii)

2

p(1−Pii)
2

]
= O

(
p−3trace(Ã2)

)
V
[∑n

i=1
Bii

(
σ̂2
i − σ2

i

) 2
∑n
` 6=i P

4
i`−P

2
ii(1−Pii)

2

p(1−Pii)
2

]
= O

(
p−2V[θ̂]

)
From these bounds it follows that V[θ̂]−1/2

(
(θ̂JLA − θ̂)2 − Bp

)
= op(1) since trace(Ã2) =

O(V[θ̂]) and p−4V[θ̂]−2V[θ̂1]V[θ̂2] = o(1).

We now treat the approximation error while utilizing that E[â3
i ] = O

(
1/p2

)
, E[â4

i ] =

O
(
1/p2

)
, and maxi|âi| = op(log(n)/

√
p) which follows from (Achlioptas, 2003, Theorem 1.1

and its proof). Proceeding term by term, we list the conclusions∑n

i=1
σ̂2
i B̂iiâ

3
i +

∑n

i=1
σ̂2
i B̂iiâ

4
i = p−2Op

(
E[θ̂1,PI − θ1] + E[θ̂2,PI − θ2]

)
∑n

i=1
σ̂2
i B̂ii

â5
i

1 + âi
= log(n)

p
5/4 Op

(
E[θ̂1,PI − θ1] + E[θ̂2,PI − θ2]

)
1
p

∑n

i=1
σ̂2
i B̂ii

3P̂
2
ii+P̂

2
ii−(3P

2
ii+P

2
ii)(1+âi)

2

(1+âi)
2
(1−Pii)

=
(
p−2 + log(n)

p
5/4

)
Op

(
E[θ̂1,PI − θ1] + E[θ̂2,PI − θ2]

)
which finishes the proof.

Proof of Lemma B.1. The proof of Lemma B.1 uses the notation and verifies the conditions

of Lemmas A2.1 and A2.2 in Sølvsten (2020) referred to as SS2.1 and SS2.2, respectively.

First, we show marginal convergence in distribution of Sn and Un. Then, we show joint

convergence in distribution of Sn and Un. Let Vn = (v1, . . . , vn) where {vi}i are as in the setup

of Lemma B.1. Before starting we note that maxi σ
−2
i = O(1) and 2

∑n
i=1

∑
`6=iW

2
i`σ

2
i σ

2
` = 1

2



imply trace(W 2) =
∑n

i=1

∑
6̀=iW

2
i` = O(1) so that λmax(W 2) = o(1)⇔ trace(W 4) = o(1).

We first consider the marginal distribution of Sn.

Result 1.1. If maxi E[v4
i ] + σ−2

i = O(1),
∑n

i=1 ẇ
2
i σ

2
i = 1, and maxi ẇ

2
i = o(1), then Sn

d−→
N (0, 1).

In the notation of SS2.1 we have, ∆0
iSn = ẇivi and E[Tn | Vn] = 1 + 1

2

∑n
i=1 ẇ

2
i (v

2
i − σ2

i ),

so it follows from maxi E[v4
i ] + σ−2

i = O(1),
∑n

i=1 ẇ
2
i σ

2
i = 1, and Lemma B.1(i) that

E[Tn | Vn]
L1

−→ 1,
∑n

i=1
E[(∆0

iSn)2] = 1,
∑n

i=1
E[(∆0

iSn)4] ≤ max
i

E[v
4
i ]

σ
2
i

ẇ2
i = o(1),

so Result 1.1 follows from SS2.1.

Next we consider the marginal distribution of Un.

Result 1.2. If maxi E[v4
i ] + σ−2

i = O(1), 2
∑n

i=1

∑
` 6=iW

2
n,i`σ

2
n,iσ

2
n,` = 1, and trace(W 4) =

o(1), then Un
d−→ N (0, 1).

In the notation of SS2.1 we have,

∆0
iUn = 2vi

∑
6̀=i
Wi`v` and E[Tn | Vn] =

∑n

i=1

∑
`6=i

∑
k 6=i

(vi + σ2
i )Wi`Wikv`vk,

and∑n

i=1
E[(∆0

iUn)2] = 2,
∑n

i=1
E[(∆0

iUn)4] ≤ 25 max
i

E[v4
i ]

2 max
i
σ−4
i max

i

∑
` 6=i

W 2
i`,

where maxi
∑

` 6=iW
2
i` ≤ trace(W 4)

1/2
= o(1). Now, split E[Tn | Vn]− 1 into three terms

an =
∑n

i=1

∑
6̀=i
σ2
iW

2
i`(v` + v2

` − σ2
` )

bn = 2
∑n

i=1

∑
6̀=i

∑
k 6=i,`

σ2
kW`kWikviv` +

∑n

i=1

∑
` 6=i

W 2
i`vi(v

2
` − σ2

` )

cn =
∑n

i=1

∑
6̀=i

∑
k 6=i,`

Wi`Wik(v
2
i − σ2

i )v`vk.

Convergence in L1 The random variables an, bn, and cn are a linear sum, a quadratic sum,

and a cubic sum. We treat similar sums later, so we record sufficient conditions for their

convergence in L1. For brevity, let
∑n

i 6=` =
∑n

i=1

∑
` 6=i, and

∑n
i 6=` 6=k =

∑n
i=1

∑
`6=i
∑

k 6=i,`,

etc. Use the notation ui = (vi1, vi2, vi3, vi4) ∈ R4 to denote independent random vectors in

order that the result applies to combinations of vi and v2
i − σ2

i as in an, bn, and cn. For the

inferential results we also treat quartic sums and provide the sufficient conditions here.
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Result 1.3. Let Sn1 =
∑n

i=1 ωivi1, Sn2 =
∑n

i 6=` ωi`vi1v`2, Sn3 =
∑n

i 6=`6=k ωi`kvi1v`2vk3, and

Sn4 =
∑n

i 6= 6̀=k 6=m ωi`kmvi1v`2vk3vm4 where the weights ωi, ωi`, ωi`k, and ωi`km are non-random.

Suppose that E[ui] = 0, maxi E[u′iui] = O(1).

1. If
∑n

i=1 ω
2
i = o(1), then Sn1

L1

−→ 0.

2. If
∑n

i 6=` ω
2
i` = o(1), then Sn2

L1

−→ 0.

3. If
∑n

i 6=` 6=k ω
2
i`k = o(1), then Sn3

L1

−→ 0.

4. If
∑n

i 6=` 6=k 6=m ω
2
i`km = o(1), then Sn4

L1

−→ 0.

Consider Sn3, the other results follows from the same line of reasoning. In the notation

of SS2.2 we have,

∆0
iSn3 = vi1

∑
` 6=i

∑
k 6=i,`

ωi`kv`2vk3 + vi2
∑
` 6=i

∑
k 6=i,`

ω`ikv`1vk3 + vi3
∑
`6=i

∑
k 6=i,`

ω`kiv`1vk2.

Focusing on the first term we have,

∑n

i=1
E
[(
vi1
∑

6̀=i

∑
k 6=i,`

ωi`kv`2vk3

)2
]
≤ max

i
E[u′iui]

3
∑n

i 6=`6=k

(
ω2
i`k + ωi`kωik`

)
≤ 2 max

i
E[u′iui]

3
∑n

i 6=` 6=k
ω2
i`k,

so the results follows from SS2.2,
∑n

i 6=`6=k ω
2
i`k = o(1), and the observation that the last bound

also applies to the other two terms in ∆0
iSn3.

Returning to Result 1.2, we need to see how an
L1

−→ 0, bn
L1

−→ 0 and cn
L1

−→ 0 follows from

Result 1.3. Let W̄i` =
∑n

k=1WikWk` and note that trace(W 4) =
∑n

i=1

∑n
`=1 W̄

2
i`. We have

∑n

i=1

(∑
`6=i

σ2
`W

2
i`

)2

≤ max
i
σ4
i

∑n

i=1
W̄ 2
ii.∑n

i=1

∑
6̀=i

(∑
k 6=i,`

σ2
kW`kWik

)2

≤ max
i
σ4
i

∑n

i=1

∑n

`=1
W̄ 2
i`∑n

i=1

∑
`6=i

W 4
i` = O

(
max
i,`

W 2
i`

)
∑n

i=1

∑
6̀=i

∑
k 6=i,`

W 2
i`W

2
ik = O

(
max
i

∑
` 6=i

W 2
i`

)
,

all of which are o(1) as trace(W 4) = o(1).
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Finally, we consider the joint distribution of (Sn,Un)′. Let (u1, u2)′ ∈ R2 be given and

non-random with u2
1 + u2

2 = 1. Define Wn = u1Sn + u2Un. Lemma B.1 follows if we show

that Wn
d−→ N (0, 1). In the notation of SS2.1 we have,

∆0
iWn = u1ẇivi + u22vi

∑
6̀=i
Wi`v`

and

E[Tn | Vn] = u2
1

(
1 + 1

2

∑n

i=1
ẇ2
i (v

2
i − σ2

i )
)

+ u2
2

∑n

i=1

∑
`6=i

∑
k 6=i

(vi + σ2
i )Wi`Wikv`vk

+ u1u23
∑n

i=1

∑
6̀=i

(v2
i + σ2

i )ẇiWi`vj.

The proofs of Results 1.1 and 1.2 lead to
∑n

i=1 E[(∆0
iWn)2] = O(1),

∑n
i=1 E[(∆0

iWn)4] = o(1),

and that the first two terms of E[Tn | Vn] converge to u2
1 +u2

2 = 1. Thus the lemma follows if

we show that the conditional covariance 3
∑n

i=1

∑
`6=i(v

2
i + σ2

i )ẇiWi`vj converges to 0 in L1.

This conditional covariance involves a linear and a quadratic sum:

∑n

i=1

(∑
6̀=i
σ2
`w`Wi`

)2

≤ max
i
σ4
i max

`
λ2
`(W )

∑n

i=1
ẇ2
i = O(max

`
λ2
`(W ))∑n

i=1

∑
6̀=i
ẇ2
iW

2
i` ≤

∑n

i=1

∑
` 6=i

W 2
i` max

i
ẇ2
i = O(max

i
ẇ2
i )

and Result 1.3 ends the proof.

Proof of Lemma 5. The proof continues in two steps. First, it shows that V̂[θ̂] has positive

bias of smaller order than V[θ̂] when |B| = O(1). Second, it shows that V̂[θ̂] − E[V̂[θ̂]] =

op(V[θ̂]). Combined with Theorem 2, these conclusions establish the claims of the lemma.

Bias of V̂[θ̂] For the first term in V̂[θ̂], a simple calculation shows that

E

[
4

n∑
i=1

(∑
` 6=i

Ci`y`

)2

σ̃2
i

]
= 4

n∑
i=1

(∑
` 6=i

Ci`x
′
`β
)2

σ2
i + 4

n∑
i=1

∑
`6=i

C2
i`σ

2
i σ

2
`

+ 4
n∑
i=1

∑
`6=i

n∑
m=1

CmiCm`(Pmi,1Pm`,2 + Pmi,2Pm`,1)σ2
i σ

2
`

= V[θ̂] + 2
n∑
i=1

∑
` 6=i

C̃i`σ
2
i σ

2
` .

For the second term in V̂[θ̂], we note that if Pik,−`P`k,−i = 0 for all k, then independence

between error terms yield E[σ̂2
i σ

2
` ] = E[σ̂2

i,−`]E[σ̂2
`,−i] = σ2

i σ
2
` . Otherwise if Pi`,1 + Pi`,2 = 0,
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then

E
[
σ̂2
i σ

2
`

]
= E

[(
εi −

∑
j 6=i

Pij,1εj

)(
εi −

∑
k 6=i

Pik,2εk

)(
x′`β + ε`

)(
ε` −

∑
m 6=`

P`m,−iεm

)]
= σ2

i σ
2
` + x′`βE

[(
εi −

∑
j 6=i

Pij,1εj

)(
εi −

∑
k 6=i

Pik,2εk

)∑
m 6=`

P`m,−iεm

]
where the second term is zero since P`i,−i = 0 and Pij,1Pij,2 = 0 for all j. The same argument

applies with the roles of i and ` reversed when P`i,1 + P`i,2 = 0.

Finally, when (i, `) ∈ B we have

E
[
σ̂2
i σ

2
`

]
=
(
σ2
i

(
σ2
` + ((x` − x̄)′β)2

)
+O

(
n−1
))

1{C̃i`<0}

where the remainder is uniform in (i, `) and stems from the use of ȳ as an estimator of x̄′β.

Thus for sufficiently large n, E[C̃i`σ̂
2
i σ

2
` ] is smaller than C̃i`σ

2
i σ

2
` leading to a positive bias in

V̂[θ̂]. This bias is∑
(i,`)∈B

C̃i`σ
2
i

(
σ2
`1{C̃i`>0} + ((x` − x̄)′β)21{C̃i`<0}

)
+O

(
V[θ̂]/n

)
which is ignorable when |B| = O(1).

Variability of V̂[θ̂] Now, V̂[θ̂] − E[V̂[θ̂]] involves a number of terms all of which are lin-

ear, quadratic, cubic, or quartic sums. Result 1.3 provides sufficient conditions for their

convergence in L1 and therefore in probability. We have already treated versions of linear,

quadratic, and cubic terms carefully in the proof of Lemma B.1. Thus, we report here the

calculations for the quartic terms (details for the remaining terms can be provided upon

request) as they also highlight the role of the high-level condition λmax(PsP
′
s) = O(1) for

s = 1, 2.

The quartic term in 4
∑n

i=1

(∑
` 6=iCi`y`

)2

σ̃2
i is

∑n
i 6=`6=m6=k ωi`mkεiε`εmεk where

ωi`mk =
n∑
j=1

CjiCj`Mjm,1Mjk,2 and Mi`,s =

1, if i = `,

−Pi`,s, if i 6= `.
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Letting � denote Hadamard (element-wise) product and Ms = In − Ps, we have

n∑
i 6= 6̀=m 6=k

ω2
i`mk ≤

n∑
i,`,m,k

ω2
i`mk =

∑
j,j
′

(C2)2
jj
′(M1M

′
1)jj′(M2M

′
2)jj′

= trace
(
(C2 � C2)(M1M

′
1 �M2M

′
2)
)

≤ λmax

(
M1M

′
1 �M2M

′
2

)
trace

(
C2 � C2

)
= O

(
trace

(
C4
))

= o
(
V[θ̂]2

)
where λmax

(
M1M

′
1 �M2M

′
2

)
= O(1) follows from λmax(PsP

′
s) = O(1) and we established the

last equality in the proof of Theorem 2. The quartic term involved in 2
∑n

i=1

∑
` 6=i C̃i`σ̂

2
i σ

2
`

has variability of the same order as
∑n

i 6=`6=m6=k ωi`mkεiε`εmεk where

ωi`mk = C̃i`Mim,1Mlk,1 +
∑n

j=1
C̃ijMim,1Mjk,1Mj`,2.

Letting C̃ = (C̃i`)i,`, we find that

n∑
i6=` 6=m 6=k

ω2
i`mk ≤ 2

n∑
i,`

C̃2
i`(M1M

′
1)ii(M2M

′
2)`` + 2

∑
j,j
′

n∑
i

C̃ijC̃ij′(M1M
′
1)ii(M1M

′
1)jj′(M2M

′
2)jj′

= O
(∑n

i,`
C̃2
i` + trace

(
(C̃2 �M1M

′
1)(M1M

′
1 �M2M

′
2)
))

= O
(

trace
(
C̃2
))

.

We have C̃ = C �C + 2(C �P1)′(C �P2) + 2(C �P2)′(C �P1), from which we obtain that

trace(C̃2) = O
((

maxi,`C
2
i` + λmax(C2)

)
trace(C2)

)
= o

(
V[θ̂]2

)
where we established the last equality in the proof of Theorem 2.

Section 6.2 proposed standard errors for the case of q > 0, but omitted a few definition

as they were analogous to those for the case of q = 0. Those definitions are C̃i`q = C2
i`q +

2
∑n

m=1 CmiqCm`q(Pmi,1Pm`,2 +Pmi,2Pm`,1) where Ci`q = Bi`q − 2−1Mi`

(
M−1

ii Biiq +M−1
`` B``q

)
for Bi`q = Bi` −

∑q
s=1 λswisw`s. Furthermore,

σ̃2
i σ

2
` =



σ̂2
i,−` · σ̂2

`,−i, if Pik,−`P`k,−i = 0 for all k,

σ̃2
i · σ̂2

`,−i, else if Pi`,1 + Pi`,2 = 0,

σ̂2
i,−` · σ̃2

` , else if P`i,1 + P`i,2 = 0,

σ̂2
i,−` · (y` − ȳ)2 · 1{C̃i`q<0}, otherwise.
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Proof of Lemma 6. The statements V[b̂q]
−1V̂[b̂q]

p−→ Iq and V[θ̂q]
−1V̂[θ̂q]

p−→ 1 follow by ap-

plying the arguments in the proofs of Theorem 1 and Lemma 5. Thus we focus on the

remaining claim that

δ(v) :=
Ĉ[v′b̂q, θ̂q]− C[v′b̂q, θ̂q]

V[v′b̂q]
1/2V[θ̂q]

1/2

p−→ 0 where Ĉ[v′b̂q, θ̂q] = 2
n∑
i=1

v′wiq

(∑
`6=i

Ci`qy`

)
σ̃2
i

for all non-random v ∈ Rq with v′v = 1.

Unbiasedness of Ĉ[v′b̂q, θ̂q] Since σ̃2
i is unbiased for σ2

i , it follows that

E
[
Ĉ[v′b̂q, θ̂q]

]
= 2

n∑
i=1

v′wiq

(∑
6̀=i

Ci`qx
′
`β

)
σ2
i + 2

n∑
i=1

v′wiq

(∑
`6=i

Ci`qE[ε`σ̃
2
i ]

)
= C[v′b̂q, θ̂q]

as split sampling ensures that E[ε`σ̃
2
i ] = 0 for ` 6= i.

Variability of Ĉ[v′b̂q, θ̂q] Now, Ĉ[v′b̂q, θ̂q] − C[v′b̂q, θ̂q] is composed of the following linear,
quadratic, and quartic sums:

n∑
i=1

v′wiq

(ε2
i − σ

2
i

)∑
` 6=i

Ci`qx
′
`β + σ2

i

∑
` 6=i

Ci`qε` +
∑
` 6=i

Ci`qσ
2
`

∑
k 6=`

(
Mi`,1Mik,2 +Mi`,2Mik,1

)
εk


n∑
i=1

v′wiq

[∑
6̀=i

Ci`qx
′
`β
∑
m

∑
k 6=m

Mim,1Mik,2εmεk +
∑
` 6=i

Ci`qε`

(
ε2
i − σ

2
i

)

+
∑
` 6=i

Ci`q
∑
k 6=`

(
Mi`,1Mik,2 +Mi`,2Mik,1

)
εk

(
ε2
` − σ

2
`

)]
n∑
i=1

v′wiq
∑
` 6=i

Ci`q
∑
m6=`

∑
k 6=m,`

Mim,1Mik,2ε`εmεk

8



These seven terms are op(V[v′b̂q]
1/2V[θ̂q]

1/2) by Result 1.3 as outlined in the following.

n∑
i=1

(v′wiq)
2

∑
6̀=i

Ci`qx
′
`β

2

= O(max
i

w′iqwiqV[θ̂q]) = o(V[v′b̂q]V[θ̂q])

n∑
`=1

(
n∑
i=1

v′wiqCi`q

)2

= O(λmax(C2
q )V[v′b̂q]) = O(λ2

q+1V[v′b̂q]) = o(V[v′b̂q]V[θ̂q])

n∑
k=1

(
n∑
i=1

v′wiq
∑
`

Ci`qMi`,1Mik,2

)2

= O(max
i

w′iqwiqtrace(CqM1 � CqM1)) = o(V[v′b̂q]V[θ̂q])

n∑
m=1

n∑
k=1

 n∑
i=1

v′wiq
∑
6̀=i

Ci`qx
′
`βMim,1Mik,2

2

= O

 n∑
i=1

(v′wiq)
2

∑
` 6=i

Ci`qx
′
`β

2


n∑
i=1

∑
6̀=i

C2
i`q(v

′wiq)
2 = O(max

i
w′iqwiqV[θ̂q])

n∑
k=1

n∑
`=1

(
n∑
i=1

v′wiqCi`qMi`,1Mik,2

)2

= O
(
V[v′b̂q]λmax((Cq �M1)(Cq �M1)′)

)
= o(V[v′b̂q]V[θ̂q])

n∑
`=1

n∑
m=1

n∑
k=1

(
n∑
i=1

v′wiqCi`qMim,1Mik,2

)2

= O
(
V[v′b̂q]λmax(C2

q )
)

Before turning to a proof of Lemma 7, we give precise definitions of the curvature and

critical value used in the construction of our proposed confidence interval. The curvature as

introduced for the general problem considered by Andrews and Mikusheva (2016) does not

have a closed-form representation, but we show that it does in the special case considered

here. For implementation, the a closed form solution circumvents numerical approximation.

Critical value function For a given curvature κ > 0 and confidence level 1−α, the critical

value function zα,κ is the (1− α)’th quantile of

ρ
(
χq, χ1, κ

)
=

√
χ2
q +

(
χ1 +

1

κ

)2

− 1

κ

where χ2
q and χ2

1 are independently distributed random variables from the χ-squared distri-

bution with q and 1 degrees of freedom, respectively. ρ
(
χq, χ1, κ

)
is the Euclidean distance

from (χq, χ1) to the circle with center (0,− 1
κ
) and radius 1

κ
. The critical value function at

κ = 0 is the limit of zα,κ as κ ↓ 0, which is the (1 − α)’th quantile of a central χ2
1 random

variable. See Andrews and Mikusheva (2016) for additional details.

Curvature For generic Σ̃q, our proposed confidence interval Cθ
α(Σ̃q) inverts hypotheses of
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the type H0 : θ = c versus H1 : θ 6= c based on the value of the test statistic

min
bq ,θq :g(bq ,θq ,c)=0

(
b̂q − bq

θ̂q − θq

)′
Σ̃−1
q

(
b̂q − bq

θ̂q − θq

)

where g(bq, θq, c) =
∑q

`=1 λ`ḃ
2
` + θq − c and bq = (ḃ1, . . . , ḃq)

′. This testing problem depends

on the manifold S = {x = Σ̃−1/2
q (bq, θq)

′ : g(bq, θq, c) = 0} for which we need an upper

bound on the maximal curvature. We derive this upper bound using the parameterization

x(ẏ) = Σ̃−1/2
q (ẏ1, . . . , ẏq, c−

∑q
`=1 λ`ẏ

2
` )
′ which maps from Rq to S, is a homeomorphism, and

has a Jacobian of full rank:

dx(ẏ) = Σ̃−1/2
q

[
diag(1, . . . , 1)

−2λ1ẏ1, . . . ,−2λqẏq

]

The maximal curvature of S, κ(Σ̃q), is then given as κ(Σ̃q) = maxẏ∈Rq κẏ where

κẏ = sup
u∈Rq

‖(I − Pẏ)V (u� u)‖
‖dx(ẏ)u‖2 , V = Σ̃−1/2

q

[
0

−2λ1, . . . ,−2λq

]
,

and Pẏ = dx(ẏ)(dx(ẏ)′dx(ẏ))−1dx(ẏ)′.

Curvature when q = 1 In this case the maximization over u drops out and we have

κ(Σ̃1) = max
ẏ∈R

√
V
′
V− (v

′
V )

2

v
′
v

v
′
v

where v = Σ̃
−1/2
1 (1,−2λ1ẏ)′

and V = Σ̃
−1/2
1 (0,−2λ1). The value ẏ∗ = − ρ̃Ṽ[θ̂q ]

2λ1Ṽ[b̂1]
for ρ̃ =

C̃[b̂1,θ̂q ]

Ṽ[b̂1]
1/2Ṽ[θ̂q ]

1/2 is both a minimizer

of v′v and (v′V )2, so we obtain that κ(Σ̃1) = 2|λ1|Ṽ[b̂1]

Ṽ[θ̂q ]
1/2

(1−ρ̃2
)
1/2 .

Curvature when q > 1 In this case we first maximize over ẏ and then over u. For a fixed

u we want to find

max
ẏ∈Rq

√
V
′
uVu−V

′
uPẏVu

v
′
u,ẏvu,ẏ

5 where Vu = Σ̃−1/2
q (0,−2

q∑
`=1

λ`u
2
`), vu,ẏ = Σ̃−1/2

q (u′,−2u′Dqẏ)′,

and Dq = diag(λ1, . . . , λq). The value for ẏ that solves −2Dqẏ = Ṽ[b̂q]
−1C̃[b̂q, θ̂q] sets
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PẏVu = 0 and minimizes v′u,ẏvu,ẏ. Thus we obtain

κ(Σ̃q) =
2 maxu∈Rq

|u′Dqu|
u
′Ṽ[b̂q ]

−1
u(

Ṽ[θ̂q]− C̃[b̂q, θ̂q]
′Ṽ[b̂q]

−1C̃[b̂q, θ̂q]
)1/2

=
2| ˙̇λ1(Ṽ[b̂q]

1/2DqṼ[b̂q]
1/2)|(

Ṽ[θ̂q]− C̃[b̂q, θ̂q]
′Ṽ[b̂q]

−1C̃[b̂q, θ̂q]
)1/2

where ˙̇λ1(·) is the eigenvalue of largest magnitude. This formula simplifies to the one derived

above when q = 1.

Proof of Lemma 7. The following two conditions are the inputs to the proof of Theorem 2

in Andrews and Mikusheva (2016), from which it follows that

lim inf
n→∞

P
(
θ ∈ Ĉθ

α,q

)
= lim inf

n→∞
P

(
min

(b
′
q ,θq)

′
:g(bq ,θq ,θ)=0

(
b̂q − bq

θ̂q − θq

)′
Σ̂−1
q

(
b̂q − bq

θ̂q − θq

)
≤ z2

α,κ̂q

)
≥ 1− α

where g(bq, θq, θ) =
∑q

`=1 λ`ḃ
2
` + θq − θ and bq = (ḃ1, . . . , ḃq)

′.

Condition (i) requires that Σ̂−1/2
q

(
(b̂′q, θ̂q)

′ − E[(b̂′q, θ̂q)
′]
)

d−→ N
(
0, Iq+1

)
, which follows

from Theorem 3 and Σ−1
q Σ̂q

p−→ Iq+1.

Condition (ii) is satisfied if the conditions of Lemma 1 in Andrews and Mikusheva (2016)

are satisfied. To verify this, take the manifold

S̃ =
{
ẋ ∈ Rq+1 : g̃(ẋ) = 0

}
for

g̃(ẋ) = ẋ′Σ̂1/2
q

[
Dq 0

0 0

]
Σ̂1/2
q ẋ+ (2E[b̂q]

′, 1)

[
Dq 0

0 1

]
Σ̂1/2
q ẋ.

The curvature of S̃ is κ̂, g̃(0) = 0, and g̃ is continuously differentiable with a Jacobian of

rank 1. These are the conditions of Lemma 1 in Andrews and Mikusheva (2016).
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2 Calculation of Cθ
α(Σ̃1) in practice

To calculate our proposed confidence interval one can rely on an implicit representation of
Cθ
α(Σ̃1) which is Cθ

α(Σ̃1) =
[
λ1b

2
1,− + θ1,−, λ1b

2
1,+ + θ1,+

]
where b1,± and θ1,± are solutions to

b1,± = b̂1 ± zα,κ(Σ̃1)

(
Ṽ[b̂1](1− ã(b1,±))

)1/2

, (1)

θ1,± = θ̂1 − ρ̃
Ṽ[θ̂1]1/2

Ṽ[b̂1]1/2
(b̂1 − b1,±)± zα,κ(Σ̃1)

(
Ṽ[θ̂1](1− ρ̃2)ã(b1,±)

)1/2

(2)

for ã(ḃ1) =
(
1 +

(
sgn(λ1)κ(Σ̃1)ḃ1Ṽ[b̂1]−1/2 + ρ̃/

√
1− ρ̃2

)2 )−1
.

This construction is fairly intuitive. When ρ̂ = 0, the interval has endpoints that combine

λ1

(
b̂1 ± zα,κ(Σ̃1)

(
Ṽ[b̂1](1− ã(b1,±))

)1/2
)2

and θ̂q ± zα,κ(Σ̃1)

(
Ṽ[θ̂q]a(b1,±)

)1/2

where a(ḃ1) estimates the fraction of V[θ̂] that stems from θ̂1 when E[b̂1] = ḃ1. When ρ̂ is

non-zero, Cθ
α(Σ̃1) involves an additional rotation of (b̂1, θ̂1)′. This representation of Cθ

α(Σ̃1) is

however not unique as (1),(2) can have multiple solutions. Thus we derive the representation

above together with an additional side condition that ensures uniqueness and represents b1,±

and θ1,± as solutions to a fourth order polynomial.

Derivation The upper end of Cθ
α(Σ̃1) is found by noting that maximization over a lin-

ear function in θ1 implies that the constraint must bind at the maximum. Thus we can
reformulate the bivariate problem as a univariate problem

max
(ḃ1,θ̇1)∈Eα(Σ̃1)

λ1ḃ
2
1 + θ̇1 = max

ḃ1

λ1ḃ
2
1 + θ̂1 − ρ̃

Ṽ[θ̂1]
1/2

Ṽ[b̂1]
1/2 (b̂1 − ḃ1) +

√
Ṽ[θ̂1](1− ρ̃2)

(
z2
α,κ(Σ̃1) −

(b̂1−ḃ1)
2

Ṽ[b̂1]

)
where we are implicitly enforcing the constraint on ḃ1 that the term under the square-root

is non-negative. Thus we will find a global maximum in ḃ1 and note that it satisfies this

constraint. The first order condition for a maximum is

2λ1ḃ1 + ρ̃ Ṽ[θ̂1]
1/2

Ṽ[b̂1]
1/2 + b̂1−ḃ1

Ṽ[b̂1]

√
Ṽ[θ̂1](1−ρ̂2

)

z
2
α,κ(Σ̃1)−

(b̂1−ḃ1)
2

Ṽ[b̂1]

= 0

which after a rearrangement and squaring of both sides yields (b̂1−ḃ1)
2

Ṽ[b̂1]
= (1 − a(ḃ))z2

α,κ(Σ̃1).

This in turn leads to the representation of b1,± given in (1). All solutions to this equation

12



satisfies the implicit non-negativity constraint since any solution ḃ satisfies

z2
α,κ(Σ̃1) −

(b̂1 − ḃ1)2

Ṽ[b̂1]
= a(ḃ1)z2

α,κ(Σ̃1) > 0.

A slightly different arrangement of the first order condition reveals the equivalent quartic

condition

(b̂1−ḃ1)
2

Ṽ[b̂1]

(
1 +

(
sgn(λ1)κ(Σ̃1)ḃ1

Ṽ[b̂1]
1/2 + ρ̃√

1−ρ̃2

)2
)

=

(
sgn(λ1)κ(Σ̃1)ḃ1

Ṽ[b̂1]1/2
+ ρ̃√

1−ρ̃2

)2

z2
α,κ(Σ̃1) (3)

which has at most four solutions that are given on closed form. Thus the solution b1,+ can

be found as the maximizer of

λ1ḃ
2
1 + θ̂1 − ρ̃ Ṽ[θ̂1]

1/2

Ṽ[b̂1]
1/2 (b̂1 − ḃ1) + zα,κ(Σ̃1)

(
Ṽ[θ̂q]a(ḃ1)

)1/2

among the at most four solutions to (3). More importantly, the maximum is the upper end
of Cθ

α(Σ̃1). Now, for the minimization problem we instead have

min
(ḃ1,θ̇1)∈Eα(Σ̃1)

λ1ḃ
2
1 + θ̇1 = min

ḃ1

λ1ḃ
2
1 + θ̂1 − ρ̃

Ṽ[θ̂1]
1/2

Ṽ[b̂1]
1/2 (b̂1 − ḃ1)−

√
Ṽ[θ̂1](1− ρ̃2)

(
z2
α,κ(Σ̃1) −

(b̂1−ḃ1)
2

Ṽ[b̂1]

)
which when rearranging and squaring the first order condition again leads to (3) as a nec-

essary condition for a minimum. Thus b1,− and the lower end of Cθ
α(Σ̃1) can be found by

minimizing

λ1ḃ
2
1 + θ̂1 − ρ̃ Ṽ[θ̂1]

1/2

Ṽ[b̂1]
1/2 (b̂1 − ḃ1)− zα,κ(Σ̃1)

(
Ṽ[θ̂q]a(ḃ1)

)1/2

over the at most four solutions to (3).

3 Inference with non-existing split sample estimators

The standard error estimators considered in Lemmas 5 and 6 relies on existence of the

independent and unbiased estimators x̂′iβ−i,1 and x̂′iβ−i,2. Here, we propose an adjustment

for observations where these estimators do not exist. The adjustment ensures that one can

obtain valid inference as stated in the lemma at the end of the section.

For observations where it is not possible to create x̂′iβ−i,1 and x̂′iβ−i,2, we construct x̂′iβ−i,1

to satisfy the requirements in Lemma 6 and set Pi`,2 = 0 for all ` so that x̂′iβ−i,2 = 0. Then
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we define Qi = 1{max` P
2
i`,2=0} as an indicator that x̂′iβ−i,2 could not be constructed as an

unbiased estimator.

Based on this we let

V̂2[θ̂] = 4
n∑
i=1

(∑
` 6=i

Ci`y`

)2

σ̃2
i,2 − 2

n∑
i=1

∑
`6=i

C̃i`σ̂
2
i σ

2
` 2

where σ̃2
i,2 = (1−Qi)σ̃2

i +Qi(yi − ȳ)2 and

σ̂2
i σ

2
` 2 =



σ̂2
i,−` · σ̂

2
`,−i, if Pik,−`P`k,−i = 0 for all k and Qi` = Q`i = 0

σ̃2
i · σ̂

2
`,−i, else if Pi`,1 + Pi`,2 = 0 and Qi = Q`i = 0,

σ̂2
i,−` · σ̃

2
` , else if P`i,1 + P`i,2 = 0 and Q` = Qi` = 0,

σ̂2
i,−` · (y` − ȳ)2 · 1{C̃i`<0}, else if Qi` = 0,

(yi − ȳ)2 · σ̂2
`,−i · 1{C̃i`<0}, else if Q`i = 0,

(yi − ȳ)2 · (y` − ȳ)2 · 1{C̃i`<0}, otherwise

where we let Qi` = 1{Pi`,1 6=06=Qi}. The definition of V̂2[θ̂] is such that V̂2[θ̂] = V̂[θ̂] when two

independent unbiased estimators of x′iβ can be formed for all observations, i.e., when Qi = 0

for all i.

Similarly, we let

Σ̂q,2 =
n∑
i=1

 wiqw
′
iqσ̂

2
i,2 2wiq

(∑
`6=iCi`qy`

)
σ̃2
i,2

2w′iq

(∑
6̀=iCi`qy`

)
σ̃2
i,2 4

(∑
`6=iCi`qy`

)2

σ̃2
i − 2

∑
`6=i C̃

2
i`qσ̃

2
i σ

2
` 2


where σ̂2

i,2 = (1−Qi)σ̂2
i +Qi(yi− ȳ)2 and σ̃2

i σ
2
` 2 is defined as σ̂2

i σ
2
` 2 but using C̃i`q instead of

C̃i`.

The following lemma shows that these estimators of the asymptotic variance leads to

valid inference when coupled with the confidence intervals proposed in Sections 5 and 7.

Lemma 3.1. Suppose that
∑n

` 6=i Pi`,1x
′
`β = x′iβ, either

∑n
` 6=i Pi`,2x

′
`β = x′iβ or max` P

2
i`,2 = 0,

Pi`,1Pi`,2 = 0 for all `, and λmax(PsP
′
s) = O(1) where Ps = (Pi`,s)i,`.

1. If the conditions of Theorem 2 hold, then lim infn→∞ P
(
θ ∈

[
θ̂ ± zαV̂2[θ̂]1/2

])
≥ 1−α.

2. If the conditions of Theorem 3 hold, then lim infn→∞ P
(
θ ∈ Cθ

α(Σ̂q,2)
)
≥ 1− α.

Proof of Lemma 3.1. As in the proof of Lemma 5 it suffices for the first claim to show that

V̂2[θ̂] has a positive bias in large samples and that V̂2[θ̂] − E[V̂2[θ̂]] is op(V[θ̂]). The second
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claim involves no new arguments relative to the proof of Lemma 5 and is therefore omitted.

Thus we briefly report the positive bias in V̂2[θ̂].
We have that

E
[
V̂2[θ̂]

]
= V[θ̂] + 4

∑
i:Qi=1

(∑
` 6=i

Ci`x
′
`β
)2

((xi − x̄)′β)2

+ 2
∑

(i,`)∈B1

C̃i`σ
2
i

(
σ2
`1{C̃i`>0} + ((x` − x̄)′β)21{C̃i`<0}

)
+ 2

∑
(i,`)∈B2

C̃i`σ
2
`

(
σ2
i 1{C̃i`>0} + ((xi − x̄)′β)21{C̃i`<0}

)
+ 2

∑
(i,`)∈B3

C̃i`

(
σ2
i σ

2
`1{C̃i`>0} +

(
2σ2

i ((x` − x̄)′β)2 + ((xi − x̄)′β(x` − x̄)′β)2
)

1{C̃i`<0}

)
+O

(
V[θ̂]/n

)
where the remainder stems from estimation of ȳ and B1, B2, B3 refers to pairs of observations

that fall in each of the three last cases in the definition of σ̂2
i σ

2
` 2.

The proof of the second claim contains two main parts. One part is to establish that

the bias Σ̂q,2 is positive semidefinite in large samples, and that E[Σ̂q,2]−1Σ̂q,2− Iq+1 is op(1).

These arguments are only sketched as they are analogues to those presented in the proof

of Lemma 5 and the first part of this lemma. The other part is to show that this positive

semidefinite asymptotic bias in the variance estimator does not alter the validity of the

confidence interval based on it.
Validity First, we let QDQ′ be the spectral decomposition of E[Σ̂q,2]−1/2ΣqE[Σ̂q,2]−1/2. Here,
QQ′ = Q′Q = Iq+1 and all diagonal entries in the diagonal matrix D belongs to (0, 1] in large
samples. Now,

P
(
θ ∈ Cθα(Σ̂q,2)

)
= P

(
min

(b
′
q,θq)

′
:g(bq,θq,θ)=0

(
b̂q − bq

θ̂q − θq

)′
E[Σ̂q,2]−1

(
b̂q − bq

θ̂q − θq

)
≤ z2

α,κ(E[Σ̂q,2])

)
+ o(1)

where the minimum distance statistic above satisfies

min
(b
′
q ,θq)

′
:g(bq ,θq ,θ)=0

(
b̂q − bq

θ̂q − θq

)′
E[Σ̂q,2]−1

(
b̂q − bq

θ̂q − θq

)
= min

x∈S2

(ξ − x)′(ξ − x)

where S2 = {x : x = Q′E[Σ̂q,2]−1/2
(

(b′q, θq)
′ − E[(b̂′q, θ̂q)

′]
)
, g(bq, θq, θ) = 0} and the random

vector ξ = Q′E[Σ̂q,2]−1/2
(

(b̂′q, θ̂q)
′ − E[(b̂′q, θ̂q)

′]
)

has the property that D−1/2ξ
d−→ N (0, Iq+1).

From the geometric consideration in Andrews and Mikusheva (2016) it follows that S2 has
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curvature of κ(E[Σ̂q,2]) since curvature is invariant to rotations. Furthermore,

min
x∈S2

(ξ − x)′(ξ − x) ≤ ρ2
(
‖ξ−1‖, |ξ1|, κ(E[Σ̂q,2])

)
≤ ρ2

(
‖(D−1/2ξ)−1‖, |(D−1/2ξ)1|, κ(E[Σ̂q,2])

)
where ξ = (ξ1, ξ

′
−1)′ and D−1/2ξ = ((D−1/2ξ)1, (D

−1/2ξ)′−1) and the first inequality follows

from the proof of Theorem 1 in Andrews and Mikusheva (2016). Thus

lim inf
n→∞

P
(
θ ∈ Cθ

α(Σ̂q,2)
)

= lim inf
n→∞

P
(

min
x∈S2

(ξ − x)′(ξ − x) ≤ z2
α,κ(E[Σ̂q,2])

)
≥ lim inf

n→∞
P
(
ρ2
(
χq, χ1, κ(E[Σ̂q,2])

)
≤ z2

α,κ(E[Σ̂q,2])

)
= 1− α

since (‖ξ−1‖, |ξ1|)
d−→ (χq, χ1).

Bias and variability in Σ̂q,2 We finish by reporting the positive semidefinite bias in Σ̂q,2.

We have that

E
[
Σ̂q,2

]
= Σq +

∑
i:Qi=1

σ2
i

(
wiq

2
∑
6̀=iCi`x

′
`β

)(
wiq

2
∑

` 6=iCi`x
′
`β

)′
+

[
0 0

0 B

]
+O

(
V[θ̂]/n

)
where

B = 2
∑

(i,`)∈B1

C̃i`qσ
2
i

(
σ2
`1{C̃i`q>0} + ((x` − x̄)′β)21{C̃i`q<0}

)
+ 2

∑
(i,`)∈B2

C̃i`qσ
2
`

(
σ2
i 1{C̃i`q>0} + ((xi − x̄)′β)21{C̃i`q<0}

)
+ 2

∑
(i,`)∈B3

C̃i`q

(
σ2
i σ

2
`1{C̃i`q>0} +

(
2σ2

i ((x` − x̄)′β)2 + ((xi − x̄)′β(x` − x̄)′β)2
)

1{C̃i`q<0}

)
for B1, B2, B3 referring to pairs of observations that fall in each of the three last cases in

the definition of σ̃2
i σ

2
` 2.

4 Verifying Conditions

This section fills in details omitted from the discussion of Examples 1–3 in Sections 2 and 8.

Example 1. We first derive the representations of σ̂2
α given in section 2. When there are no
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common regressors, the representation in (4) follows from Bii = 1
nTg(i)

(
1− Tg(i)/n

)
and

σ̂2
g = 1

Tg

∑Tg

t=1
ygt

(
ygt − 1

Tg−1

∑
s 6=t

ygs

)
= 1

Tg

∑
i:g(i)=g

σ̂2
i

which yields that∑n

i=1
Biiσ̂

2
i = 1

n

∑N

g=1

(
1− Tg

n

)
σ̂2
g .

With common regressors, it follows from the formula for block inversion of matrices that

X̃ ′ = AS−1
xx (D,X)′ = 1

n

((
I − (I − PD)X

(
X ′(I − PD)X ′

)−1
X ′
) (
D − d̄1n

)
, 0
)′

= 1
n

(
D − d̄1n − (I − PD)XΓ̂ , 0

)′
where D = (d1, . . . , dn)′, X = (xg(1)t(1), . . . , xg(n)t(n))

′, PD = DS−1
dd D

′, 1n = (1, . . . , 1)′, and

Sdd = D′D. Thus it follows that

x̃i = 1
n

(
di − d̄− Γ̂ ′(xg(i)t(i) − x̄g(i))

0

)
.

The no common regressors claims are immediate. With common regressors we have

Pi` = T−1
g(i)1{g(i)=g(`)} + n−1(xg(i)t(i) − x̄g(i))′W−1(xg(`)t(`) − x̄g(`)) = T−1

g(i)1{i=`} +O(n−1)

where W = 1
n

∑N
g=1

∑T
t=1(xgt−x̄g)(xgt−x̄g)′ so Pii ≤ C < 1 in large samples. The eigenvalues

of Ã are equal to the eigenvalues of

1
n

(
IN − nS

−1/2
dd d̄d̄′S

−1/2
dd

)(
IN + 1

n
S

1/2
dd D

′XW−1X ′DS
−1/2
dd

)
which in turn satisfies that c1

n
≤ λ` ≤ c2

n
for ` = 1, . . . , N − 1 and c2 ≥ c1 > 0 not depending

on n. w′iwi = O(Pii) so Theorem 1 applies when N is fixed and ming Tg →∞. Finally,

max
i

V[θ̂]−1(x̃′iβ)2 = N−1O
(

maxg,t α
2
g + ‖xgt‖

2 1
n

∑n

i=1
‖xg(i)t(i)‖

2σ2
α

)
max
i

V[θ̂]−1(x̌′iβ)2 = N−1O

(
maxi,j(x

′
jβ)2

(∑n

`=1
|Mi`|

)2
)

and
∑n

`=1|Mi`| = O(1) so Theorem 2 applies when N →∞.

Example 2. Ã is diagonal with N diagonal entries of 1
n

Tg
Szz,g

, so λg = 1
n

Tg
Szz,g

for g =
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1, . . . , N . trace(Ã2) ≤ λ1

ming Szz,g

1
n

∑N
g=1 Tg = O(λ1). maxiw

′
iwi = maxg,t

(zgt−z̄g)
2

Szz,g
= o(1)

when ming Szz,g →∞. Furthermore, V[θ̂]−1 = O(n
2

N
), so

V[θ̂]−1 max
i

(x̃′iβ)2 = O
(

maxg,t
z

2
gtδ

2
g

NSzz,g

)
= o(1),

and Mi` = 0 if g(i) 6= g(`) so

V[θ̂]−1 max
i

(x̌′iβ)2 = nN−1/2O

(
max
g

(∑
i:g(i)=g

Bii

)2
)

= O

(
max
g

(
Tg√

NSxx,g

)2
)

= o(1)

both under the condition that N →∞ and
√
NSxx,1
T1

→∞. Used above:

Pi` = T−1
g(i)1{g(i)=g(`)} +

(zg(i)t(i)−z̄g(i))(zg(i)t(`)−z̄g(i))
Szz,g(i)

1{g(i)=g(`)} Bii = 1
n

zg(i)t(i)−z̄g(i)
Szz,g(i)

Tg(i)
Szz,g(i)

.

Finally,

max
i

w′iqwiq = max
t

(z1t−z̄1)
2

Szz,1
= o(1)

V[θ̂q]
−1 max

i
(x̃′iqβ)2 = O

(
maxg≥2,t

z
2
gtδ

2
g

NSzz,g

)
= o(1),

V[θ̂q]
−1 max

i
(x̌′iqβ)2 = O

(
maxg≥2

(
Tg√

NSxx,g

)2
)

= o(1)

under the conditions that
√
N
T2
Szz,2 → ∞ and Szz,1 → ∞. Thus, Theorem 3 applies when

√
N
T1
Szz,1 = O(1).

Example 3. Let ḟi = (1{j(g,t)=0}, f
′
i)
′ = (1{j(g,t)=0},1{j(g,t)=1}, . . . ,1{j(g,t)=J})

′ and define the
following partial design matrices with and without dropping ψ0 from the model:

Sff =
∑n

i=1
fif
′
i , Sḟ ḟ =

∑n

i=1
ḟiḟ
′
i , S∆f∆f =

∑N

g=1
∆fg∆f

′
g, S∆ḟ∆ḟ =

∑N

g=1
∆ḟg∆ḟ

′
g,

where ∆ḟg = ḟi(g,2)− ḟi(g,1). Letting Ḋ be a diagonal matrix that holds the diagonal of S∆ḟ∆ḟ

we have that

E = ḊS−1

ḟ ḟ
and L = Ḋ−1/2S∆ḟ∆ḟḊ

−1/2.

S∆ḟ∆ḟ is rank deficient with S∆ḟ∆ḟ1J+1 = 0 from which it follows that the non-zero eigenval-

ues of E1/2LE1/2 (which are the non-zero eigenvalues of S−1

ḟ ḟ
S∆ḟ∆ḟ ) are also the eigenvalues
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of S∆f∆f (S
−1
ff + 1J1

′
J

Sḟ ḟ ,11
). Finally, from the Woodbury formula we have that Aff is invertible

with

A−1
ff = n(Sff − nf̄ f̄ ′)−1 = n

(
S−1
ff + n

S
−1
ff f̄ f̄

′
S
−1
ff

1−nf̄ ′S−1
ff f̄

)
= n

(
S−1
ff + 1J1

′
J

Sḟ ḟ ,11

)
,

so

λ` = λ`(AffS
−1
∆f∆f ) = 1

λJ+1−`(S∆f∆fA
−1
ff )

= 1

nλJ+1−`(E
1/2LE1/2

)
.

With Ejj = 1 for all j, we have that

λ
2
1∑J

`=1 λ
2
`

= λ̇
−2
J∑J

`=1 λ̇
−2
`

≤ 4

(
√
Jλ̇J )

2

since λ̇` ≤ 2 (Chung, 1997, Lemma 1.7). An algebraic definition of Cheeger’s constant C is

C = min
X⊆{0,...,J}:

∑
j∈X Ḋjj≤

1
2

∑J
j=0 Ḋjj

−
∑
j∈X

∑
k/∈X S∆ḟ∆ḟ ,jk∑

j∈X Ḋjj

and it follows from the Cheeger inequality λ̇J ≥ 1 −
√

1− C2 (Chung, 1997, Theorem 2.3)

that
√
Jλ̇J →∞ if

√
JC → ∞.

For the stochastic block model we consider J odd and order the firms so that the first

(J + 1)/2 firms belongs to the first block, and the remaining firms belong to the second

block. We assume that ∆ḟg is generated i.i.d. across g according to

∆ḟ = W(1−D) + BD

where (W,B,D) are mutually independent, P (D = 1) = 1 − P (D = 0) = pb ≤ 1
2
, W is

uniformly distributed on {v ∈ RJ+1 : v′1J+1 = 0, v′v = 2,maxj vj = 1, v′c = 0}, and B is

uniformly distributed on {v ∈ RJ+1 : v′1J+1 = 0, v′v = 2,maxj vj = 1, (v′c)2 = 4} for c =

(1′(J+1)/2,−1′(J+1)/2)′. In this model Ejj = 1 for all j. The following lemma characterizes the

large sample behavior of S∆ḟ∆ḟ and L. Based on this lemma it is relatively straightforward

(but tedious) to verify the high-level conditions imposed in the paper.

Lemma 4.1. Suppose that log(J)
npb

+ J log(J)
n
→ 0 as n→∞ and J →∞. Then∥∥∥L† J+1

n
S∆ḟ∆ḟ − IJ+1 +

1J+11
′
J+1

J+1

∥∥∥ = op (1) and
∥∥∥L†L − IJ+1 +

1J+11
′
J+1

J+1

∥∥∥ = op (1)

where L = IJ+1 −
1J+11

′
J+1

J+1
− (1 − 2pb)

cc
′

J+1
and ‖·‖ returns the largest singular value of its
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argument. Additionally, max` λ̇
−1

`

∣∣∣λ̇` − λ̇`∣∣∣ = op(1) where λ̇1 ≥ · · · ≥ λ̇J are the non-zero

eigenvalues of L†.

Proof. First note that

J+1
n
E[S∆ḟ∆ḟ ]− L = 2+2pb

J−1

(
IJ+1 −

1J+11
′
J+1

J+1
− cc

′

J+1

)
+ 4pb

J−1
cc
′

J+1
,

and L† = IJ+1 −
1J+11

′
J+1

J+1
−
(

1− 1
2pb

)
cc
′

J+1
, so

∥∥∥L† J+1
n
E[S∆ḟ∆ḟ ]− IJ+1 +

1J+11
′
J+1

J+1

∥∥∥ =
∥∥∥2+2pb

J−1

(
IJ+1 −

1J+11
′
J+1

J+1
− cc

′

J+1

)
+ 2

J−1
cc
′

J+1

∥∥∥ = 2+2pb
J−1

Therefore, we can instead show that ‖S‖ = op(1) for the zero mean random matrix

S = (L†)1/2 J+1
n

(
S∆ḟ∆ḟ − E[S∆ḟ∆ḟ ]

)
(L†)1/2 =

∑N

g=1
sgs
′
g − E[sgs

′
g]

where sg =
√

J+1
n

∆ḟg −
√

2pb−1√
2pbn

∆ḟ ′gc
c√
J+1

. Now since

s′gsg = O
(
J
n

+ 1
npb

)
and

∥∥∥∑N

g=1
E[sgs

′
gsgs

′
g]
∥∥∥ = O

(
J
n

+ 1
npb

)
(Oliveira, 2009, Corollary 7.1) yields that P(‖S‖ ≥ t) ≤ 2(J+1)exp

(
−t2(J

n
+ 1

npb
)/(8c+ 4ct)

)
for some constant c not depending on n. Letting t ∝

√
log(J/δn)

npb
+ J log(J/δn)

n
for δn that

approaches zero slowly enough that log(J/δn)
npb

+ J log(J/δn)
n

→ 0 yields the conclusion that

‖S‖ = op(1).

Since L = Ḋ−1/2S∆ḟ∆ḟḊ
−1/2 the second conclusion follows from the first if ‖J+1

n
Ḋ −

IJ+1‖ = op(1). We have J+1
n
E[Ḋ] = IJ+1 and J+1

n
Ḋjj = J+1

n

∑N
g=1(∆ḟ ′gej)

2 where ej is the

j-th basis vector in RJ+1 and P((∆ḟ ′gej)
2 = 1) = 1 − P((∆ḟ ′gej)

2 = 0) = 2
J+1

. Thus it

follows from V(J+1
n
Ḋjj) ≤ 2J+1

n
and standard exponential inequalities that ‖J+1

n
Ḋ−IJ+1‖ =

maxj|J+1
n
Ḋjj − 1| = op(1) since J log(J)

n
→ 0.

Finally, we note that
∥∥∥L†L − IJ+1 +

1J+11
′
J+1

J+1

∥∥∥ ≤ ε implies

v′Lv(1− ε) ≤ v′Lv ≤ v′Lv(1 + ε)

which together with the Courant-Fischer min-max principle yields (1−ε) ≤ λ̇j

λ̇j
≤ (1+ε).

Next, we will verify the high-level conditions of the paper in a model that uses n
J+1
L in
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place of S∆ḟ∆ḟ and 1
n
L† in place of Ã and n

J+1
IJ+1 in place of Ḋ. Using an underscore to

denote objects from this model we have

max
g
P gg = max

g

J+1
n

∆ḟ ′gL†∆ḟg = 2J+1
n

+ 2 (1−2pb)
npb

= o(1),

trace(Ã
2
) = trace((L†)2

)

n
2 = J−1

n
2 + 1

4(npb)
2 = o(1),

λ
2
1∑J

`=1 λ
2
`

= 1

λ̇
2
J trace((L†)2

)
= 1

(J−1)4p
2
b+1

which is o(1) if and only if
√
Jpb →∞, and

λ
2
2∑J

`=1 λ
2
`

≤ 1
J

. Furthermore,

max
g

w2
g1 = n−1 max

g

(
c′(L†)1/2∆ḟg

)2

=
(

2√
2pbn

)2

= 2
npn

= o(1),

max
g

(x̃′gβ)2 = n−2 max
g

(
ψ′L†∆ḟg

)2

≤ 2n−2

[
max
g

(∆ḟ ′gψ)2 +
(

1− 1
2pb

)2

(ψ̄cl,1 − ψ̄cl,2)2

]
= O

(
n−2 + (npb)

−2
)

which is o
(
V[θ̂]

)
if
√
Jpb →∞ as trace(Ã

2
) = O(V[θ̂]) and

max
g

(x̃′g1β)2 = n−2 max
g

(
ψ′∆ḟg

)2

= O
(
n−2
)

= o
(
V[θ̂]

)
.

Finally,

max
g

(x̌′gβ)2 = O
(∑N

g=1
B2
gg

)
= O

(
max
g
Bggtrace(Ã)

)
where

max
g
Bgg = max

g
∆ḟ ′g

J+1

n
2 (L†)2∆ḟg = 2J+1

n
2 + 1−4p

2
b

(npb)
2 = O

(
trace(Ã2)

)
trace(Ã) = J−1

n
+ 1

2pbn
= o(1)

so maxg Bggtrace(Ã) = O(trace(Ã2))o(1).
Finally, we use the previous lemma to transfer the above results to their relevant sample
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analogues.

max
g
|Pgg − P gg| = max

g
|∆ḟ ′g(S

†
∆ḟ∆ḟ

− J+1
n L

†)∆ḟg|

= J+1
n max

g

∣∣∣∆ḟ ′g(L†)1/2
(
L1/2 n

J+1S
†
∆ḟ∆ḟ

L1/2 − IJ+1 +
1J+11

′
J+1

J+1

)
(L†)1/2∆ḟg

∣∣∣
= O

(∥∥∥L† J+1
n S∆ḟ∆ḟ − IJ+1 +

1J+11
′
J+1

J+1

∥∥∥)max
g

P gg = o

(
max
g

P gg

)
∣∣∣trace(Ã2 − Ã2

)
∣∣∣ =

∣∣∣∣∑J

`=1

1

n
2
λ̇
2
`

− 1

n
2
λ̇
2

`

∣∣∣∣ = trace(Ã
2
)O

(
max
`

∣∣∣ λ̇`−λ̇`
λ̇`

∣∣∣) = op

(
trace(Ã

2
)
)

∣∣∣∣ λ
2
1∑J

`=1 λ
2
`

− λ
2
1∑J

`=1 λ
2
`

∣∣∣∣ =
λ
2
1∑J

`=1 λ
2
`

O

(
|λ̇J−λ̇J |
λ̇J

+
|trace(Ã

2−Ã2
)|

trace(Ã
2
)

)
= op(1)

with a similar argument applying to λ
2
2∑J

`=1 λ
2
`

− λ
2
2∑J

`=1 λ
2
`

. Furthermore,

max
g

w2
g1 = max

g

(
∆ḟg(

J+1
n L

†)1/2(L n
J+1S

†
∆ḟ∆ḟ

)1/2q1

)2

≤ ‖(L n
J+1S

†
∆ḟ∆ḟ

)1/2‖max
g

P gg = op(1)

and maxg|(x̃
′
gβ)2 − (x̃′gβ)2| = op(trace(Ã2)) since

max
g

(x̃′gβ − x̃
′
gβ)2 = J+1

n
2 max

g

(
∆ḟ ′gL

†
(
LS∆ḟ∆ḟ Ḋ − IJ+1 +

1J+11
′
J+1

J+1

)
ψ√
J+1

)2

≤
∥∥∥LS∆ḟ∆ḟ Ḋ − IJ+1 +

1J+11
′
J+1

J+1

∥∥∥max
g

Bgg
‖ψ‖2

J+1 = op(trace(Ã2))

and this also handles maxi|(x̃′g1β)2− (x̃′g1β)2| = op(1) as the previous result does not depend

on the behavior of
√
Jpb. Finally,

max
g
|Bgg −Bgg| = J+1

n
2 max

g

∣∣∣∆ḟ ′gL† ( n
J+1LS

†
∆ḟ∆ḟ

ḊS†
∆ḟ∆ḟ

L − IJ+1 +
1J+11

′
J+1

J+1

)
L†∆ḟg

∣∣∣
≤
∥∥∥ n
J+1LS

†
∆ḟ∆ḟ

J+1
n Ḋ n

J+1S
†
∆ḟ∆ḟ

L − IJ+1 +
1J+11

′
J+1

J+1

∥∥∥max
g

Bgg = op(max
g

Bgg)∣∣∣trace(Ã− Ã)
∣∣∣ =

∣∣∣∣∑J

`=1

1
nλ̇`
− 1

nλ̇`

∣∣∣∣ = trace(Ã)O

(
max
`

∣∣∣ λ̇`−λ̇`
λ̇`

∣∣∣) = op

(
trace(Ã)

)

5 Relation To Existing Approaches

Next we verify that the bias of θ̂HO is a function of the covariation between σ2
i and (Bii, Pii).

Specifically, the bias of θ̂HO is σ
nBii,σ

2
i
+SB

n
n−kσPii,σ

2
i

where σ
nBii,σ

2
i

=
∑n

i=1Bii(σ
2
i −σ̄2), σ̄2 =

1
n

∑n
i=1 σ

2
i , SB =

∑n
i=1 Bii, σPii,σ

2
i

= 1
n

∑n
i=1 Pii(σ

2
i − σ̄2). This is so since σ̂2 = 1

n−k
∑n

i=1(yi−
x′iβ̂)2 = 1

n−k
∑n

i=1

∑n
`=1Mi`εiε` from which we get that

E[θ̂HO]− θ =
∑n

i=1
Biiσ

2
i −

(∑n

i=1
Bii

)
1

n−k

∑n

i=1
Miiσ

2
i

=
∑n

i=1
Bii(σ

2
i − σ̄2)− SB 1

n−k

∑n

i=1
Mii(σ

2
i − σ̄2) = σ

nBii,σ
2
i

+ SB
n

n−kσPii,σ
2
i
.

22



From this formula and the discussion of Example 1, it immediately follows that the

homoscedasticity-only estimator θ̂HO is first order biased in unbalanced panels with het-

eroscedasticity

Comparison to Jackknife Estimators

We finish by comparing the leave-out estimator θ̂ to estimators predicated on jackknife bias

corrections. We start by introducing some of the high-level assumptions that are typically

used to motivate jackknife estimators. We then consider some variants of Examples 1 and

2 where these high-level conditions fail to hold and establish that the jackknife estimators

have first order biases while the leave-out estimator retains consistency.

High-level Conditions Jackknife bias corrections are typically motivated by the high-level

assumption that the bias of a plug-in estimator θ̂PI shrinks with the sample size in a known

way and that the bias of 1
n

∑n
i=1 θ̂PI,−i depends on sample size in an identical way, i.e.,

E[θ̂PI] = θ + D1

n
+ D2

n
2 , E

[
1
n

∑n

i=1
θ̂PI,−i

]
= θ + D1

n−1
+ D2

(n−1)
2 for some D1,D2. (4)

Under (4), the jackknife estimator θ̂JK = nθ̂PI − n−1
n

∑n
i=1 θ̂PI,−i has a bias of − D2

n(n−1)
.

For some long panel settings the bias in θ̂PI is shrinking in the number of time periods T

such that

E[θ̂PI] = θ + Ḋ1

T
+ Ḋ2

T
2 for some Ḋ1, Ḋ2.

In such settings, it may be that the biases of 1
T

∑T
t=1 θ̂PI,−t and 1

2
(θ̂PI,1 + θ̂PI,2) depend on T

in an identical way, i.e.,

E
[

1
T

∑T

t=1
θ̂PI,−t

]
= θ + Ḋ1

T−1
+ Ḋ2

(T−1)
2 and E

[
1
2
(θ̂PI,1 + θ̂PI,2)

]
= θ + 2Ḋ1

T
+ 4Ḋ2

T
2 .

From here it follows that the panel jackknife estimator θ̂PJK = T θ̂PI − T−1
T

∑T
t=1 θ̂PI,−t has a

bias of − Ḋ2

T (T−1)
and that the split panel jackknife estimator θ̂SPJK = 2θ̂PI − 1

2
(θ̂PI,1 + θ̂PI,2)

has a bias of −2Ḋ2

T
2 , both of which shrink faster to zero than Ḋ1

T
if T →∞. Typical sufficient

conditions for bias-representations of this kind to hold (to second order) are that (i) T →∞,

(ii) the design is stationary over time, and (iii) that θ̂PI is asymptotically linear (see, e.g.,

Hahn and Newey, 2004; Dhaene and Jochmans, 2015). Below we illustrate that jackknife

corrections can be inconsistent in Examples 1 and 2 when (i) and/or (ii) do not hold.
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Examples of Jackknife Failure

Example 1 (Special case). Consider the model

ygt = αg + εgt (g = 1, . . . , N, t = 1, . . . , T ≥ 2),

where σ2
gt = σ2 and suppose the parameter of interest is θ = 1

N

∑N
g=1 α

2
g. For T even, we

have the following bias calculations:

E[θ̂PI] = θ + σ
2

T
, E

[
1
n

∑n

i=1
θ̂PI,−i

]
= θ + σ

2

T
+ σ

2

n(T−1)
,

E
[

1
T

∑T

t=1
θ̂PI,−t

]
= θ + σ

2

T−1
, E

[
1
2
(θ̂PI,1 + θ̂PI,2)

]
= θ + 2σ

2

T
.

The jackknife estimator θ̂JK has a first order bias of − σ
2

T (T−1)
, which when T = 2 is as large

as that of θ̂PI but of opposite sign. By contrast, both of the panel jackknife estimators, θ̂PJK

and the leave-out estimator are exactly unbiased and consistent as n→∞ when T is fixed.

This example shows that the jackknife estimator can fail when applied to a setting where

the number of regressors is large relative to sample size. Here the number of regressors is N

and the sample size is NT , yielding a ratio of 1/T and 1/T → 0 is necessary for consistency of

θ̂JK. While the panel jackknife corrections appear to handle the presence of many regressors,

this property disappears when adding the “random” coefficients of Example 2.

Example 2 (Special case). Consider the model

ygt = αg + xgtδg + εgt (g = 1, . . . , N, t = 1, . . . , T ≥ 3)

where σ2
gt = σ2 and θ = 1

N

∑N
g=1 δ

2
g .

An analytically convenient example arises when the regressor design is “balanced” across

groups as follows: (xg1, xg2, . . . , xgT ) = (x1, x2, . . . , xT ), where x1, x2, x3 take distinct values

and
∑T

t=1 xt = 0. The leave-out estimator is unbiased and consistent for any T ≥ 3, whereas

for even T ≥ 4 we have the following bias calculations:

E[θ̂PI] = θ + σ
2∑T

t=1 x
2
t

,

E
[

1
T

∑T

t=1
θ̂PI,−t

]
= θ + σ

2

T

∑T

t=1

1∑
s 6=t(xs−x̄−t)

2 ,

E
[
(θ̂PI,1 + θ̂PI,2)/2

]
= θ + σ

2

2
∑T/2
t=1 (xt−x̄1)

2 + σ
2

2
∑T
t=T/2+1(xt−x̄2)

2 ,
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where x̄−t = 1
T−1

∑
s 6=t xs, x̄1 = 2

T

∑T/2
t=1 xt, and x̄2 = 2

T

∑T
t=T/2+1 xt.

The calculations above reveal that non-stationarity in either the level or variability of xt

over time can lead to a negative bias in panel jackknife approaches, e.g.,

E
[
θ̂SPJK

]
− θ ≤ 2σ

2∑T
t=1 x

2
t

− σ
2

2
∑T/2
t=1 x

2
t

− σ
2

2
∑T
t=T/2+1 x

2
t

≤ 0

where the first inequality is strict if x̄1 6= x̄2 and the second if
∑T/2

t=1 x
2
t 6=

∑T
t=T/2+1 x

2
t . In

fact, the following example (x1, x2, . . . , xT ) = (−1, 2, 0, . . . , 0,−1) renders the panel jackknife

corrections inconsistent for small or large T :

E[θ̂PJK] = θ − 7/5
6
σ2 +O

(
1
T

)
and E[θ̂SPJK] = θ − 8/5

6
σ2 +O

(
1
T

)
.

Inconsistency results here from biases of first order that are negative and larger in magnitude

than the original bias of θ̂PI (which is σ2/6).
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