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Structural econometric methods are often criticized for being sensitive to functional
form assumptions. We study parametric estimators of the local average treatment ef-
fect (LATE) derived from a widely used class of latent threshold crossing models and
show they yield LATE estimates algebraically equivalent to the instrumental variables
(IV) estimator. Our leading example is Heckman’s (1979) two-step (“Heckit”) control
function estimator which, with two-sided non-compliance, can be used to compute esti-
mates of a variety of causal parameters. Equivalence with IV is established for a semi-
parametric family of control function estimators and shown to hold at interior solutions
for a class of maximum likelihood estimators. Our results suggest differences between
structural and IV estimates often stem from disagreements about the target parame-
ter rather than from functional form assumptions per se. In cases where equivalence
fails, reporting structural estimates of LATE alongside IV provides a simple means of
assessing the credibility of structural extrapolation exercises.

KEYWORDS: Treatment effects, selection models, instrumental variables, control
function, selectivity bias, marginal treatment effects.

1. INTRODUCTION

IN A SEMINAL PAPER, Imbens and Angrist (1994) proposed an interpretation of the in-
strumental variables (IV) estimand as a Local Average Treatment Effect (LATE)—an
average effect for a subpopulation of “compliers” compelled to change treatment status
by an external instrument. The plausibility and transparency of the conditions underlying
this interpretation are often cited as an argument for preferring IV estimators to nonlin-
ear estimators based on parametric models (Angrist and Pischke (2009, 2010)). On the
other hand, LATE itself has been criticized as difficult to interpret, lacking in policy rel-
evance, and problematic for generalization (Heckman (1997), Deaton (2009), Heckman
and Urzua (2010)). Adherents of this view favor estimators motivated by joint models of
treatment choice and outcomes with structural parameters defined independently of the
instrument at hand.

This note develops some connections between IV and structural estimators intended to
clarify how the choice of estimator affects the conclusions researchers obtain in practice.
Our first result is that, in the familiar binary instrument/binary treatment setting with
imperfect compliance, a wide array of structural “control function” estimators derived
from parametric threshold-crossing models yield LATE estimates numerically identical
to IV. Notably, this equivalence applies to appropriately parameterized variants of Heck-
man’s (1976, 1979) classic two-step (“Heckit”) estimator that are nominally predicated
on bivariate normality. Differences between structural and IV estimates therefore stem
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in canonical cases entirely from disagreements about the target parameter rather than
from functional form assumptions.

After considering how this result extends to settings with instruments taking multiple
values, we probe its limits by examining some estimation strategies where equivalence
fails. First, we revisit a control function estimator considered by LaLonde (1986) and
show that it produces results identical to IV only under a symmetry condition on the es-
timated probability of treatment. Next, we study an estimator motivated by a selection
model that violates the monotonicity condition of Imbens and Angrist (1994) and estab-
lish that it yields a LATE estimate different from IV, despite fitting the same sample mo-
ments. Standard methods of introducing observed covariates also break the equivalence
of control function and IV estimators, but we discuss a reweighting approach that ensures
equivalence is restored. We then consider full information maximum likelihood (FIML)
estimation of some generalizations of the textbook bivariate probit model and show that
this yields LATE estimates that coincide with IV at interior solutions. However, FIML
diverges from IV when the likelihood is maximized on the boundary of the structural pa-
rameter space, which serves as the basis of recent proposals for testing instrument validity
in just-identified settings (Huber and Mellace (2015), Kitagawa (2015)). Finally, we dis-
cuss why estimation of over-identified models generally yields LATE estimates different
from IV.

The equivalence results developed here provide a natural benchmark for assessing the
credibility of structural estimators, which typically employ a number of over-identifying
restrictions in practice. As Angrist and Pischke (2010) noted: “A good structural model
might tell us something about economic mechanisms as well as causal effects. But if the in-
formation about mechanisms is to be worth anything, the structural estimates should line
up with those derived under weaker assumptions.” Comparing the model-based LATEs
implied by structural estimators with unrestricted IV estimates provides a transparent
assessment of how conclusions regarding a common set of behavioral parameters are in-
fluenced by the choice of estimator. A parsimonious structural estimator that rationalizes
a variety of IV estimates may reasonably be deemed to have survived a “trial by fire,”
lending some credibility to its predictions.

2. TWO VIEWS OF LATE

We begin with a review of the LATE concept and its link to IV estimation. Let Yi repre-
sent an outcome of interest for individual i, with potential values Yi(1) and Yi(0) indexed
against a binary treatment Di. Similarly, let Di(1) and Di(0) denote potential values of
the treatment indexed against a binary instrument Zi. Realized treatments and outcomes
are linked to their potential values by the relations Di = ZiDi(1) + (1 − Zi)Di(0) and
Yi =DiYi(1)+ (1 −Di)Yi(0). Imbens and Angrist (1994) considered instrumental vari-
ables estimation under the following assumptions:

IA.1 Independence/Exclusion: (Yi(1)�Yi(0)�Di(1)�Di(0))⊥⊥Zi.
IA.2 First Stage: Pr[Di = 1|Zi = 1]> Pr[Di = 1|Zi = 0].
IA.3 Monotonicity: Pr[Di(1)≥Di(0)] = 1.

Assumption IA.1 requires the instrument to be as good as randomly assigned and to in-
fluence outcomes only through its effect on Di. Assumption IA.2 requires the instrument
to increase the probability of treatment, and Assumption IA.3 requires the instrument to
weakly increase treatment for all individuals.

Imbens and Angrist (1994) defined LATE as the average treatment effect for “compli-
ers” induced into treatment by the instrument (for whom Di(1) > Di(0)). Assumptions
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IA.1–IA.3 imply that the population Wald (1940) ratio identifies LATE:

E[Yi|Zi = 1] −E[Yi|Zi = 0]
E[Di|Zi = 1] −E[Di|Zi = 0] =E[

Yi(1)−Yi(0)|Di(1) >Di(0)
] ≡ LATE�

Suppose we have access to an i.i.d. vector of sample realizations {Yi�Di�Zi}ni=1 obeying
the following condition:

CONDITION 1: (
∑

i Zi)
−1

∑
i ZiDi > (

∑
i (1 −Zi))−1

∑
i(1 −Zi)Di.

When Assumption IA.2 is satisfied, the probability of Condition 1 being violated ap-
proaches zero at an exponential rate in n. The analogy principle suggests estimating LATE
with

L̂ATE
IV =

(∑
i

Zi

)−1 ∑
i

ZiYi −
(∑

i

(1 −Zi)
)−1 ∑

i

(1 −Zi)Yi
(∑

i

Zi

)−1 ∑
i

ZiDi −
(∑

i

(1 −Zi)
)−1 ∑

i

(1 −Zi)Di

�

This IV estimator is well-defined under Condition 1, and is consistent for LATE under
Assumptions IA.1–IA.3 and standard regularity conditions.

Threshold-Crossing Representation

Vytlacil (2002) showed that the LATE model can be written as a joint model of potential
outcomes and self-selection in which treatment is determined by a latent index crossing a
threshold. Suppose treatment status is generated by the equation

Di = 1
{
ψ(Zi)≥ Vi

}
�

where the latent variable Vi is independently and identically distributed according to
some continuous distribution with cumulative distribution function FV (·) :R→ [0�1], and
ψ(·) : {0�1} → R defines instrument-dependent thresholds below which treatment ensues.
Typically, FV (·) is treated as a structural primitive describing a stable distribution of latent
costs and benefits influencing program participation that exists independently of a partic-
ular instrument, as in the classic selection models of Roy (1951) and Heckman (1974). We
follow Heckman and Vytlacil (2005) and work with the equivalent transformed model

Di = 1
{
P(Zi)≥Ui

}
� (1)

where Ui ≡ FV (Vi) follows a uniform distribution and P(Zi)≡ FV (ψ(Zi)) is the propen-
sity score. The instrument Zi is presumed to increase the likelihood of treatment (P(1) >
P(0)), and to be independent of Ui and potential outcomes:(

Yi(1)�Yi(0)�Ui

) ⊥⊥Zi� (2)

The selection model defined by (1) and (2) is equivalent to the treatment effects
model described by Assumptions IA.1–IA.3. Equation (1) merely translates the behav-
ioral responses that are permitted in the LATE model into a partition of the unit in-
terval. In the terminology of Angrist, Imbens, and Rubin (1996), Assumption IA.3 im-
plies that the population consists of compliers with Di(1) > Di(0), “always takers” with
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Di(1) = Di(0) = 1, and “never takers” with Di(1) = Di(0) = 0. The latent variable Ui

is defined such that always takers have Ui ∈ [0�P(0)], compliers have Ui ∈ (P(0)�P(1)],
and never takers have Ui ∈ (P(1)�1]. Condition (2) implies that potential outcomes and
treatment choices are independent of the instrument and imposes no further restrictions
on the joint distribution of these quantities. It follows that we can equivalently define
LATE =E[Yi(1)−Yi(0)|P(0) < Ui ≤ P(1)].

Though Vytlacil’s (2002) results establish equivalence between a nonparametric latent
index model and the LATE model, the fully nonparametric model is typically not used
for estimation. Rather, to motivate alternatives to IV estimation, it is conventional to
make additional assumptions regarding the joint distribution of the latent cost Ui and the
potential outcomes (Yi(1)�Yi(0)). The goal of this note is to investigate the consequences
of such assumptions for empirical work.

3. CONTROL FUNCTION ESTIMATION

We begin by considering estimators predicated on the existence of a parametric “con-
trol function” capturing the endogeneity in the relationship between outcomes and treat-
ment (Heckman and Robb (1985), Blundell and Matzkin (2014), Wooldridge (2015)). The
workhorse models in this literature obey the following semiparametric restriction:

E
[
Yi(d)|Ui = u

] = αd + γd × (
J(u)−μJ

)
� d ∈ {0�1}�u ∈ (0�1)� (3)

where J(·) : (0�1) → R is a strictly increasing continuous function and μJ ≡ E[J(Ui)].
Lee (1982) studied this dependence structure in the context of classic “one-sided” se-
lection problems where outcomes are only observed when Di = 1. Setting J(·) equal to
the inverse normal CDF yields the canonical Heckman (1976, 1979) sample selection
(“Heckit”) model, while choosing J(u) = u yields the linear selection model studied by
Olsen (1980), and choosing the inverse logistic CDF for J(·) yields the logit selection
model considered by Mroz (1987).

Subsequent work applies versions of (3) to policy evaluation by modeling program par-
ticipation as a “two-sided” sample selection problem with coefficients indexed by the
treatment state d. For example, Bjorklund and Moffitt (1987) built on the Heckit frame-
work by assuming J(·) is the inverse normal CDF and allowing α1 �= α0, γ1 �= γ0. Likewise,
the linear estimator of Brinch, Mogstad, and Wiswall (2017) is a two-sided variant of
Olsen’s (1980) approach that imposes an identity J(·) function with coefficients indexed
by d. Interestingly, Dubin and McFadden’s (1984) classic multinomial selection model
collapses in the binary treatment effects case to a two-sided version of Mroz’s (1987) logit
model.

Assumption (3) nullifies Vytlacil’s (2002) equivalence result by imposing restrictions
on the relationships between mean potential outcomes of subgroups that respond differ-
ently to the instrument Zi. Let μdg denote the mean of Yi(d) for group g ∈ {at�nt� c},
representing always takers, never takers, and compliers. For any strictly increasing J(·),
equation (3) implies sgn(μdat −μdc)= sgn(μdc −μdnt) for d ∈ {0�1}. In contrast, the non-
parametric model defined by Assumptions IA.1–IA.3 is compatible with any arrangement
of differences in mean potential outcomes for the three subgroups. We next consider
whether these additional restrictions are consequential for estimation of LATE.
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LATE

When non-compliance is “two-sided” so that 0<P(0) < P(1) < 1, equation (3) implies
that mean outcomes conditional on treatment status are

E[Yi|Zi�Di = d] = αd + γdλd
(
P(Zi)

)
�

where λ1(·) : (0�1)→ R and λ0(·) : (0�1)→ R are control functions giving the means of
(J(Ui)−μJ) when Ui is truncated from above and below at p ∈ (0�1):

λ1(p)=E[
J(Ui)−μJ|Ui ≤ p

]
�λ0(p)=E[

J(Ui)−μJ|Ui > p
]
�

While attention in parametric selection models often focuses on the population average
treatment effect α1 − α0 (Garen (1984), Heckman (1990), Wooldridge (2015)), equation
(3) can also be used to compute treatment effects for other subgroups. The average effect
on compliers can be written

LATE = α1 − α0 + (γ1 − γ0)�
(
P(0)�P(1)

)
� (4)

where �(p�p′) gives the mean of J(Ui)−μJ when Ui lies between p and p′ >p:

�
(
p�p′) =E[

J(Ui)−μJ|p<Ui ≤ p′] = p′λ1

(
p′) −pλ1(p)

p′ −p �

The last term in (4) adjusts the average treatment effect to account for non-random se-
lection into compliance with the instrument.

Estimation

To motivate control function estimation, suppose that the sample exhibits two-sided
non-compliance as follows:

CONDITION 2: 0<
∑

i 1{Di = d}Zi <∑
i 1{Di = d} for d ∈ {0�1}.

This condition requires at least one observation with every combination of Zi and Di.
Condition 2 is satisfied with probability approaching 1 at an exponential rate in n when-
ever 0< Pr[Zi = 1]< 1 and 0<P(z) < 1 for z ∈ {0�1}.

Control function estimation typically proceeds in two steps, both for computational
reasons and because of the conceptual clarity of plug-in estimation strategies (Heckman
(1979), Smith and Blundell (1986)). Deferring a discussion of one-step estimation ap-
proaches to later sections, we define the control function estimator as a procedure which
first fits the choice model in equation (1) by maximum likelihood, then builds estimates
of λ1(·) and λ0(·) to include in second-step ordinary least squares (OLS) regressions for
each treatment category. The first-step estimates can be written(

P̂(0)� P̂(1)
) = arg max

P(0)�P(1)

∑
i

Di logP(Zi)+
∑
i

(1 −Di) log
(
1 − P(Zi)

)
� (5)

The second-step OLS estimates are

(α̂d� γ̂d)= arg min
αd�γd

∑
i

1{Di = d}
[
Yi − αd − γdλd

(
P̂(Zi)

)]2
� d ∈ {0�1}� (6)
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The analogy principle then suggests the following plug-in estimator of LATE:

L̂ATE
CF = (α̂1 − α̂0)+ (γ̂1 − γ̂0)�

(
P̂(0)� P̂(1)

)
�

Note that when non-compliance is “one-sided” so that
∑

i Di(1 − Zi) = 0 or
∑

i(1 −
Di)Zi = 0, the maximum likelihood estimates in (5) are not well-defined. Condition 2
ensures that P̂(0) and P̂(1) exist, and that α̂d and γ̂d can be computed for each value of d.

Condition 1 additionally ensures that P̂(0) < P̂(1), guaranteeing that L̂ATE
CF

exists.

4. EQUIVALENCE RESULTS

Compared to L̂ATE
IV

, L̂ATE
CF

would seem to be highly dependent upon the functional
form assumed for J(·) and the linearity of equation (3). Our first result shows that this is
not the case.

THEOREM 1: If Conditions 1 and 2 hold, then L̂ATE
CF = L̂ATE

IV
.

PROOF: The maximum likelihood procedure in (5) yields the empirical treatment rates
P̂(z)=

∑
i 1{Zi=z}Di∑
i 1{Zi=z} for z ∈ {0�1}. The second-step OLS regressions can be rewritten

(α̂d� γ̂d)= arg min
αd�γd

∑
i

1{Di = d}
(
Yi −

[
αd + γdλd

(
P̂(0)

)] − γd
[
λd

(
P̂(1)

) − λd
(
P̂(0)

)]
Zi

)2
�

This is a least squares fit of Yi on an intercept and the indicator Zi in the subsample with
Di = d. Such regressions can be estimated as long as there is two-sided non-compliance
with the instrument Zi, which follows from Condition 2. Defining Ȳ z

d ≡
∑
i 1{Di=d}1{Zi=z}Yi∑
i 1{Di=d}1{Zi=z} ,

we have

Ȳ 0
d = α̂d + γ̂dλd

(
P̂(0)

)
� Ȳ 1

d − Ȳ 0
d = γ̂d

[
λd

(
P̂(1)

) − λd
(
P̂(0)

)]
�

Under Condition 1, we have λd(P̂(1)) �= λd(P̂(0)), and this pair of equations can be solved
for γ̂d and α̂d as

γ̂d = Ȳ 1
d − Ȳ 0

d

λd
(
P̂(1)

) − λd
(
P̂(0)

) � α̂d = λd
(
P̂(1)

)
Ȳ 0
d − λd

(
P̂(0)

)
Ȳ 1
d

λd
(
P̂(1)

) − λd
(
P̂(0)

) �

We can therefore rewrite the control function estimate of LATE as

L̂ATE
CF =

([
λ1

(
P̂(1)

)
Ȳ 0

1 − λ1

(
P̂(0)

)
Ȳ 1

1

λ1

(
P̂(1)

) − λ1

(
P̂(0)

) ]
−

[
λ0

(
P̂(1)

)
Ȳ 0

0 − λ0

(
P̂(0)

)
Ȳ 1

0

λ0

(
P̂(1)

) − λ0

(
P̂(0)

) ])

+
([

Ȳ 1
1 − Ȳ 0

1

λ1

(
P̂(1)

) − λ1

(
P̂(0)

)]
−

[
Ȳ 1

0 − Ȳ 0
0

λ0

(
P̂(1)

) − λ0

(
P̂(0)

)])

×
(
P̂(1)λ1

(
P̂(1)

) − P̂(0)λ1

(
P̂(0)

)
P̂(1)− P̂(0)

)
�
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Using the fact that λ0(p)= −λ1(p)p/(1 −p), this simplifies to

L̂ATE
CF =

[
P̂(1)Ȳ 1

1 + (
1 − P̂(1))Ȳ 1

0

] − [
P̂(0)Ȳ 0

1 + (
1 − P̂(0))Ȳ 0

0

]
P̂(1)− P̂(0) �

which is L̂ATE
IV

. Q.E.D.

REMARK 1: An immediate consequence of Theorem 1 is that L̂ATE
CF

is also equiva-
lent to the coefficient on Di associated with a least squares fit of Yi to Di and a first-stage
residual Di − P̂(Zi). Blundell and Matzkin (2014) attributed the first proof of the equiv-
alence between this estimator and IV to Telser (1964).

REMARK 2: Theorem 1 extends the analysis of Brinch, Mogstad, and Wiswall (2017)
who observed that linear control function estimators produce LATE estimates numer-
ically equivalent to IV. The above result implies that a wide class of nonlinear control
function estimators share this property. With a binary treatment and instrument, an in-
strumental variables estimate can always be viewed as the numerical output of a variety
of parametric control function estimators.

Potential Outcome Means

Corresponding equivalence results hold for estimators of other parameters identified
in the LATE framework. Imbens and Rubin (1997) and Abadie (2002) discussed identifi-
cation and estimation of the treated outcome distribution for always takers, the untreated
distribution for never takers, and both marginal distributions for compliers. Nonparamet-
ric estimators of the four identified marginal mean potential outcomes are given by

μ̂IV
1at = Ȳ 0

1 � μ̂IV
0nt = Ȳ 1

0 �

μ̂IV
1c = P̂(1)Ȳ 1

1 − P̂(0)Ȳ 0
1

P̂(1)− P̂(0) � μ̂IV
0c =

(
1 − P̂(0))Ȳ 0

0 − (
1 − P̂(1))Ȳ 1

0

P̂(1)− P̂(0) �

The corresponding control function estimators are

μ̂CF
1at = α̂1 + γ̂1λ1

(
P̂(0)

)
� μ̂CF

0nt = α̂0 + γ̂0λ0

(
P̂(1)

)
�

μ̂CF
dc = α̂d + γ̂d�

(
P̂(0)� P̂(1)

)
� d ∈ {0�1}�

The following proposition shows that these two estimation strategies produce alge-
braically identical results.

PROPOSITION 1: If Conditions 1 and 2 hold, then

μ̂CF
dg = μ̂IV

dg for (d�g) ∈ {
(1� at)� (0� nt)� (1� c)� (0� c)

}
�

PROOF: Using the formulas from the proof of Theorem 1, the control function estimate
of μ1at is

μ̂CF
1at =

(
λ1

(
P̂(1)

)
Ȳ 0

1 − λ1

(
P̂(0)

)
Ȳ 1

1

λ1

(
P̂(1)

) − λ1

(
P̂(0)

) )
+

(
Ȳ 1

1 − Ȳ 0
1

λ1

(
P̂(1)

) − λ1

(
P̂(0)

))
λ1

(
P̂(0)

) = Ȳ 0
1 �
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which is μ̂IV
1at . Likewise,

μ̂CF
0nt =

(
λ0

(
P̂(1)

)
Ȳ 0

0 − λ0

(
P̂(0)

)
Ȳ 1

1

λ0

(
P̂(1)

) − λ0

(
P̂(0)

) )
+

(
Ȳ 1

0 − Ȳ 0
0

λ0

(
P̂(1)

) − λ0

(
P̂(0)

))
λ0

(
P̂(1)

) = Ȳ 1
0 �

which is μ̂IV
0nt . The treated complier mean estimate is

μ̂CF
1c =

(
λ1

(
P̂(1)

)
Ȳ 0

1 − λ1

(
P̂(0)

)
Ȳ 1

1

λ1

(
P̂(1)

) − λ1

(
P̂(0)

) )
+

(
Ȳ 1

1 − Ȳ 0
1

λ1

(
P̂(1)

) − λ1

(
P̂(0)

))

×
(
P̂(1)λ1

(
P̂(1)

) − P̂(0)λ1

(
P̂(0)

)
P̂(1)− P̂(0)

)

=
(
λ1

(
P̂(1)

) − λ1

(
P̂(0)

))
P̂(1)Ȳ 1

1 − (
λ1

(
P̂(1)

) − λ1

(
P̂(0)

))
P̂(0)Ȳ 0

1(
λ1

(
P̂(1)

) − λ1

(
P̂(0)

))(
P̂(1)− P̂(0))

= P̂(1)Ȳ 1
1 − P̂(0)Ȳ 0

1

P̂(1)− P̂(0) �

which is μ̂IV
1c . Noting that L̂ATE

IV = μ̂IV
1c − μ̂IV

0c and L̂ATE
CF = μ̂CF

1c − μ̂CF
0c , it then follows

by Theorem 1 that μ̂CF
0c = μ̂IV

0c . Q.E.D.

5. EQUIVALENCE AND EXTRAPOLATION

Proposition 1 establishes that all control function estimators based on equation (3)
produce identical estimates of the potential outcome means that are nonparametrically
identified in the LATE framework. Different functional form assumptions generate dif-
ferent estimates of quantities that are under-identified, however. For example, the choice
of J(·) in equation (3) determines the shapes of the curves that the model uses to extrap-
olate from estimates of the four identified potential outcome means (μ1at�μ0nt�μ1c�μ0c)
to the two under-identified potential outcome means (μ0at�μ1nt).

Figures 1 and 2 illustrate this extrapolation in a hypothetical example. The horizontal
axis plots values u of the unobserved treatment cost Ui, while the vertical axis plots mean
potential outcomes md(u)= E[Yi(d)|Ui = u] as functions of this cost. Estimates of these
functions are denoted m̂d(u)= α̂d + γ̂d × (J(u)−μJ) and their difference m̂1(u)− m̂0(u)
provides an estimate of the marginal treatment effect (Bjorklund and Moffitt (1987),
Heckman and Vytlacil (2005), Heckman, Urzua, and Vytlacil (2006)) for an individual
with latent cost u.

Assumptions IA.1–IA3 ensure two averages of md(Ui) are identified for each potential
outcome: the treated means for always takers and compliers, and the untreated means
for never takers and compliers. The control function estimator chooses α̂d and γ̂d so that
averages of m̂d(Ui) over the relevant ranges match the corresponding nonparametric es-
timates for each compliance group. The coefficient γ̂1 parameterizes the difference in
mean treated outcomes between compliers and always takers, while γ̂0 measures the dif-
ference in mean untreated outcomes between compliers and never takers. Several tests
of endogeneous treatment assignment (see, e.g., Angrist (2004), Battistin and Rettore
(2008), Bertanha and Imbens (2014), and Kowalski (2016)) amount to testing whether
(γ̂0� γ̂1) are significantly different from zero.
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FIGURE 1.—“Heckit” extrapolation.

Figure 1 depicts the results of parametric extrapolation based on the Heckit model,
while Figure 2 shows results for the linear control function model discussed by Brinch,
Mogstad, and Wiswall (2017). Both models match the same four estimated mean po-
tential outcomes, thereby generating identical estimates of LATE. Note that by Jensen’s
inequality, the nonlinear m̂d(u) curves in Figure 1 do not pass directly through the group
mean potential outcomes. The two models yield different imputations for the missing po-
tential outcomes of always takers and never takers, and therefore also different estimates
of the ATE, which averages over all three subpopulations. This sensitivity to functional
form is intuitive: treatment effects for always and never takers are fundamentally under-
identified, an insight that has led to consideration of bounds on these quantities (Manski
(1990), Balke and Pearl (1997), Mogstad, Santos, and Torgovitsky (2018)).

6. MULTI-VALUED INSTRUMENTS

Consider an instrument Zi taking values in {0�1� � � � �K}, and suppose that 0 < P̂(z −
1) < P̂(z) < 1 for z ∈ {1�2� � � � �K}. Let Di(z) denote i’s treatment choice when Zi = z. If
Assumptions IA.1–IA.3 hold for every pair of instrument values, Wald ratios of the form
E[Yi|Zi=z]−E[Yi|Zi=z−1]
E[Di|Zi=z]−E[Di|Zi=z−1] identify the average treatment effect among compliers indexed by a
unit increment in the instrument, which we denote LATEz ≡ E[Yi(1) − Yi(0)|Di(z) >
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FIGURE 2.—Linear extrapolation.

Di(z− 1)]. Analog estimators of LATEz are given by the following pairwise IV estimator:

L̂ATE
IV

z =

(∑
i

1{Zi = z}
)−1∑

i

1{Zi = z}Yi −
(∑

i

1{Zi = z− 1}
)−1∑

i

1{Zi = z− 1}Yi
(∑

i

1{Zi = z}
)−1∑

i

1{Zi = z}Di −
(∑

i

1{Zi = z− 1}
)−1∑

i

1{Zi = z− 1}Di

�

From Theorem 1, L̂ATE
IV

z is numerically equivalent to the corresponding pairwise control
function estimator of LATEz constructed from observations withZi ∈ {z−1� z}. However,
to improve precision, it is common to impose additional restrictions on the LATEz .

Consider the following restriction on potential outcomes:

E
[
Yi(d)|Ui = u

] = αd +
L∑
	=1

γd	 × (
J(u)−μJ

)	
� d ∈ {0�1}�u ∈ (0�1)� (7)

Polynomial models of this sort have been considered by, among others, Brinch, Mogstad,
and Wiswall (2017) and Cornelissen, Dustmann, Raute, and Schönberg (2018). Letting
λ1	(p)=E[(J(Ui)−μJ)	|Ui ≤ p] and λ0	(p)= E[(J(Ui)−μJ)	|Ui > p], a two-step con-
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trol function estimator of the parameters of equation (7) is

(α̂d� γ̂d1� � � � � γ̂dL)= arg min
αd�γd1�����γdL

∑
i

1{Di = d}
[
Yi − αd −

L∑
	=1

γd	λd	
(
P̂(Zi)

)]2

�

The resulting control function estimator of LATEz is then

L̂ATE
CF

z = (α̂1 − α̂0)+
L∑
	=1

(γ̂1	 − γ̂0	)�	
(
P̂(z− 1)� P̂(z)

)
� (8)

where �	(p�p′)= [p′λ1	(p
′)− pλ1	(p)]/[p′ − p]. The following proposition establishes

that this estimator is identical to L̂ATE
IV

z when L=K.

PROPOSITION 2: If Conditions 1 and 2 hold for every pair of instrument values and the

polynomial order L equals K, then L̂ATE
CF

z = L̂ATE
IV

z ∀z ∈ {1�2� � � � �K}.
PROOF: See the Supplemental Material (Kline and Walters (2019)). Q.E.D.

REMARK 3: Instrumenting Di with a scalar function g(Zi) generates an IV estimate

equal to a convex weighted average of the L̂ATE
IV

z (Imbens and Angrist (1994)). From

Proposition 2, applying these weights to the L̂ATE
CF

z when L =K will yield an identical

result. By contrast, the set of L̂ATE
CF

z that result from imposing L < K need not cor-

respond to weighted averages of the L̂ATE
IV

z , but are likely to exhibit reduced sampling
variability.

REMARK 4: When L<K − 1, the restriction in (7) can be used to motivate estimators
of particular LATEs that are convex combinations of IV estimators. In the case where
K = 3 and L= 1, one can show that

LATE2 =
(
�
(
P(1)�P(2)

) − �(
P(0)�P(1)

)
�
(
P(2)�P(3)

) − �(
P(0)�P(1)

))
LATE3

+
(
�
(
P(2)�P(3)

) − �(
P(1)�P(2)

)
�
(
P(2)�P(3)

) − �(
P(0)�P(1)

))
LATE1�

This representation suggests combination estimators of the form

L̂ATE
ξ

2 = ξL̂ATE
IV

2 + (1 − ξ)
[(
�
(
P̂(1)� P̂(2)

) − �(
P̂(0)� P̂(1)

)
�
(
P̂(2)� P̂(3)

) − �(
P̂(0)� P̂(1)

))
L̂ATE

IV

3

+
(
�
(
P̂(2)� P̂(3)

) − �(
P̂(1)� P̂(2)

)
�
(
P̂(2)� P̂(3)

) − �(
P̂(0)� P̂(1)

))
L̂ATE

IV

1

]
�

for ξ ∈ (0�1). To maximize precision, one can set ξ= [v̂2 − v̂12]/[v̂1 + v̂2 − 2v̂12], where v̂1

and v̂2 are estimated variances of L̂ATE
IV

2 and the term in brackets, respectively, and v̂12
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is their covariance. By construction, L̂ATE
ξ

2 provides an estimate of LATE2 more precise

than L̂ATE
IV

2 . Though L̂ATE
ξ

2 will tend to be less precise than L̂ATE
CF

2 when restriction

(7) is true, the probability limit of L̂ATE
ξ

2 retains an interpretation as a weighted average
of causal effects for complier subpopulations when (7) is violated, a robustness property
emphasized elsewhere by Angrist and Pischke (2009).

7. EQUIVALENCE FAILURES

Though Theorem 1 establishes equivalence between IV and a wide class of control
function estimates of LATE, other control function estimators fail to match IV even with
a single binary instrument. LaLonde (1986) considered OLS estimation of the following
model:

Yi = α+βDi +γ
[
Di ×

(
−φ

(

−1

(
P̂(Zi)

))
P̂(Zi)

)
+ (1 −Di)×

(
φ

(

−1

(
P̂(Zi)

))
1 − P̂(Zi)

)]
+ εi� (9)

By imposing a common coefficient γ on the Mills ratio terms for the treatment and control
groups, this specification allows for selection on levels but rules out selection on treatment
effects.

The term in brackets in equation (9) simplifies to (Di − P̂(Zi))× {−φ(
−1(P̂(Zi)))/

[P̂(Zi)(1 − P̂(Zi))]}. When P̂(1) = 1 − P̂(0), this term is proportional to the first-stage
residual and least squares estimation of (9) yields an estimate of β numerically identical
to IV. This is a finite sample analogue of Heckman and Vytlacil’s (2000) observation (elab-
orated upon in Angrist (2004)) that LATE equals ATE when both the first stage and the
error distribution are symmetric. When P̂(1) �= 1 − P̂(0), however, the control function in
equation (9) differs from the first-stage residual and the estimate of β will not match IV.

REMARK 5: When P̂(1)= 1 − P̂(0), the ATE estimate α̂1 − α̂0 from a control function
estimator of the form given in (6) coincides with IV whenever J(Ui) is presumed to follow
a symmetric distribution.

Moments and Monotonicity

Theorem 1 relied upon the fact that equation (3) includes enough free parameters to
allow the control function estimator to match the sample mean of Yi for every combina-
tion ofDi andZi. One might be tempted to conclude that any structural estimator that fits
these moments will produce a corresponding LATE estimate equal to IV. We now show
that this is not the case.

Suppose that treatment status is generated by a heterogeneous threshold crossing
model:

Di = 1{κ+ δiZi ≥Ui}� (10)

where Ui is uniformly distributed and the random coefficient δi is a mixture taking val-
ues in {−η�η} for some known positive constant η. Define υ≡ Pr[δi = η], and suppose
that δi is independent of (Yi(1)�Yi(0)�Ui�Zi). Note that this model does not admit a
representation of the form of equation (1) as it allows Di(1) <Di(0).
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Model (10) has two unknown parameters, κ and υ, and can therefore rationalize the
two observed choice probabilities by choosing κ̂= P̂(0) and υ̂= (η+ P̂(1)− P̂(0))/2η.
Equations (3) and (10) imply

E[Yi|Di = d�Zi] = αd + γd × [
υλd(κ+ηZi)+ (1 − υ)λd(κ−ηZi)

]
�

As before, we can use κ̂ and υ̂ to construct control functions to include in a second-step
regression, producing estimates α̂d and γ̂d that exactly fit Ȳ 1

d and Ȳ 0
d .

Though this estimator matches all choice probabilities and conditional mean outcomes,
it produces an estimate of LATE different from IV. The model’s implied LATE is

E
[
Yi(1)−Yi(0)|Di(1) >Di(0)

]
= (α1 − α0)+ (γ1 − γ0)×E[

J(Ui)−μJ|δi = η�κ <Ui ≤ κ+η]
�

The corresponding control function estimator of this quantity is

L̂ATE
∗ = (α̂1 − α̂0)+ (γ̂1 − γ̂0)×

(
(κ̂+η)λ1(κ̂+η)− κ̂λ1(κ̂)

η

)
� (11)

It is straightforward to verify that L̂ATE
∗

is not equal to L̂ATE
IV

. Equivalence fails here
because the selection model implies the presence of “defiers” withDi(1) <Di(0). IV does
not identify LATE when there are defiers; hence, the model suggests using a different
function of the data to estimate the LATE.

Covariates

It is common to condition on a vector of covariates Xi either to account for possible
violations of the exclusion restriction or to increase precision. Theorem 1 implies that IV
and control function estimates of LATE coincide if computed separately for each value
of the covariates, but this may be impractical or impossible when Xi can take on many
values.

A standard approach to introducing covariates is to enter them additively into the po-
tential outcomes model (see, e.g., Cornelissen, Dustmann, Raute, and Schönberg (2016),
Kline and Walters (2016), and Brinch, Mogstad, and Wiswall (2017)). Suppose treatment
choice is given by Di = 1{P(Xi�Zi)≥Ui} with Ui independent of (Xi�Zi), and assume

E
[
Yi(d)|Ui = u�Xi

] = αd + γd × (
J(u)−μJ

) +X ′
iτ� d ∈ {0�1}�u ∈ (0�1)� (12)

Letting P̂(Xi�Zi) denote an estimate of Pr[Di = 1|Xi�Zi], the control function estimates
for this model are

(α̂1� γ̂1� α̂0� γ̂0� τ̂)= arg min
α1�γ1�α0�γ0�τ

∑
i

∑
d∈{0�1}

1{Di = d}

× [
Yi − αd − γdλd

(
P̂(Xi�Zi)

) −X ′
iτ

]2
� (13)

To ease exposition, we will study the special case of a single binary covariateXi ∈ {0�1}.
Define LATE(x)≡ E[Yi(1)−Yi(0)|P(x�0) < Ui ≤ P(x�1)�Xi = x] as the average treat-
ment effect for compliers with Xi = x, and let α̂d(x) and γ̂d(x) denote estimates from
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unrestricted control function estimation among the observations with Xi = x. The addi-
tive separability restriction in (12) suggests the following two estimators of LATE(1):

L̂ATE
CF

x (1)= (
α̂1(x)− α̂0(x)

) + (
γ̂1(x)− γ̂0(x)

)
�
(
P̂(1�0)� P̂(1�1)

)
� x ∈ {0�1}�

By Theorem 1, L̂ATE
CF

1 (1) is a Wald estimate for the Xi = 1 sample. L̂ATE
CF

0 (1) gives
an estimated effect for compliers with Xi = 1 based upon control function estimates for
observations with Xi = 0. The following proposition describes the relationship between
these two estimators and the restricted estimator of LATE(1) based upon (13).

PROPOSITION 3: Suppose Conditions 1 and 2 hold for each value of Xi ∈ {0�1} and let

L̂ATE
CF

r (1) = (α̂1 − α̂0) + (γ̂1 − γ̂0)�(P̂(1�0)� P̂(1�1)) denote an estimate of LATE(1)
based on (13). Then

L̂ATE
CF

r (1)= wL̂ATE
CF

1 (1)+ (1 −w)L̂ATE
CF

0 (1)

+ b1

(
γ̂1(1)− γ̂1(0)

) + b0

(
γ̂0(1)− γ̂0(0)

)
�

The coefficients w, b1, and b0 depend only on the joint empirical distribution of Di, Xi, and
P̂(Xi�Zi).

PROOF: See the Supplemental Material. Q.E.D.

REMARK 6: Proposition 3 demonstrates that control function estimation under addi-
tive separability gives a linear combination of covariate-specific estimates plus terms that
equal zero when the separability restrictions hold exactly in the sample. One can show
that the coefficient w need not lie between 0 and 1. By contrast, two-stage least squares
estimation of a linear model with an additive binary covariate using all interactions of
Xi and Zi as instruments generates a weighted average of covariate-specific IV estimates
(Angrist and Pischke (2009)).

REMARK 7: Consider the following extension of equation (12):

E
[
Yi(d)|Ui = u�Xi

] = αd + γd × (
J(u)−μJ

) +X ′
iτdc + 1

{
u≤ P(Xi�0)

}
X ′
iτat

+ 1
{
u > P(Xi�1)

}
X ′
iτnt� d ∈ {0�1}�u ∈ (0�1)�

This equation allows different coefficients onXi for always takers, never takers, and com-
pliers by interacting Xi with indicators for thresholds of Ui, and also allows the complier
coefficients to differ for treated and untreated outcomes. When Xi includes a mutually
exclusive and exhaustive set of indicator variables and P̂(Xi�Zi) equals the sample mean
of Di for each (Xi�Zi), control function estimation of this model produces the same esti-
mate of E[Yi|Xi�Di�Di(1) > Di(0)] as the semiparametric procedure of Abadie (2003).
Otherwise, the estimates may differ even asymptotically as the control function estimator
employs a different set of approximation weights when the model is misspecified.

REMARK 8: A convenient means of adjusting for covariates that maintains the nu-
merical equivalence of IV and control function estimates is to weight each observation
by ωi = Zi/ê(Xi) + (1 − Zi)/(1 − ê(Xi)) where ê(x) ∈ (0�1) is a first-step estimate of
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Pr[Zi = 1|Xi = x]. It is straightforward to show that the ωi-weighted IV and control func-
tion estimates of the unconditional LATE will be identical, regardless of the propensity
score estimator ê(Xi) employed. See Hull (2016) for a recent application of this approach
to covariate adjustment of a selection model.

8. MAXIMUM LIKELIHOOD

A fully parametric alternative to two-step control function estimation is to specify a
joint distribution for the model’s unobservables and estimate the parameters in one step
via full information maximum likelihood (FIML). Consider a model that combines (1)
and (2) with the distributional assumption

Yi(d)|Ui ∼ FY |U(y|Ui;θd)� (14)

where FY |U(y|u;θ) is a conditional CDF indexed by a finite-dimensional parameter
vector θ. For example, a fully parametric version of the Heckit model is Yi(d)|Ui ∼
N(αd + γd


−1(Ui)�σ
2
d). Since the marginal distribution of Ui is also known, this model

provides a complete description of the joint distribution of (Yi(d)�Ui). FIML exploits this
distributional knowledge, estimating the model’s parameters as

(
P̂(0)ML� P̂(1)ML� θ̂ML

0 � θ̂ML
1

) = arg max
(P(0)�P(1)�θ0�θ1)

∑
i

Di log
(∫ P(Zi)

0
fY |U(Yi|u;θ1)du

)

+
∑
i

(1 −Di) log
(∫ 1

P(Zi)

fY |U(Yi|u;θ0)du

)
� (15)

where fY |U(·|u;θd)≡ dFY |U(·|u;θd) denotes the density (or probability mass function) of
Yi(d) givenUi = u. The corresponding FIML estimates of treated and untreated complier
means are

μ̂ML
dc =

∫ P̂(1)ML

P̂(0)ML

∫ ∞

−∞
yfY |U

(
y|u; θ̂ML

d

)
dy du

P̂(1)ML − P̂(0)ML
�

and the FIML estimate of LATE is L̂ATE
ML = μ̂ML

1c − μ̂ML
0c .

Binary Outcomes

We illustrate the relationship between FIML and IV estimates of LATE with the special
case of a binary Yi. A parametric model for this setting is given by

Yi(d)= 1{αd ≥ εid}�
εid|Ui ∼ Fε|U(ε|Ui;ρd)�

(16)

where Fε|U(ε|u;ρ) is a conditional CDF characterized by the single parameter ρ. Equa-
tions (1) and (16) include six parameters, which matches the number of observed lin-
early independent probabilities (two values of Pr[Di = 1|Zi], and four values of Pr[Yi =
1|Di�Zi]). The model is therefore “saturated” in the sense that a model with more pa-
rameters would be under-identified.



692 P. KLINE AND C. R. WALTERS

The following result establishes the conditions under which maximum likelihood esti-
mates of complier means (and therefore LATE) coincide with IV.

PROPOSITION 4: Consider the model defined by (1), (2), and (16). Suppose that Condi-
tions 1 and 2 hold, and that the maximum likelihood problem (15) has a unique solution.
Then μ̂ML

dc = μ̂IV
dc for d ∈ {0�1} if and only if μ̂IV

dc ∈ [0�1] for d ∈ {0�1}.
PROOF: See the Supplemental Material. Q.E.D.

REMARK 9: The intuition for Proposition 4 is that the maximum likelihood estimation
problem can be rewritten in terms of the six identified parameters of the LATE model:
(μ1at�μ0nt�μ1c�μ0c�πat�πc), where πg is the population share of group g. Unlike the IV
and control function estimators, the FIML estimator accounts for the binary nature of
Yi(d) by constraining all probabilities to lie in the unit interval. When these constraints do
not bind, the FIML estimates coincide with nonparametric IV estimates, but the estimates
differ when the nonparametric approach produces complier mean potential outcomes
outside the logically possible bounds. Logical violations of this sort have been proposed
elsewhere as a sign of failure of instrument validity (Balke and Pearl (1997), Imbens and
Rubin (1997), Huber and Mellace (2015), Kitagawa (2015)).

REMARK 10: A simple “limited information” approach to maximum likelihood estima-
tion is to estimate P(0) and P(1) in a first step and then maximize the plug-in conditional
log-likelihood function

∑
i

Di log
(∫ P̂(Zi)

0
fY |U(Yi|u;θ1)du

)
+

∑
i

(1 −Di) log
(∫ 1

P̂(Zi)

fY |U(Yi|u;θ0)du

)

with respect to (θ0� θ1) in a second stage. One can show that applying this less efficient
estimator to a saturated model will produce an estimate of LATE equivalent to IV under
Conditions 1 and 2. This broader domain of equivalence results from some cross-equation
parameter restrictions being ignored by the two-step procedure. For example, the FIML
estimator may choose an estimate of πc other than P̂(1)− P̂(0) in order to enforce the
constraint that (μ1c�μ0c) ∈ [0�1]2.

Over-Identified Models

Equivalence of FIML and IV estimates at interior solutions in our binary example fol-
lows from the fact that the model satisfies monotonicity and includes enough parameters
to match all observed choice probabilities. Similar arguments apply to FIML estimators
of sufficiently flexible models for multi-valued outcomes. When the model includes fewer
parameters than observed choice probabilities, over-identification ensues. For example,
the standard bivariate probit model is a special case of (16) that uses a normal distribution
for Fε|U(·) and imposes εi1 = εi0 and therefore ρ1 = ρ0 (see Greene (2007)). Hence, only
five parameters are available to rationalize six linearly independent probabilities.

Maximum likelihood estimation of this more parsimonious model may yield an esti-
mate of LATE that differs from IV even at interior solutions. This divergence stems from
the model’s over-identifying restrictions which, if correct, may yield efficiency gains but if
wrong, can compromise consistency. Though maximum likelihood estimation of misspec-
ified models yields a global best approximation to the choice probabilities (White (1982)),
there is no guarantee that it will deliver a particularly good approximation to the LATE.
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9. MODEL EVALUATION

In practice, researchers often estimate selection models that impose additive separabil-
ity assumptions on exogenous covariates, combine multiple instruments, and employ ad-
ditional smoothness restrictions that break the algebraic equivalence of structural LATE
estimates with IV. The equivalence results developed above provide a useful conceptual
benchmark for assessing the performance of structural models in such applications. An
estimator derived from a properly specified model of treatment assignment and potential
outcomes should come close to matching a nonparametric IV estimate of the same pa-
rameter. Significant divergence between these estimates would signal that the restrictions
imposed by the structural model are violated.

Figure 3 shows an example of this approach to model assessment from Kline and Wal-
ters’ (2016) reanalysis of the Head Start Impact Study (HSIS)—a randomized experiment
with two-sided non-compliance (Puma, Bell, Cook, and Heid (2012)). On the vertical axis
are nonparametric IV estimates of the LATE associated with participating in the Head
Start program relative to a next best alternative for various subgroups in the HSIS defined
by experimental sites and baseline child and parent characteristics. On the horizontal axis
are two-step control function estimates of the same parameters derived from a heavily
over-identified selection model involving multiple endogenous variables, baseline covari-
ates, and excluded instruments. Had this model been saturated, all of the points would lie
on the 45 degree line. In fact, a Wald test indicates these deviations from the 45 degree
line cannot be distinguished from noise at conventional significance levels, suggesting that
the approximating model is not too far from the truth.

Passing a specification test does not obviate the fundamental identification issues in-
herent in interpolation and extrapolation exercises. As philosophers of science have long
argued, however, models that survive empirical scrutiny deserve greater consideration
than those that do not (Popper (1959), Lakatos (1976)). Demonstrating that a tightly re-
stricted model yields a good fit to IV estimates not only bolsters the credibility of the

FIGURE 3.—Model-based and IV estimates of LATE. Notes: This figure reproduces Figure A.III from Kline
and Walters (2016). The figure is constructed by splitting the Head Start Impact Study sample into vingtiles of
the predicted LATE based on the control function estimates reported in Section VIII of the paper. The hori-
zontal axis displays the average predicted LATE in each group, and the vertical axis shows corresponding IV
estimates. The dashed line is the 45-degree line. The chi-squared statistic and p-value come from a bootstrap
Wald test of the hypothesis that the 45 degree line fits all points up to sampling error. See Appendix F of Kline
and Walters (2016) for more details.
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model’s counterfactual predictions, but serves to clarify what the estimated structural pa-
rameters have to say about the effects of a research design as implemented. Here the
control function estimates reveal that Head Start had very different effects on different
sorts of complying households, a finding rationalized by estimated heterogeneity in both
patterns of selection into treatment and potential outcome distributions.

10. CONCLUSION

This paper shows that two-step control function estimators of LATE derived from a
wide class of parametric selection models coincide with the instrumental variables estima-
tor. Control function and IV estimates of mean potential outcomes for compliers, always
takers, and never takers are also equivalent. While many parametric estimators produce
the same estimate of LATE, different parameterizations can produce dramatically differ-
ent estimates of population average treatment effects and other under-identified quanti-
ties. The sensitivity of average treatment effect estimates to the choice of functional form
may be the source of the folk wisdom that structural estimators are less robust than in-
strumental variables estimators. Our results show that this view confuses robustness for a
given target parameter with the choice of target parameter.

Structural estimators that impose over-identifying restrictions may generate LATE es-
timates different from IV. Reporting the LATEs implied by such estimators facilitates
comparisons with unrestricted IV estimates and is analogous to the standard practice of
reporting average marginal effects in binary choice models (Wooldridge (2001)). Such
comparisons provide a convenient tool for assessing the behavioral restrictions imposed
by structural models. Model-based estimators that cannot rationalize unrestricted IV esti-
mates of LATE are unlikely to fare much better at extrapolating to fundamentally under-
identified quantities. On the other hand, a tightly constrained structural estimator that
fits a collection of disparate IV estimates enjoys some degree of validation that bolsters
the credibility of its counterfactual predictions.
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