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Abstract

In this paper, estimation of the coe¢ cients in a �single-index� regression model is considered

under the assumption that the regression function is a smooth and strictly monotonic function

of the index. The estimation method follows a �two-step� approach, where the �rst step uses a

nonparametric regression estimator for the dependent variable, and the second step estimates the

unknown index coe¢ cients (up to scale) by an eigenvector of a matrix de�ned in terms of this �rst-

step estimator. The paper gives conditions under which the proposed estimator is root-n-consistent

and asymptotically normal.
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1. Introduction

Estimation of the unknown coe¢ cients �0 in the single index regression model

E(yijxi) = G(x0i�0); (1.1)

where yi and xi are observable and G(�) is an unknown function, has been investigated in a number

of papers in the econometric literature on semiparametric estimation. (A survey of these estima-

tors is given in Powell (1994).) Some estimation methods, like the �average derivative�approach

of Härdle and Stoker (1989) and Powell, Stock, and Stoker (1989) and the �density-weighted least

squares�estimator of Ruud (1986) and Newey and Ruud (1991) exploit an assumption of smooth-

ness (continuity and di¤erentiability) of the unknown function G, but require all components of the

regressor vector x to be jointly continuously distributed, which rarely applies in practice. Härdle

and Horowitz (1996) has extended the average derivative estimator to allow for discrete regressors

at the expense of introducing four additional nuisance parameters to be chosen by users of their

estimator in addition to the standard smoothing parameter choice required in all nonparametric

estimators. Other estimation methods which assume smoothness of G include the �single-index

regression� estimators of Ichimura (1993a), Ichimura and Lee (1991), and, for the special case of

a binary dependent variable, Klein and Spady (1993); these estimation methods permit general

distributions of the regressors, but can be computationally burdensome, since they involve min-

imization problems with nonparametric estimators of G whose solutions cannot be written in a

simple closed form. Still other estimators of were proposed for the �generalized regression model�

proposed by Han (1987),

yi = T (x0i�0; "i); (1.2)

where the unknown transformation T (�) is assumed to be monotonic in its �rst argument, and where

the unobservable error term "i is assumed to be independent of xi. The assumed monotonicity of T ,

which implies monotonicity of G in (1.1), is fundamental for the consistency of the �maximum rank

correlation�estimator of Han (1987) and the related monotonicity-based estimators of Cavanagh

and Sherman (1991); like the �single index regression�estimators, computation of the �monotonic-

ity�estimators is typically formidable, since it requires minimization of a criterion which may be

discontinuous and involves a double sum over the data.
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In this paper, which combines the results of Ahn (1995) and Ichimura and Powell (1996), both

�smoothness�and monotonicity the nuisance function G are imposed �more speci�cally, it is as-

sumed to be di¤erentiable (up to a high order) and invertible in its argument. Simple �two-step�

estimators are proposed under these restrictions; the �rst step obtains a nonparametric estimator

of the conditional mean gi of yi given xi using a standard (kernel) method, while the second step

extracts an estimator of �0 from a matrix de�ned using this �rst-step estimator. One estimator

of the unknown coe¢ cients is based upon the �eigenvector�approach that was used in a di¤erent

context by Ichimura (1993b), and the corresponding second-step matrix estimator was considered

(again in a di¤erent context) by Ahn and Powell (1993). An alternative, closed-form estimator

of �0 is also proposed; the relation of the �eigenvector�to the �closed form�estimation approach

is analogous to the relation of limited information maximum likelihood (LIML) to two-stage least

squares (2SLS) for simultaneous equations models. These estimators are computationally simple

(since the second-step matrix estimator can be written in closed form), and do not require that all

components of the regressor vector xi are jointly continuously distributed. And, as shown below,

they are root-n consistent (where n is the sample size) and asymptotically normal under regular-

ity conditions that have been imposed elsewhere in the econometric literature on semiparametric

estimation.

2. The Model and Estimator

Rewriting the single-index regression model (1.1) as

yi � gi + ui � G(x0i�0) + ui; (2.1)

where

gi � G(x0i�0) � E[yijxi] (2.2)

is the conditional mean of the (scalar) dependent variable yi given the p-dimensional vector of

regressors xi (so the unobservable ui has E[uijxi] = 0), the maintained assumption that G is

monotonic implies

�(gi) � G�1(gi) = x
0
i�0: (2.3)
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That is, given the conditional mean gi of yi,

0 = x0i�0 � �(gi) (2.4)

for some unknown transformation �(gi) of gi . Clearly �0 could only be identi�ed up to a scale

normalization from this relation; given such a normalization, though, (2.4) can be used to identify

the remaining components of �0, provided the regressors xi are su¢ ciently variable when the

conditional mean gi is held �xed. Speci�cally, for a pair of observations with the same conditional

mean gi, the parameter vector �0 must be orthogonal to the di¤erence in regressors, i.e.,

0 = (xi � xj)0�0 + �(gj)� �(gi)

= (xi � xj)0�0 if gi = gj : (2.5)

Therefore, letting w(xi;xj) � wij be any nonnegative weighting function of the pair of regressors

xi and xj , the coe¢ cient vector �0 satis�es

�00�w�0 = 0; (2.6)

where �w � E[�w (gj)] and

�w (s) = E[w(xi;xj) � (xi � xj)(xi � xj)0jgi = s] (2.7)

assuming these moments exist. Provided the matrix �w has rank (p � 1) � so that any other

nontrivial linear combination (xi�xj)0� of the di¤erence of regressors has nonzero variance condi-

tional on (xi�xj)0�0 = 0 and � is not proportional to �0 � the parameter vector is identi�ed (up

to scale) as the eigenvector corresponding to the unique zero eigenvalue of the matrix �w, which

depends only on the joint distribution of the observable (yi;x0i).

A natural approach to transform this identi�cation result into an estimation method for �0

would be to �rst estimate the unobservable conditional expectation terms gi � E[yijxi] by some

nonparametric method, then estimate a sample analogue to the matrix �w using pairs of observa-

tions with estimated values ĝi of gi that were approximately equal. Such an estimation strategy was

proposed, in a somewhat di¤erent context, by Ahn and Powell (1993); in that paper, the �rst-step

nonparametric estimator was the familiar kernel estimator, which takes the form of a weighted

average of the dependent variable,

ĝi �
Pn
i=1Kij � yjPn
i=1Kij

; (2.8)
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with weights Kij given by

Kij � K

�
xi � xj
h1

�
; (2.9)

for K(�) a �kernel� function which tends to zero as the magnitude of its argument increases, and

h1 � h1n a �rst-step �bandwidth�which is chosen to tend to zero as the sample size n increases.

Given this estimator ĝi of the conditional mean variable gi, a second-step estimator of a matrix

analogous to �w was de�ned by Ahn and Powell (1993) as

Ŝ �
 
n

2

!�1
n�1X
i=1

nX
j=i+1

!̂ij(xi � xj)(xi � xj)0; (2.10)

the weights !̂ij took the form

!̂ij �
1

h2
k

�
ĝi � ĝj
h2

�
titj ; (2.11)

where k(�) is a univariate kernel analogous to K above, h2 � h2n is a bandwidth sequence for

the second-step estimator Ŝ, and ti = t(xi) is a �trimming� term which is chosen to equal zero

for observations where ĝi is known to be imprecise (i.e., where xi is outside some prespeci�ed

compact subset of its support). The weighting function !̂ij in (2.11) declines to zero as ĝi � ĝj

increases relative to the bandwidth h2; thus, the conditioning event �gi = gj�in the de�nition of

�w is ultimately imposed as this bandwidth shrinks with the sample size (and the nonparametric

estimator of gi converges to its true value in probability).

Adopting this estimator Ŝ of �w (which implies a particular de�nition of the weighting func-

tion w(xi;xj) in (2.6), described below), a corresponding estimator of �0 would exploit a sample

analogue of relation (2.6) based on the eigenvectors of Ŝ. Though the matrix �w will be positive

semi-de�nite under the regularity conditions to be imposed, the estimator Ŝ need not be for any

�nite sample. Hence, the estimator �̂ of �0 is de�ned here as the eigenvector for the eigenvalue

of Ŝ that is closest to zero in magnitude. That is, de�ning (�̂1; :::; �̂p) to be the p solutions to the

determinantal equation

jŜ��Ij = 0; (2.12)

the estimator �̂ is de�ned as an appropriately-normalized solution to

(Ŝ��̂I)�̂ = 0; (2.13)

where

�̂ � argmin
j
j�̂j j: (2.14)
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A convenient normalization for �̂ (and �0) imposes the additional restriction that a particular

component of �0 (say, the �rst) is known to be nonzero, and is normalized to unity, so that the

remaining coe¢ cients are identi�ed relative to that value. Speci�cally, writing �̂ and �0 as

�̂ =

 
1

��̂

!
; �0 =

 
1

��0

!
; (2.15)

and partitioning Ŝ conformably as

Ŝ �
"
Ŝ11 Ŝ12

Ŝ21 Ŝ22

#
; (2.16)

the solution to (2.13) takes the form

�̂ � [Ŝ22 � �̂I]�1 � Ŝ21 (2.17)

for this normalization.

The �smallest eigenvalue�approach used here was used in an earlier paper by Ichimura (1993b)

to construct a two-step estimator for the binary response model under a conditional median re-

striction, suggested as a computationally-simpler alternative to the maximum score estimator for

this model proposed by Manski (1975, 1985). For the binary response model with a continously-

distributed, conditional-mean-zero error term, the conditional mean gi � E[yijxi] of the binary

dependent variable equals one-half if and only if the underlying regression function x0i�0 also equals

zero; by the same reasoning as given for the estimator �̂ in the present paper, Ichimura proposed

estimation of �0 using the eigenvector for the smallest eigenvalue of a matrix of weighted averages

of the cross-products of the regressors, with kernel weights (like those above) depending upon the

deviation of the estimated conditional means fĝig from one-half. Though this estimator was shown

to be consistent and asymptotically normal, its rate of convergence was slower than the square root

of the sample size, unlike the asymptotic theory for the present estimator �̂ derived in the next

section.

An alternative �closed form�estimator ~� of �0 can be de�ned as

~� � [Ŝ22]�1 � Ŝ21; (2.18)

this estimator is motivated by rewriting (2.4) as

xi1 = x
0
i2�0 + �(gi) + vi; (2.19)
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which is in the same form as the �selectivity bias�model treated by Ahn and Powell (1993), with

xi = (xi1;x
0
i2)
0 and with error term vi which is identically zero for this application. In light of

the motivation for �̂ given above, the alternative estimator ~� can be viewed as exploiting the fact

(to be veri�ed below) that �̂ tends to zero in probability, since the smallest eigenvalue of the

probability limit �w of Ŝ is zero. The relation of �̂ to ~� here is analogous to the relationship

between the two classical single-equation estimators for simultaneous equations systems, namely,

limited-information maximum likelihood, which has an alternative derivation as a least-variance

ratio (LVR) estimator, and two-stage least squares (2SLS), which can be viewed as a modi�cation

of LVR which replaces an estimated eigenvalue by its known (zero) probability limit. The analogy

to these classical estimators extends to the asymptotic distribution theory for �̂ and ~�, which, under

the conditions imposed below, will be asymptotically equivalent, like LVR and 2SLS. Their relative

advantages and disadvantages are also analogous �e.g., ~� is simpler to compute, while �̂ will be

equivariant with respect to choice of which (nonzero) component of �0 to normalize to unity. As

noted in the introduction, both estimators will be much easier to calculate than many of the existing

estimators for the single-index regression model, which typically require solution of a p-dimensional

minimization problem with a criterion involving a double-summation over the observations.

3. Large Sample Properties of the Estimator

Since the de�nition of the estimator �̂ = (1;��̂0)0 is based on the same form of a �pairwise di¤erence�

matrix estimator Ŝ analyzed in Ahn and Powell (1993), it is most convenient to impose the same

regularity conditions from that paper, and to derive the asymptotic theory for the present estimator

using the large-sample characterizations previously obtained. The appendix below lists analogues

of the eleven assumptions imposed by Ahn and Powell (1993), modi�ed to �t the present problem

and notation. The necessity and generality of those assumptions were discussed at length in that

previous paper; here, then, those conditions are only brie�y reviewed, noting any di¤erences between

the current assumptions and their earlier counterparts.

In the assumptions in the appendix, the regression vector xi is assumed to have only discretely-

and continuously-distributed components, and high-order moments (namely, six) of yi and xi are

assumed to exist. The conditional mean gi = E[yijxi] = G(x0i�0) is assumed to be continuously
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distributed, with density function denoted by f(�); it is also assumed that the density f and various

conditional expectations of functions of xi given gi = g are very smooth in the argument g, i.e.,

they have high-order derivatives which have well-behaved distributions when evaluated at gi = g.

One of these functions is the conditional expectation of the trimming variable �(xi), which is

assumed to be bounded above and to decline smoothly to zero outside some compact set X for

which f(g) = f(G(x0�0)) is bounded away from zero on X. The functions K(�) and k(�) for the

�rst- and second-step estimators are assumed to be �higher-order� kernels, with the number of

vanishing moments of K depending upon the number of continuous components of xi, and with the

�rst three moments of k equalling zero (i.e., k is a �fourth-order kernel�). Likewise, the bandwidth

terms h1 and h2 are assumed to converge to zero at particular rates as the sample size n increases;

these conditions, combined with the �smoothness�and �higher-order kernel�assumptions, ensure

that the bias of various implicit nonparametric estimators is of smaller order than the square root

of the sample size, and is therefore negligible for the �rst-order distribution theory.

Under these conditions, the results of Ahn and Powell (1993) imply that the estimator Ŝ of

(2.10) above converges in probability to a matrix �0, which is a special case of the general matrix

�w of (2.7), with the particular weighting function

w0(xi;xj) � titj(fifj)
1=2 = titjfi; (3.1)

where fi � f(gi) is the density of gi and the last equality imposes the conditioning event gi = gj .

Using iterated expectations, the matrix �0 can be rewritten as

�0 � E
�
2fi[E(tijgi) � E(tixix0ijgi)� E(tixijgi) � E(tix0ijgi)

�
� E

�
2f(gi)[� i(gi) � �xx(gi)� �x(gi) � �x(gi)0

�
; (3.2)

�(g) � E[tijgi = g];

�x(g) � E[tixijgi = g]; and (3.3)

�xx(g) � E[tixix
0
ijgi = g]:

It is easy to verify that �0�0 = 0; the �nal assumption in the appendix is the identi�cation

condition, which asserts that the null space of �0 only consists of scalar multiples of �0. And,
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imposing the normalization �0 = (1;��0), this requires that rank(�0) = p�1 = rank(�22), where

�22 is the lower-right (p� 1)-dimensional submatrix of �0.

Under these conditions, spelled out precisely in the appendix, obvious modi�cations of the

arguments for Lemma 3.1 and Theorem 3.1 of Ahn and Powell (1993) yield the following large-

sample properties of the estimator Ŝ :

Lemma 3.1: Under Assumptions A.1 through A.11 in the appendix below,

(i) Ŝ��0 = op(1); and

(ii)
p
nŜ�0 =

2p
n

nX
i=1

tifi�
0(gi)[�(gi)xi � �x(gi)] � ui + op(1);

where ui � yi � gi; �0(g) = d�(g)=dg, for � is de�ned in (2.3), and the remaining terms are de�ned

in (3.1) - (3.3) above.�

Consistency of the estimator �̂ in (2.17) above could be veri�ed directly using result (i) and

the identi�cation condition A.4, but it is simpler to derive the asymptotic distribution of �̂ using

result (ii), from which consistency of �̂ immediately follows. The asymptotic linearity expression

in (ii) above is the analogue to the result (ii) of Theorem 3.1 of Ahn and Powell (1993), exploiting

the relation �(g) = x0i�0 (so Ŝ�0 is the same as \Ŝz�" of that paper, with zi � xi). The terms

in the normalized average in expression (ii) have zero mean and �nite variance, so the Lindeberg-

Levy central limit theorem implies that Ŝ�0 is asymptotically normal; however, this asymptotic

distribution will be singular, since

�00[�(gi)xi � �x(gi)] = [�(gi)�(gi)� E(ti�(g)jgi)] = 0; (3.4)

again using �(g) = x0i�0. It follows that

p
n�00Ŝ�0 = op(1); (3.5)

which further implies that the smallest (in magnitude) eigenvalue �̂ converges in probability to zero

faster than the square root of the sample size, because

p
n j�̂j =

p
n min
� 6=0

j�0Ŝ�j=k�k2 �
p
n j�00Ŝ�0j=k�0k2 = op(1): (3.6)

8



To derive the asymptotic distribution of the proposed estimator �̂ of (2.17), the normalized

di¤erence of �̂ and �0 can be decomposed as

p
n (�̂ � �0) = [Ŝ22 � �̂I]�1

p
n [Ŝ12 � (Ŝ22 � �̂I) �0]

= [Ŝ22 � �̂I]�1
p
n ŝ�

p
n �̂ [Ŝ22 � �̂I]�1�0; (3.7)

where

ŝ � Ŝ12 � Ŝ22�0 � [Ŝ�0]2; (3.8)

i.e., ŝ is the subvector of Ŝ corresponding to the free coe¢ cients �0 . From result (i) of Lemma 3.1

and (3.6), it follows that

Ŝ22 � �̂ I!p�22 (3.9)

and
p
n(�̂ � �0) = [�22]�1

p
n ŝ+ o(1); (3.10)

from which the consistency and asymptotic normality of �̂ follow from the asymptotic normality

of Ŝ�0 . A similar argument yields the asymptotic equivalence of Ahn�s estimator ~� of (2.18) and

the estimator �̂, since

p
n(�̂ � ~�) =

p
n([Ŝ22 � �̂ I]�1 � [Ŝ22]�1)Ŝ12

= �
p
n ~� [Ŝ22 � �̂ I]�1�̂ (3.11)

= op(1)

for ~� an intermediate value between �̂ and zero.

The results of these calculations are summarized in the following proposition:

Theorem 3.1: Under Assumptions A.1 through A.11, the estimator �̂ de�ned in (2.17) has

the asymptotic linear representation

p
n(�̂ � �0) = ��122

1p
n

nX
i=1

 i + op(1);

where

 i � 2 ti f(gi)�0(gi)(E[tijgi]xi2 � E[tixi2jgi]) (yi � gi);
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and is asymptotically normal,

p
n(�̂ � �0)!d N (0;��122 
�

�1
22 );

where 
 �E[ i 0i]: Also, �̂ and the estimator ~� of (2.18), proposed by Ahn (1995), are asymptoti-

cally equivalent,
p
n(�̂ � ~�) = op(1):�

A �nal requirement for conducting the usual large-sample normal inference procedures is a

consistent estimator of the asymptotic covariance matrix ��122 
�
�1
22 of �̂. Estimation of �

�1
22 is

straightforward; by result (i) of Lemma 3.1 and (3.6) above, either [Ŝ22 � �̂I]�1 or [Ŝ�122 ]
�1 will be

consistent, with the former being more natural for �̂ and the latter for ~�. Consistent estimation of

the matrix 
 is less straightforward, but, as Ahn (1995) points out, one consistent estimator would

be


̂ � 1
n

nX
i=1

 ̂i ̂i; (3.12)

for

 ̂i �
1

n� 1

nX
i=1

�̂ij(xi2 � xj2)(xi2 � xj2)0; (3.13)

where

�̂ij �
�
1

h2

�2
k0
�
ĝi � ĝj
h2

�
ti tj (3.14)

and k0(�) denotes the derivative of the second-step kernel k(�). The argument for Ahn�s (1995)

Theorem 3.2 applies here as well, and yields consistency of 
̂.

4. Topics for Further Research

Though the large-sample theory of the previous section used a speci�c (kernel) form for the �rst-step

nonparametric estimator ĝi of gi = E[yijxi], it seems likely the results of Lemma 3.1 and Theorem

3.1 could be established using other initial nonparametric estimators of this conditional mean �like

series, nearest neighbor, or locally linear regression methods �under analogous regularity conditions

for those estimators. (Indeed, Ahn�s (1995) analysis used a slightly di¤erent speci�cation of the

kernel estimator than in the present paper.) This would be useful because the �rst-step kernel

estimator, while theoretically convenient, may well be problematic for practical implementation of
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the procedure. In particular, the proposed estimation method exploits the monotonicity of gi in

terms of the index x0i�0, but the kernel estimator may require relatively large samples to accurately

re�ect this monotonicity, and the second-step estimator will be sensitive to �oversmoothing� in

the �rst step. Consider, for example, a sample with ti = 1 for all observations (so that all xi lie

in the prespeci�ed compact set X). In this case, as the �rst-step bandwidth h1 tends to in�nity,

ĝi tends to the sample average �y of the dependent variable for all observations, and the matrix Ŝ

tends to a constant multiple of the sample covariance of the regressors, whose smallest eigenvalue

needs not tend to zero in large samples, and whose corresponding eigenvector bears no necessary

relation to �0. This suggests that a �rst-step estimation method whose �oversmoothed�limit was

non-constant might have better �nite-sample performance than the present kernel estimator. (For

example, gi might be estimated by the sum of a linear least-squares �t of yi on xi and a kernel

regression estimate of the conditional mean of the residuals from that �t.) Whether such alternative

�rst-step estimators are theoretically valid and practically useful is a good topic for further work.

On a related topic, the �faster-than-root-n� convergence of the smallest eigenvalue �̂ to zero

would be expected to fail if the single-index speci�cation (1.1) for the conditional mean of yi is

not satis�ed, which suggests that a normalized version of �̂ might be used to test whether the

single-index speci�cation is indeed correct. However, the derivation of the asymptotic distribution

of �̂ is not straightforward, and is related to the �asymptotic singularity� issue that arises in the

nonparametric speci�cation testing literature (e.g., see ãit Sahalia, Bickel, and Stoker (1994)), so

the large-sample properties of �̂ will require additional work.

5. APPENDIX: Regularity Conditions

With modi�cations for the present problem and notation, conditions 3.1 through 3.11 of Ahn and

Powell (1993) are translated here as follows:

Assumption A.1 (Random Sampling and Bounded Moments): The vectors (yi;x0i)
0 are in-

dependently and identically distributed across i, with all components having �nite sixth-order

moments.

Assumption A.2 (Correctly-Speci�ed Model): The data satisfy the monotone single-index
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regression model described in (2.1), (2.2), and (2.3) above.

Assumption A.3 (Continuous Distribution of Index): The conditional distribution of gi �

E[yijxi] = G(x0i�0) is absolutely continuous with respect to Lebesgue measure, with (conditional)

density function f(�) that is continuous and bounded from above.

Assumption A.4 (Identi�cation): The matrix �0, de�ned in (3.2), and its lower-right (p �

1)� (p� 1) submatrix �22 have rank p� 1.

Assumption A.5 (Kernel Regularity, Second Step): The kernel function k(�) used to de�ne

the weights !̂ij in (2.11) above satis�es

(i) k(u) is twice di¤erentiable, with k00(u) < k0 for some k0;

(ii) k(u) = k(�u);

(iii) k(u) = 0 if juj > l0 for some l0 > 0; and

(iv)
R
uk(u)du = 0 for u = 1, 2, and 3.

Assumption A.6 (Bandwidth Rates, Second Step): The bandwidth sequence h2 used to de�ne

the weights !̂ij of (2.11) is of the form

h2 = cn � n��;

where the positive sequence cn has c0 < cn < c�10 for some c0 > 0, and � 2 (1=8; 1=6).

Assumption A.7 (Smooth Density and Conditional Expectations): The conditional density

function f(u) of gi , the functions �(g); �x(g); and �xx(g) (de�ned in (3.3) above), and the function

�(g) � G�1[g] and its derivative �0(g) � d�(g)0dg are all fourth-order continuously di¤erentiable,

with derivatives that are bounded for all g in the support of gi:

Assumption A.8 (Distribution of Conditioning Variables): After an appropriate reordering,

the vector xi of regressors can be partitioned as xi = (x
(1)
i ;x

(2)
i )

0, where x(1)i is continuously

distributed and x(2)i is discrete. Furthermore, if �(x(1)jx(2)) is the conditional density function of

x
(1)
i given x(2)i = x(2), then for each x in some known, compact subset X of the support of xi , the

following conditions hold:

(i) �(x(1)jx(2)) > �0 for some �0 = �0(x
(2)) > 0:
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(ii) De�ning �i � �(xi) � (1; gi; fi; � i; �
0(gi);x0i; �x(g)

0)0; the function �(x) � �(x(1)jx(2)) is

bounded and M -times continuously di¤erentiable with bounded derivatives in x(1), for some even

integer M > m=(1=3� 2�), where m = dim(x(1)) and � is given in Assumption 3.6 above.

(iii) The functions E[y2i jxi = x] � �(x(1)jx(2)) and g(x) � �(x(1)jx(2)) are continuous on X.

(iv) The number of points of support of x(2) in X is �nite.

Assumption A.9 (Exogenous Trimming): The indicator variable ti is constructed so that

ti > 0 only if xi 2 X, where the compact set X satis�es the restrictions in Assumption A.8 above.

Assumption A.10 (Kernel Regularity, First Step): The kernel function K(�) used to de�ne

the estimator ĝi in (2.8) and (2.9) above is of the form

K(u) =

M=2X
i=1

aj�(u; bjC);

where

(i) the even integer M satis�es the conditions of Assumption A.8 (ii);

(ii) �(u;C) is the density function of a N (0; C) random vector;

(iii) C is an arbitrary positive de�nite matrix;

(iv) b1; :::; bM=2 are arbitrary, distinct, positive constants; and

(v) the constants a1; :::; aM=2 satisfy the linear equationsX
j

aj = 1;
X
j

ajb
q
j = 0 for q = 1; :::;M=2� 1:

Assumption A.11 (Bandwidth Rates, First Step): The bandwidth sequence h1 used to de�ne

the estimator gi in (2.8) and (2.9) is of the form

h1 = dn � n�
 ;

where the positive sequence dn has d0 < dn < d�10 for some d0 > 0, and 
 2 (1=2M; (1=6� �)=m),

for M , �, and m given in Assumptions 3.6 and 3.8 (ii).
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