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Abstract

This paper considers estimation of the coe¢ cients in a semiparametric multinomial choice model

with linear indirect utility functions (with common coe¢ cients but di¤ering regressors) and errors

that are assumed to be independent of the regressors. This implies that the conditional mean of the

vector of dependent indicator variables is a smooth and invertible function of a corresponding vector

of linear indices. The estimation method is an extension of an approach proposed by Ahn, Ichimura,

and Powell (2004) for monotone single-index regression models to a multi-index setting, estimating

the unknown index coe¢ cients (up to scale) by an eigenvector of a matrix de�ned in terms of a �rst-

step nonparametric estimator of the conditional choice probabilities. Under suitable conditions, the

proposed estimator is root-n-consistent and asymptotically normal.

JEL Classi�cation: C24, C14, C13.



1. Introduction

While a large literature exists for estimation of single-index regression and semiparametric binary

response models �examples include Ahn, Ichimura, and Powell (1996), Han (1987), Härdle and Stoker

(1989), Härdle and Horowitz (1996), Ichimura (1993), Klein and Spady (1993), Manski (1975, 1985),

Newey and Ruud (1991), and Powell, Stock and Stoker (1989), among many others �there are fewer

results available on estimation of multiple-index regression models and semiparametric multinomial

choice models. Lee (1995) constructs a multinomial analogue to Klein and Spady�s (1993) estimator of

the semiparametric binary choice model, estimating the index coe¢ cients by minimizing a semipara-

metric "pro�le likelihood" constructed using nonparametric estimators of the choice probabilities as

functions of the indices. Lee demonstrates semiparametric e¢ ciency of the estimator under the "dis-

tributional index" restriction that the conditional distribution of the errors depends on the regressors

only through the indices. As Thompson (1993) shows, though, the semiparametric e¢ ciency bound

for multinomial choice under the assumption of independence of the errors �which coincides with the

bound the weaker distributional index restriction for binary choice �di¤ers when the number of choices

exceeds two, indicating possible e¢ ciency improvements from the stronger independence restriction.

Ruud (2000) shows that the stronger independence restrictions yield choice probabilities that are in-

vertible functions of the indices and whose derivative matrix (with respect to the indices) is symmetric,

neither of which needs hold under only the distributional index restriction.

The object of this paper is to construct a computationally-simple estimator of the index coe¢ cients

for the multinomial choice model under independence of the errors and regressors. The estimator is

a multinomial analogue of that proposed by Ahn, Ichimura, and Powell (1996) for the binary choice

model under that restriction, exploiting the invertibility of the choice probabilites in the index func-

tions under this restriction. The parameter vector is identi�ed as the eigenvector corresponding to

the unique zero eigenvalue for a matrix de�ned as the conditional expectation of a quadratic form in

di¤erences in regressors for observations with equal choice probability vectors; the coe¢ cient estimator

is de�ned analogously, as the eigenvector of the smallest (in magnitude) eigenvalue of a sample ver-

sion of the expected matrix quadratic form. In a sense, the proposed estimator is a semiparametric

version of Amemiya�s (1976) extension of Berkson�s (1955) minimum chi-square logit estimator to the

multinomial choice model with known error distribution. As for the minimum chi-square estimation
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methods, the choice probability vectors are �rst nonparametrically estimated �here, using general non-

parametric regression methods instead of cell means for regressors with �nite support �and then the

index coe¢ cients are estimated using a (nearly) closed-form second-stage procedure. And the e¢ cient

"weight matrix" for the matrix quadratic form de�ning the estimator is the same as the e¢ cient weight

matrix for the Amemiya�s (1976) GLS estimator for parametric multinomial choice with grouped data.

2. The Model and Estimator

For the semiparametric multinomial choice (MNC) model considered here, the J-dimensional de-

pendent variable di is a vector of indicator variables denoting which of J + 1 mutually-exclusive and

exhaustive alternatives (numbered from j = 0 to j = J) is chosen. Speci�cally, for individual i; alter-

native j is assumed to have an unobservable indirect utility y�ij for that individual, and the alternative

with the highest indirect utility is assumed chosen. Thus an individual component dij of the vector di

has the form

dij = 1fy�ij � y�ik for k = 0; :::; Jg; (2.1)

with the convention that di = 0 indicates choice of alternative j = 0: An assumption of joint continuity

of the indirect utilities rules out ties (with probability one); in this model, the indirect utilities are

further restricted to have the linear form

y�ij = x
0
ij�0 + "ij (2.2)

for j = 1; :::; J; where the vector "i of unobserved error terms is assumed to be jointly continuously

distributed and independent of the J � r-dimensional matrix of regressors Xi (whose jth row is x0ij):

For alternative j = 0; the usual normalization y�i0 = 0 is imposed.

As Lee (1995) notes, the MNC model with independent errors restricts the conditional choice

probabilities to depend upon the regressors only through the vector �i � Xi�0 of linear indices; that

is, it takes the form

E[dijXi] � pi= P(Xi�0); (2.3)

for some unknown function P(�); so that

di = pi + ui = P(Xi�0) + ui; (2.4)
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where E[uijXi] = 0 by construction. In addition, the assumption of independence of the latent distur-

bances "i and the regressors Xi implies that the function P(�) is smooth and invertible its argument

� if "i has nonnegative density (Newey and Ruud, 2007). A weaker condition yielding (2.3) is an as-

sumption that the conditional distribution of "i given Xi only depends upon the vector of indices Xi�0;

but under this restriction the function P needs not be invertible in its argument, so invertibility would

need to be imposed as an additional restriction for the method proposed here to apply. Identi�cation

and estimation of an alternative semiparametric multinomial response model �with common covariates

but di¤ering coe¢ cient vectors across alternatives �under this weaker "multi-index" restriction was

considered in detail by Lee (1995).

For the present model, the coe¢ cient vector �0 is clearly only identi�ed up to scale; given such

a normalization, though, the parameter vector �0 can be identi�ed from inversion of the relation

(2.3), provided the matrix Xi of regressors is su¢ ciently variable given the vector X0i�0 of indices, or,

equivalently, given the vector pi of conditional expectations of di given Xi: Writing

�(pi) � P
�1(pi) = Xi�0; (2.5)

for the inverse relation between pi and the linear index vector Xi�0; identi�cation of �0 can be based

upon the fact that, for values of pi that are nearly equal, the corresponding values of Xi�0 will also

be nearly equal. That is, following Ahn, Ichimura, and Powell (2004), the vector �0 can be identi�ed

by matching observations (numbered i and m) with the same conditional expectation pi = pm but

di¤erent matrices of regressors. Conditional on

pi = pm; (2.6)

relation (2.5) implies that

(Xi �Xm)�0 = 0: (2.7)

It follows that

E[Lij(Xi �Xm)jpi = pm]�0 = 0 (2.8)

for any random r � J matrix Lim for which EjjLim(Xi � Xm)jj exists. A convenient class of such

matrices is

Lim = (Xi �Xm)0Wim; (2.9)
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for some suitable J � J; nonnegative-de�nite "weight/trimming" matrix Wim � W(Xi;Xm); this

implies that the (identi�ed) r � r matrix

�0 � E[(Xi �Xm)Wim(Xi �Xm)jpi = pm]

� lim
"!0

E[(Xi �Xm)Wim(Xi �Xm)j kpi = pmk < "] (2.10)

has

�00�0�0= 0; (2.11)

that is, �0 has a zero eigenvalue with corresponding eigenvector equal to the true parameter �0: If the

matrix Wim is chosen so that the zero eigenvalue of �0 is unique �which requires a su¢ ciently rich

support of the conditional distribution of Xi given X0i�0 �this su¢ ces to identify �0 up to scale as

the unique solution to (2.11). The weight/trimming matrix might be chosen for technical convenience

and/or to improve the asymptotic e¢ ciency of the corresponding estimator of �0:

Given a random sample of size n from this model, the preceding identi�cation result can be trans-

formed into an estimation method for �0 by �rst estimating the unobservable conditional expectation

terms pi � E[dijXi] by some nonparametric method and then, as in Ahn, Ichimura, and Powell (2004),

estimating a sample analogue to the matrix �0 using pairs of observations with estimated values p̂i of

pi that were approximately equal. For example, the �rst-step nonparametric estimator of pi may be

the familiar kernel regression estimator, which takes the form of a weighted average of the dependent

variable,

p̂i �
Pn
m=1 kim � dmPn

i=1 kim
; (2.12)

with weights Kij given by

kim � k
�
xi � xm
h1

�
; (2.13)

for xi � vec(X0i); k(�) a �kernel� function which tends to zero as the magnitude of its argument

increases, and h1 � h1n a �rst-step �bandwidth�which is chosen to tend to zero as the sample size n

increases. Given this estimator p̂i of the conditional mean variable p �or a nonparametric estimator

of pi with comparable properties �a second-step estimator of a matrix analogous to �0 can be

Ŝ �
 
n

2

!�1
n�1X
i=1

nX
j=i+1

1

hJ2
K

�
p̂i � p̂j
h2

�
� (Xi �Xj)0Aij(Xi �Xj); (2.14)
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where K(�) is a univariate kernel analogous to k above, h2 � h2n is a bandwidth sequence for the

second-step estimator Ŝ, and Aij = A(Xi;Xj) is a J � J; nonnegative-de�nite �weight/trimming�

matrix which is constructed to equal zero for observations where p̂i or p̂j is imprecise (i.e., where Xi

or Xj is outside some compact subset of its support). The term K ((p̂i � p̂j)=h2) declines to zero as

p̂i� p̂j increases relative to the bandwidth h2; thus, the conditioning event �pi = pj�in the de�nition

of �0 is ultimately imposed as this bandwidth shrinks with the sample size (and the nonparametric

estimator of pi converges to its true value in probability).

Given the estimator Ŝ of �0 � which corresponds to a particular structure for the population

weight matrix Vim in the de�nition of �0; as discussed below �construction of an estimator of �0

follows exactly the same form as in Ahn, Ichimura, and Powell (2004) and Blundell and Powell (2004),

exploiting a sample analogue of relation (2.11) based on the eigenvalues and eigenvectors of Ŝ. Since

the estimator Ŝ may not be in �nite samples if the kernel function K(�) is not constrained to be

nonnegative, the estimator �̂ of �0 is de�ned here as the eigenvector for the eigenvalue of Ŝ that is

closest to zero in magnitude. That is, de�ning (�̂1; :::; �̂p) to be the p solutions to the determinantal

equation

jŜ��Ij = 0; (2.15)

the estimator �̂ is de�ned as an appropriately-normalized solution to

(Ŝ��̂I)�̂ = 0; (2.16)

where

�̂ � argmin
j
fj�̂j jg: (2.17)

Normalizing the �rst component of �0 to zero, with remaining coe¢ cients de�ned as -�0; i.e.,

�̂ =

 
1

��̂

!
; �0 =

 
1

��0

!
; (2.18)

and partitioning Ŝ conformably as

Ŝ �
"
Ŝ11 Ŝ12

Ŝ21 Ŝ22

#
; (2.19)

the solution to (2.16) takes the form

�̂ � [Ŝ22 � �̂I]�1 � Ŝ21 (2.20)
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for this normalization. An alternative �closed form�estimator ~� of �0 can be de�ned as

~� � [Ŝ22]�1 � Ŝ21; (2.21)

this estimator exploits the fact (to be veri�ed below) that �̂ tends to zero in probability, since the

smallest eigenvalue of the probability limit �0 of Ŝ is zero.

As discussed by Ahn, Ichimura, and Powell (2004), the relation of �̂ to ~� here is analogous to the

relationship between the two classical single-equation estimators for simultaneous equations systems,

namely, limited-information maximum likelihood, which has an alternative derivation as a least-variance

ratio (LVR) estimator, and two-stage least squares (2SLS), which can be viewed as a modi�cation of

LVR which replaces an estimated eigenvalue by its known (zero) probability limit. The analogy to

these classical estimators extends to the asymptotic distribution theory for �̂ and ~�, which, under

the conditions imposed below, will be asymptotically equivalent, like LVR and 2SLS. Their relative

advantages and disadvantages are also analogous �e.g., ~� is slightly easier to compute, while �̂ will be

equivariant with respect to choice of which (nonzero) component of �0 to normalize to unity. As noted in

the introduction, both estimators are semiparametric analogues to the minimum chi-square estimators

of Berkson (1955) and Amemiya (1976), using a particular semilinear regression estimator applied to

(2.5), which treats the�(�) function as the unknown nonparametric component and the �rst component

of Xi (with coe¢ cient normalized to unity) as the dependent variable. The proposed estimator will

be easier to calculate than Lee�s (1995) estimator for the multinomial response model under index

restrictions, which requires solution of a r-dimensional minimization problem with a criterion involving

simultaneous estimation of J nonparametric regressions (with the J index functions as arguments)

and minimization over the parameter vector �:. Unlike the estimator proposed here, however, Lee�s

estimator does not impose invertibility of the vector of choice probabilities in the vector of indices.

3. Large Sample Properties of the Estimator

Since the de�nition of the estimator �̂ = (1;��̂0)0 is based on the same form of a �pairwise di¤erence�

matrix estimator Ŝ analyzed in Ahn, Ichimura, and Powell (2004) and Blundell and Powell (2004),

the regularity conditions imposed here will be quite similar to those imposed in these earlier papers.

Rather than restrict the �rst-stage nonparametric estimator of the choice probabilities p(Xi) to have a

6



particular form (e.g., the kernel estimator in (2.12)�it is assumed to satisfy some higher-level restric-

tions on its rate of convergence and Bahadur representation which would need to be veri�ed for the

particular nonparametric estimation method utilized. Speci�cally, given a random sample of size n for

fdi; Xig; it is assumed that the �rst-stage estimator p̂(Xi) has a relatively high convergence rate and

the same asymptotic linear representation as for a kernel estimator. That is, de�ning the "trimming"

indicator

ti � 1fjjA(Xi; �)jj 6= 0g; (3.1)

the condition

max
i
tijjp̂(Xi)� p(Xi)jj = op(n

�3=8) (3.2)

is imposed. This is a restriction on both the nonparametric estimation and the construction of the

weight-matrix function A(Xi;Xm); which will generally requiring "trimming" of observations outside

a bounded set of Xi values to ensure that (3.2) is satis�ed. Another restriction on the model is

that the �rst column xi1 of the matrix of the regressors Xi is continuously distributed, with positive

density, conditionally on the remaining components, and that the corresponding coe¢ cient �0;1 is

nonzero (and normalized to unity); as discussed by Lee (1995), this restriction helps ensure that the

parameters are identi�ed by ensuring that Xi is su¢ ciently variable conditional upon a given value of

the choice probability vector pi = P(Xi�0): Other conditions are imposed on the error distribution,

kernel function K; and bandwidth h2; a list of regularity conditions, which are similar to the conditions

imposed in Ahn, Ichimura, and Powell (2004) and single-index regression papers, are given in the

appendix below.

Under the assumptions in the appendix, consistency of the estimator Ŝ for a particular matrix �0

can be established. That is,

Ŝ
p! �0; (3.3)

where �0 is of the form given in (2.10) with

Wim = Aim
p
�(pi)�(pm); (3.4)

for �(p) the density function of the choice probability vector pi = P(Xi�0): This, with the identi�cation

restriction that the true coe¢ cient vector �0 is the unique solution of (2.11), implies consistency of the

corresponding estimator �̂ up to scale. The regularity conditions also yield the following asymptotically-

linear representation for Ŝ�0:
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p
nŜ�0 =

1p
n

NX
�=1

�(pi)[TiXi �Mi]
0
�
@P(Xi�0)

@�0

��1
(di �P(Xi�0)) + op(1); (3.5)

for

Ti � E [AimjXi;pm = pi] ; (3.6)

and

Mi � E [AimXmjXi;pm = pi] : (3.7)

The terms in the normalized average in expression (3.5) have zero mean and �nite variance, so

the Lindeberg-Levy central limit theorem implies that Ŝ�0 is asymptotically normal; however, this

asymptotic distribution will be singular, since

[TiXi �Mi]�0 = E[AimjXi][Xi�0 � E (Xm�0jXi;Xm�0 = Xi�0)] = 0: (3.8)

It follows that
p
n�00Ŝ�0 = op(1); (3.9)

which further implies that the smallest (in magnitude) eigenvalue �̂ converges in probability to zero

faster than the square root of the sample size, because

p
n j�̂j =

p
n min
� 6=0

j�0Ŝ�j=k�k2 �
p
n j�00Ŝ�0j=k�0k

2 = op(1): (3.10)

To derive the asymptotic distribution of the proposed estimator �̂ of (2.20), the normalized di¤er-

ence of �̂ and �0 can be decomposed as

p
n (�̂ � �0) = [Ŝ22 � �̂I]�1

p
n [Ŝ12 � (Ŝ22 � �̂I)�0]

= [Ŝ22 � �̂I]�1
p
n ŝ�

p
n �̂ [Ŝ22 � �̂I]�1�0; (3.11)

where

ŝ � Ŝ12 � Ŝ22�0 � [Ŝ�0]2; (3.12)

i.e., ŝ is the subvector of Ŝ�0 corresponding to the free coe¢ cients �0 . Using conditions (3.10), the

same arguments as in Ahn and Powell (1993) yield

Ŝ22 � �̂ I!p�22; (3.13)
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where �22 is the lower (r � 1)� (r � 1) diagonal submatrix of �0; and also

p
n(�̂ � �0) = [�22]�1

p
n ŝ+ o(1); (3.14)

from which the consistency and asymptotic normality of �̂ follow from the asymptotic normality of

Ŝ�0: Speci�cally,
p
n(�̂ � �0)!d N (0;��122 
22�

�1
22 );

where 
22 is the lower (r � 1)� (r � 1) diagonal submatrix of


 � E[ i 0i]; (3.15)

where

 i � �(pi)[TiXi �Mi]
0
�
@P(Xi�0)

@�0

��1
(di �P(Xi�0)) ; (3.16)

A similar argument yields the asymptotic equivalence of the "closed form" estimator ~� of (2.21) and

the estimator �̂, since

p
n(�̂ � ~�) =

p
n([Ŝ22 � �̂ I]�1 � [Ŝ22]�1)Ŝ12

= �
p
n ~� [Ŝ22 � �̂ I]�1�̂ (3.17)

= op(1)

for ~� an intermediate value between �̂ and zero.

A �nal requirement for conducting the usual large-sample normal inference procedures is a consistent

estimator of the asymptotic covariance matrix ��122 
�
�1
22 of �̂. Estimation of �

�1
22 is straightforward;

by the results given above, either [Ŝ22� �̂I]�1 or [Ŝ�122 ]�1 will be consistent, with the former being more

natural for �̂ and the latter for ~�. Consistent estimation of the matrix 
 is less straightforward; given a

suitably-consistent estimator  ̂i of the in�uence function term  i of (3.16), a corresponding estimator

of 
 could be constructed as


̂ � 1
n

nX
i=1

 ̂i ̂
0
i: (3.18)

Based on a similar Taylor�s series argument as in Ahn and Powell (1993), a candidate for such an

in�uence function estimator would be

 ̂i �
2

n� 1

nX
i=1

1

hJ+12

D

�
p̂i � p̂j
h2

�
(di � p̂j) � (Xi �Xj)0Aij(Xi �Xj)�̂; (3.19)
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with D (u) � @K(u)=@u0: Veri�cation of the consistency of 
̂ under the conditions imposed below is

a topic of ongoing research.

4. The Ideal Weight Matrix

The results of the preceding section raise the question of the optimal choice of weight matrix

Aij to be used in the construction of Ŝ in (2.14) above. The usual e¢ ciency arguments suggest that

the optimal choice would yield equality of the matrices �22 and 
22 characterizing the asymptotic

covariance matrix of �̂: This equality could be obtained using the following infeasible weight matrix:

A�ij = [H
�
i ]
0H�

j ; (4.1)

where

H�
i �

1p
�(pi)

V[dijpi]
�1=2

�
@P(Xi�0)

@�0

�
: (4.2)

The corresponding matrixW�
ij in the de�nition (2.10) of �0 would have

W�
ij =

�
@P(Xi�0)

@�0

�0
V[dijpi]

�1
�
@P(Xi�0)

@�0

�
=W�

ii (4.3)

when pi = pj ; and the asymptotic distribution of the estimator �̂
�
(which uses the infeasible A�ij as

weight matrix) would be
p
n(�̂

���0)!d N (0; [
�22]
�1); (4.4)

with


� � Var
�
(Xi � E [Xijpi])0

�
@P(Xi�0)

@�0

�0
(di � pi)

�
: (4.5)

Lee (1995) shows that 
�22 is the semiparametric analogue of the information matrix for estimation of

�0 when only the index restrictions (2.3) are imposed, which implies that �̂
�
achieves the semipara-

metric e¢ ciency bound for those restrictions. However, the argument for consistency of �̂
�
exploits

the additional restriction of invertibility of the conditional choice probabilites P(Xi�0) in the vector of

indices Xi�0; which is not required for consistency of Lee�s (1995) semiparametric maximum likelihood

estimator.

There is a close connection between the estimation approach proposed here and the "minimum

chi-squared logit" estimator proposed for the binary logit by Berkson (1955), and extended to general
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parametric multinomial choice models by Amemiya (1976). For that latter estimator, the matrix of

regressors Xi is constant within each of a �xed number of groups, and a nonparametric estimator of

the vector of choice probabilities pi for each group is constructed from the observed choice frequencies

for each group. Rewriting the relation (2.5) as

�(p̂i) � P
�1(p̂i) = Xi�0 + vi; (4.6)

with

vi � P�1(p̂i)�P�1(pi);

Amemiya (1976) shows that an e¢ cient estimator of �0 for this setup is the coe¢ cient vector of the

generalized least squares regression of �(p̂i) on Xi; using the matrix Wii (or a feasible version Ŵii;

replacing the unknown probabilities pi by their consistent estimators p̂i) as the weighting matrix. The

estimator �̂
�
is a semiparametric analogue of this minimum chi-squared estimator.

The weight matrix A�ij is infeasible in two respects �it does not satisfy the trimming requirement

to achieve the uniform nonparametric rate of convergence of p̂i to pi speci�ed in (3.2), and it involves

unknown nuisance parameter functions (the density of the choice probabilities and their derivatives

with respect to the indices and the conditional covariance matrix of the choice indicators di given pi).

Construction of a feasible version Âij of A�ij that achieves the same asymptotic distribution is another

topic of ongoing research.

5. APPENDIX:

[To be completed.]
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