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“You are Barack Obama. It is early 2009. The

unemployment rate has reached 9% and the

federal funds rate is 0%. By how much should

you increase government purchases?”

we propose an answer based on 2 sufficient statistics:

the government-purchases multiplier

the elasticity of substitution between government

and personal consumptions
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A model of unemployment with

government purchases
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Overview

dynamic continuous-time model

measure 1 of identical self-employed households

benevolent government

a matching market where labor services are traded

I not all services are sold in equilibrium ⇒ unemployment

I modeling follows Michaillat and Saez [QJE, 2015]

I market represents both a labor and a product market
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The matching market for labor services

the productive capacity of each household is 1

households buy C(t) services

government buys G(t) services

households sell Y(t) = C(t)+G(t)< 1 services

the unemployment rate is u(t) = 1−Y(t)

services are traded through long-term relationships
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Matching function and market tightness

households and government advertise v(t) vacancies

matching function: m = ω · (1−Y(t))η · v(t)1−η

market tightness: x(t)≡ v(t)/(1−Y(t))

rates at which new relationships are formed:

f (x(t)
+

)≡ m
1−Y(t)

= ω · x(t)1−η

q(x(t)
−

)≡ m
v(t)

= ω · x(t)−η
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Market flows

relationships separate at rate s

output is a state variable: Ẏ = f (x) · (1−Y)− s ·Y

assumption: flows are balanced, f (x) · (1−Y) = s ·Y

output, unemployment become jump variables

Y(x
+
) =

f (x)
s+ f (x)

, u(x
−
) =

s
s+ f (x)
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Matching cost: ρ services per vacancy

Y︸︷︷︸
gross output

= y︸︷︷︸
net output

+ ρ · v︸︷︷︸
matching cost

market flows are balanced so s ·Y = v ·q(x) and

Y = y+ρ · s ·Y
q(x)

Y ·
[

1− s ·ρ
q(x)

]
= y

Y =

[
1+

s ·ρ
q(x)− s ·ρ

]
· y

Y = [1+ τ(x
+
)] · y
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Gross and net consumptions

net consumptions enter households’ utility function

C: gross personal consumption

c = C/(1+ τ(x)): net personal consumption

G: gross government consumption

g = G/(1+ τ(x)): net government consumption
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Gross output, unemployment, net output
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Gross output, unemployment, net output

capacity 1

unemployment rate: 
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labor services

u(x) = 1 � Y (x)

  gross output:        

Y (x) =
f(x)

s + f(x)
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Gross output, unemployment, net output

matching cost: 

m
ar

ke
t t

ig
ht

ne
ss

 x

labor services

gross output Y(x) capacity 1

y(x) · ⌧(x)

 net output:                

 y(x) =
Y (x)

1 + ⌧(x)
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Feasible allocation and equilibrium

a feasible allocation [c,g,y,x] satisfies y = y(x) and

y = c+g

an equilibrium function is g 7→ [c,g,y,x]

the equilibrium function reduces to g 7→ x(g)
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Efficient unemployment: x(g) = x∗

1y* Y*

u*c g
x*
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Inefficiently high unemployment: x(g)< x∗

1y

x*

Y

u > u*c g
x
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Inefficiently low unemployment: x(g)> x∗

u < u*g

1Y

c
x

x*

y
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Sufficient-statistics formula for

optimal government purchases
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Value of government purchases

we follow Samuelson [REStat, 1954]

households’ instantaneous utility is U (c,g)

U is homothetic so the marginal rate of substitution

MRSgc ≡
∂U /∂g
∂U /∂c

is a decreasing function of g/c = G/C

MRSgc is a decreasing function of G/Y
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Government’s problem

given an equilibrium function x(g), the government’s

problem is to determine g to maximize welfare

U

y(x(g))−g︸ ︷︷ ︸
c

,g


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Formula in sufficient statistics

the first-order condition is

0 =
∂U

∂g
− ∂U

∂c
+

∂U

∂c
· dy
dx
· dx
dg

1 =
∂U /∂g
∂U /∂c

+
dy
dx
· dx
dg

optimal government purchases satisfy

1 = MRSgc︸ ︷︷ ︸
Samuelson formula

+
dy
dx
· dx
dg︸ ︷︷ ︸

correction term
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Optimal G/Y versus Samuelson’s (G/Y)∗

y

x

u*
x*

y(x) G/Y = (G/Y)*
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Optimal G/Y versus Samuelson’s (G/Y)∗

y

x

u*
x*

y(x) G/Y > (G/Y)*
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Optimal G/Y versus Samuelson’s (G/Y)∗

y

x

u*
x*

y(x) G/Y < (G/Y)*
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Assessment of actual US

government purchases
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Introducing estimable statistics

linearize abstract formula around efficient 

tightness x* and Samuelson’s ratio (G/C)*:

1 � MRSgc =
dy

dg

1

✏
· G/C � (G/C)⇤

(G/C)⇤
⇡ �x � x⇤

x⇤ · dY

dG
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An implicit formula

G/C− (G/C)∗

(G/C)∗
≈−ε · dY

dG
· x− x∗

x∗

dY/dG: government-purchases multiplier

ε : elasticity of substitution between g and c

I ε = 0: Leontief preferences, “bridges to nowhere”

I ε = 1: Cobb-Douglas preferences, benchmark case

I ε →+∞: linear preferences, perfect substitute
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Public employment/private employment in the US
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Labor market tightness in the US
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Assessment of US government purchases
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Optimal response to an increase in

unemployment rate from 5.9% to 9%
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An explicit formula

consider a shock to x(g) bringing the economy from

[x∗,(G/C)∗] to [x0,(G/C)∗]

the optimal response of government purchases is

G/C− (G/C)∗

(G/C)∗
≈−ε · dY

dG
· x(G/C)− x∗

x∗
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An explicit formula

consider a shock to x(g) bringing the economy from

[x∗,(G/C)∗] to [x0,(G/C)∗]

the optimal response of government purchases is

G/C− (G/C)∗

(G/C)∗
≈ −ε · dY

dG

1+ ε ·
( dY

dG

)2 · (G/Y)∗·(1−(G/Y)∗)
(1−η)·u∗

· x0− x∗

x∗
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(u−u∗)/u∗ ≈−(1−η) · (x− x∗)/x∗
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Optimal increase in G/Y when

unemployment rises from 5.9% to 9%
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