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Economics 202A Lecture II Fall 2007

1. Check to see if books are available.

2. Check to see if reader is available.

3.  Extra Reading lists, Data Assignments.

4.  Bring Chalk.

5.  Section this evening 6:10 - 8, 145 McCone Hall.

6. Next Tuesday�s extra class will be in 141 McCone Hall, from 6:10 - 7:30.  

There are five groups of people who are allowed to enroll.

1.  Those who are already enrolled.

Then new enrollments will be restricted to four categories:

2.  Economics graduate students for whom this is a required course.

3. ARE students for whom this is a required course.

4. Undergraduate majors in economics who are ready to take this course and who
have my explicit permission.

5.  One or two people who were earlier granted a promise that they could enroll in
the class.

There will be no auditors.

I really do apologize to those of you who would like to take the class but are not
allowed to enroll.  I feel really very bad about this.  I simply do not have a choice
here.  Last Spring, the University initially assigned us a room that was utterly
terrible and also with fewer seats than this one.  Phil Walz had to put up a real
fight to get this room.  

Let�s turn to today�s lecture.

I do have a suggestion for you. I want you to try to tell the story of the readings or
of the lecture in your own words. 

In seminars while the mathematics is being presented, that�s what I try to do.  I try
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to tell a story about what lies behind it.   

You should try to do that for yourself: to have your own story of what is behind
the mathematics.

That allows you to do the manipulations on two levels:
Formally, in terms of the mathematics;
But also, informally, in terms of your story.

This is a way of being an active, rather than a  passive, participant in the material.

What are we going to do today?

Today I will review Section I of the Reading List�the mathematical review.

Max will give a further review this evening in 145 McCone Hall.

And then next Tuesday�s class will be from 6:10 to 7:30 in 141 McCone Hall.

Most of this lecture comes from what I learned in a Time Series course that I took
in the statistics department taught by David Donaho, who has unfortunately left
for Stanford.  

I will probably mention Dave again in the class on Sargent next Tuesday evening.  

The lecture will proceed in two parts.

1. I will review the solution to Difference Equations.

I will review the solution to the first and second order linear difference
equations.

2. I will give a short review of time series.

I will discuss, at least briefly, ARMA models. 
These will be mathematical tools that will recur throughout the course.
It is very important that you understand them from the beginning.

So, you should definitely make it a first priority to read the sections
of Harvey that are at the beginning of the Reader.

Let me begin.

You should have a background that gives you the solution to differential
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equations.

If that is the case then you should appreciate that it takes only minor adaptation
to get the solution to difference equations. 

(1) Let me remind you of the solution to the first order difference equation.

The solution to that is:

I think that you have already learned that before.
If you have missed it, you should review it, to see why this is the solution.

This solution makes sense.

You can check that the first terms of the series make sense.  It follows the rule
given by the difference equation for forming yt given yt-1.  So

y0 = y0

y1 =  " y0 + f1

y2 = "(" y0 + f1) + f2 =  "2 y0 + " f1 + f2

This corresponds to what we have in the formula for the solution.

For the moment I will put a BOX around this equation.

Put a BOX around both equations.

We put a box around it so that when we want this solution we can call on it�just
the way a computer program will call upon a subroutine.  We know it and we will
not have to think about it.

You should play with this solution just long enough so that you see that it makes
sense to you.
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(2) similarly let�s recall the solution to the second order linear difference
equation.

That solution is

where x1 and x2 are the roots of the associated polynomial

That is the same a1 and the same a2 as in the original equation. <point>

That solution makes sense.  
Why does it make sense?
If you plug in the solution here [POINT to LHS of equation] you will see that the
LHS of the equation will equal the RHS of the equation.  
The key to that is x1 and x2 are the roots of the associated polynomial.
That means, for example, that

So when you plug into the original equation [point], the terms with x1 and the x2
nicely vanish.

Let me continue describing the solution,

There is a slight problem if these roots are not real.
That occurs, if

a1
2 - 4a2 < 0.

In that case x1 and x2 are not real.  Then a long and complicated argument shows
that the complex elements cancel out and:
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where 2 = arc cos ((-a1/2)/%a&2.

We will use these solutions�so I want you to be familiar with them so we can call
on them when needed.

It is probably not necessary for the purpose of this course to understand the deep
reason why the complex elements cancel out, although it is almost always
dangerous to use math that you do not completely understand.

******************

Let�s now turn to the mathematical innovation which forever changed
macroeconomics.

In later classes�indeed, in the very next class�you will see why this is basic to
macroeconomic systems.  

An   A R M A process is
an   Auto Regressive Moving Average process.

Let me first talk about ` A R processes:
    Auto   Regressive processes.

And then I will talk about 
M A processes:
Moving Average processes.

And then I will talk about combining them.

The simplest example of an Autoregressive process, or an AR process, in the
jargon, is:

where ,t is i.i.d. N(0, F,
2).

There is a natural extension of our simplest autoregressive process.

We could write:
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where ,t is independent, identically distributed, normal, or

 i.i.d. N(0, F,
2).

This is an autoregressive process of order p.
In abbreviation, it is an AR(p) process.

Alternatively, yt might have been a

Moving Average Process.         

The simplest MA process is:

This has a generalization:

In this case yt is an MA process of order q.

In general we could combine autoregression with moving averages to have

Such a process is called an ARMA process of order (p,q) or an ARMA(p,q)
process.

It is an AutoRegressive Moving Average process of order p in the autoregressive
part, and of order q in the moving average part.

I now want to show you that different ARMA processes have different signatures.

These signatures are the covariances between the dependent variable yt and its
realization s periods ago.

For notational convenience let�s assume that all the yt�s have mean 0.
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We can then consider the covariance of yt with its value s periods ago.

E(yt @ yt-s).
                      
This object has a name.  It is called: the autocovariance of order s, and it has a
conventional notation.

It turns out that different types of ARMA processes will have different patterns of
autocovariances.

The autocovariance functions, which I will define later, are the signatures of the
processes.
By that I mean that if you see an autocovariance function, you can tell what
process caused it.  You can retrieve the process.

Let me illustrate.  I am going to show you that if I have the autocovariances for
each value of s that I can retrieve the process.  

I will show this in an example.  That example is the simplest MA process.
Suppose yt follows this process:

The ,t�s are assumed to be independent, identically distributed random variables
with mean 0,

so that E(,t) = 0

E(,t
2) = F,

2   and

E(,t @ ,t-s) = 0, s…0.

We shall use these properties to calculate the autocovariance of yt for each lag
value of s.

The important property that we will use, and that we will keep using over and over
again, is that
 

E(,t @ ,t-s) = 0, s…0. 

So I want to pause and I want you to note that.  These cross terms are zero
because ,t is an innovation in information at t.  
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If ,t is an innovation in information at t, it cannot be correlated with innovations in
information in past periods, t - s.

According to the standard notation, I will denote the variance of yt as (0.
This is the zero-th order autocovariance of yt.

With our MA(1) process:

The first-order autocovariance of yt is E(yt@yt-1) and it is denoted (1.

And for our MA(1) process we can calculate it as

The second order autocovariance is

(2 = E (yt@yt-2) = E[(,t + 2,t-1)(2,t-2+,t-3)]

= 0.

Footnote: Why?  Because there are no cross-terms with matched time index. 
END FN

And you can see that all higher order autocovariances are zero because there will
never be ,-crossproducts with matched time indexes.

**************

Now we can plot the autocovariance function.

By definition the autocovariance function is (s as a function of s.

We can plot it for our MA(1) process. [NOTE: GRAPH GOES BELOW]
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A GRAPH OF THE AUTOCOVARIANCE PROCESS FOR MA(1)

On the y-axis I will plot the values of (.
On the x-axis I will plot the values of s.

For s = 0 the autocovariance is:

(0 = (1 + 22)F,
2.  Let�s plot it.  Mark this value with an x.

For s=1

(1 = 2 F,
2.         Let�s plot it.   Mark this value with an x.

For s>1 the autocovariances are 0.  They are zero for every value of s.

Mark these with x�s.

Now I shall show that the autocovariance function is the signature of the MA
function.

By that I mean that you can recover the MA process from the autocovariance
function.

How do I know that?

First, the autocovariances die out after s=1.
This tells you that the process is MA(1).

If it were MA(2) or higher there would be nonzero autocovariances for s>1.

Second you can infer

F,
2 (1 + 22)   from (0        and

F,
22 from (1.

Thus you can infer what the value is individually of F,
 and 2.  

You have two equations in the two unknowns F,
 and 2 and so you can solve for

them.
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Thus, I have illustrated for this simplest case, that knowing the autocovariances
and plotting them you can recover the whole process.
Indeed, you know the whole process exactly.

The method that I have just described is the core method used in (real) time
series analysis.

*************

Let me now give you another definition.
Instead of looking at the autocovariance function, it is common to look at the
autocorrelation function.

To remind you, the autocovariance function is:

(s = E(yt@yt-s).

The autocorrelation function is a normalized version of the autocovariance
function.

It is:

In our example the autocorrelation function would be:

D0 = 1

          Ds = 0        for all s>1.

As you can see there is very little difference between the autocovariance function
of an ARMA and the autocorrelation function.
  
Both are considered signatures of the process.

To repeat, by signature I mean that I can identify the process from looking at the
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autocorrelation function.

Let�s now look at the autocovariance functions of an AR process.
Let�s first consider our simplest example of an AR process:

where ,t is i.i.d. N(0, F,
2).

Then by definition, the s th-order autocovariance is:

(s = E(yt@yt-s)
= E[(Nyt-1 + ,t)@yt-s]
= N E(yt-1@yt-s) + E(,t@yt-s).

,t and yt-s are uncorrelated.

They are uncorrelated because ,t is an innovation uncorrelated with past events.

So E(,t@yt-s) = 0.

And E(yt-1@yt-s) has a name.

It is just (s-1, or the (s-1)st order autocovariance.

Thus 

(s =  N (s-1.

So we get a difference equation of the (s�s.

If we want to look at the autocorrelation function rather than the autocovariance
function, we just divide (s by (0, a constant.

We would then find:

Ds =  N Ds-1.

On inspection we can solve this difference equation:

We find that Ds is of the form:
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Ds = N s.

FOOTNOTE: HOW DO YOU KNOW THAT?

Formally, for s=0, D0 = 1.

And since Ds always obeys the first-order difference equation,

Ds = AN s 

and A =1 since D0 = 1.  END FOOTNOTE

So the autocorrelation function of the AR(1) process has geometric decay, if 0 <N
<1.

We can plot Ds as a function of s. [NOTE: GRAPH GOES BELOW]

GRAPH OF Ds AS A FUNCTION OF s.

Note that if *  N  *> 1 then the process is unstable and this procedure makes no
sense.
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FOOTNOTE: (0 does not exist if yt is generated by an unstable process.  END
FOOTNOTE

In general, if you have a stable AR(p) process of the form:

you will find that its autocorrelation function will obey the difference equation:

The autocorrelation function will mirror the difference equation that generates the
process.
 
In theory all we need to do is to look at the autocorrelation function and that will
tell us what the process looks like.

If the autocorrelation function satisfies a difference equation of order p, then we
will model the process as an AR(p) process with the coefficients of the difference
equation being the coefficients of the AR(p) process.

That�s what I mean when I say that the Autocorrelation function, or the
Autocovariance function is the signature of the process.  You can retrieve the
process.

We can also express MA processes as AR processes and vice-versa.

Let me illustrate.

I will show that an MA(q) process is an AR(4) process.

Let�s consider the simplest example.

yt  =   ,t + 2,t-1

So also: yt-1 = ,t-1 + 2,t-2

We can multiply the RHS by 2, so 

2yt-1 = 2,t-1 + 22,t-2.
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Subtracting

yt - 2yt-1     = ,t - 22,t-2.

We can now express ,t-2 in terms of yt-2 and ,t-3.

With successive operations we find easily 

yt = - (E4
i=1(-2)iyt-i) + ,t

So if yt is an MA(1) process, we can express it also as an AR(4) process if *2*<1.

**********************

Now let�s see about converting an AR process to an MA process.

Suppose we have an AR(1) process.

We can write

yt =  E4
j=0 N j ,t-j.

How do you know you can do that?

This is the solution to the first order difference equation that we put in the BOX at
the beginning of class.

***********************

Let�s now introduce some new terminology.

The condition that *N*<1 is necessary for the process to be stationary.

It may well be that

is not stationary because the largest root of the associated polynomial is one or
greater than one in absolute value.
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Let me give an example.

yt = yt-1 + ,t.

But we may take the first difference and find then that

)yt = yt  - yt-1 = ,t

is stationary.

Let me give you a new definition.

An autoregressive integrated moving average process of order (p,d,q) is a
process whose dth difference is an ARMA process of order (p,q).

It turns out that in economics this distinction may be important.

Quite often the levels of economic variables are not stationary, but the first
differences will be stationary.

Thus an appropriate model is ARIMA(p,1,q);

ARIMA stands for AutoRegressive Integrated Moving Average.

I think that you will be later surprised how much this very short review of
difference equations and ARMA processes simplifies our thinking about
seemingly complex issues.

It is very important that you understand very well and very thoroughly what I have
gone over in this brief review.  The readings will go over what I have said a bit
more; but for the most part you do not need to know much more than what I have
gone over today for the use of ARMA processes in this course.

On Tuesday, we shall first cover the reading by Lucas and Sargent on the
readings of Section II, and then we will cover the reading by Sargent in the
evening class.

I want everyone to come to that class.  It is probably the most important class of
the term.  


