Economics 202A
MIDTERM EXAM

Instructions:

1. Be sure to write your name on the cover of each Blue Book.

2. The questions differ in difficulty but count equally. Each question counts 20 points for a total of 80 for the whole exam.

3. Answer all parts to all questions.
1. Show formally from Friedman’s model of consumption that there is a positive correlation between transitory and current income.

2. Suppose that $D_t = \alpha e_{t-5} + e_t$ where the e_t’s are i.i.d. $N(0, \sigma_e^2)$. What is $E_t(D_{t+3})$?

3. Show that in Mankiw’s model (in the absence of a menu cost z) the loss from failure to change price after a constant shift in demand is equal to $2C$ (where C is the area of the small triangle in Mankiw’s key diagram).

 [Definitions and hints: If (q^m, p^m) are the maximizing quantity and price and (q^n, p^n) are the non-maximizing quantity and price, C is by definition $\frac{1}{2} (q^n - q^m)(p^m - p^n)$. To answer this question you must specify Mankiw’s model, recall what C is, and show that it is equal to $\frac{1}{2}$ the loss in profits.]

4. Consider a firm i that minimizes at time t:

 $$E_t \sum_{j=0}^{\infty} \left(\frac{1}{1+r} \right)^j \left[(p_{i,t+j} - p^*_{i,t+j})^2 + c(p_{i,t+j} - p_{i,t+j-1})^2 \right], \quad c > 0,$$

 where $p_{i,t+j}$ is the log of the nominal price of firm i in period $t+j$, and $p^*_{i,t+j}$ is the log of the nominal price that firm i would choose in period $t+j$ in the absence of adjustment costs. Costs of changing nominal prices are captured by the second term in the objective function. The information set at time t includes current and lagged $p_{i,t}$ and $p^*_{i,t}$.

 a. Derive the first order condition of the above minimization problem, giving the current price $p_{i,t}$ as a function of itself lagged, of its expectation at $t+1$, and of the current optimal price.

 b. Rewrite the first order condition using the lag operator. Solve by factorization to derive the following expression:

 $$p_{i,t} = \frac{1}{\lambda_1} p_{i,t-1} + \frac{1+r}{\lambda_2} c \sum_{j=0}^{\infty} \left(\frac{1}{\lambda_2} \right)^j E_t p^*_{i,t+j},$$

 where λ_1 and λ_2 are the reciprocals of the roots of $(1+r)x^2 - \left(\frac{1+r}{c} + 1 + r + 1\right)x + 1 = 0$ and λ_1 is the smaller of the two. Interpret your result.
Suggested solutions to the midterm exam

Andrea De Micheli

Econ 202A, Spring 2002

1. Recall that in Friedman’s model of consumption, we assume \(y_C = y_P + y_T \) and \(\rho(y_P, y_T) = 0 \) so that:

\[
\text{Cov}(y_C, y_T) = \text{Cov}(y_P + y_T, y_T) = \text{Cov}(y_P, y_T) + \text{Cov}(y_T, y_T) = 0 + \text{Var}(y_T) > 0.
\]

Thus, there is positive correlation between current and transitory income.

2. As the \(\varepsilon_t \)’s are white noise, we have:

\[
E_t(\Delta_{t+3}) = E_t(\alpha \varepsilon_{t+3-5} + \varepsilon_{t+3}) = E_t(\alpha \varepsilon_{t-2}) + E_t(\varepsilon_{t+3}) = \alpha E_t(\varepsilon_{t-2}) + 0 = \alpha \varepsilon_{t-2}
\]

3. A monopolist facing linear demand and constant marginal cost maximizes:

\[
\pi = (a + \varepsilon) p - bp^2 - c(a + \varepsilon) + cbp.
\]

The FOC with respect to \(p \) yields:

\[
\frac{\partial \pi}{\partial p} = a + \varepsilon - 2bp + cb = 0
\]

\[
\Rightarrow p^m = \frac{a + \varepsilon + cb}{2b}.
\]

Plugging the above expression into the inverse demand function, we find:

\[
q^m = \frac{a + \varepsilon - cb}{2}.
\]

If the monopolist does not reoptimize after the shock, it will charge:

\[
p^n = p^m(\varepsilon = 0) = \frac{a + cb}{2b},
\]

and it will sell:

\[
q^n = q(p^n) = \frac{a + 2\varepsilon - cb}{2}.
\]

If the monopolist does not reoptimize, she will then loose:

\[
\text{LOSS} = \pi^m - \pi^n = ...
\]

\[
= (p^m - p^n)q^n - (p^n - c)(q^n - q^m) =
\]

\[
= A - B = ... =
\]

\[
= \frac{a \varepsilon + \varepsilon^2 - cb \varepsilon}{4b} = \frac{a \varepsilon - cb \varepsilon}{4b} =
\]

\[
= \frac{\varepsilon^2}{4b}.
\]
By definition C is:

$$C = (p^m - p^n)(q^n - q^m) = ... = \frac{1}{2}v^2 \frac{\beta}{\delta}$$

Thus, we have shown that $LOSS = 2C$.

4. The firm solves:

$$\min_{(p_{i,t+j})_{j=0}^{\infty}} \mathbb{E}_t \sum_{j=0}^{\infty} \left(\frac{1}{1+r} \right)^j \left[(p_{i,t+j} - \bar{p}_{i,t+j})^2 + c(p_{i,t+j} - p_{i,t+j-1})^2 \right]$$

(a) The FOC with respect to $p_{i,t}$ yields:

$$\Rightarrow \left(\frac{1}{1+r} \right)^0 \left[2(p_{i,t} - \bar{p}_{i,t}) + 2c(p_{i,t} - p_{i,t-1}) \right] + \mathbb{E}_t \left(\frac{1}{1+r} \right)^1 \left[-2c(p_{i,t+1} - p_{i,t}) \right] = 0$$

$$\Leftarrow (p_{i,t} - \bar{p}_{i,t}) + c(p_{i,t} - p_{i,t-1}) - c \left(\frac{1}{1+r} \right) (\mathbb{E}_t (p_{i,t+1}) - p_{i,t}) = 0$$

$$\Leftarrow \left(1 + c + \frac{c}{1+r} \right) p_{i,t} - \bar{p}_{i,t} - cp_{i,t-1} - \frac{c}{1+r} \mathbb{E}_t (p_{i,t+1}) = 0$$

(b) Using the lag operator, we can rewrite the FOC as:

$$\Leftarrow \left(1 + c + \frac{c}{1+r} \right) p_{i,t} - \bar{p}_{i,t} - cLp_{i,t} - \frac{c}{1+r}L^{-1}p_{i,t} = 0$$

$$\Leftarrow \left(\left(1 + c + \frac{c}{1+r} \right) - cL - \frac{c}{1+r}L^{-1} \right) p_{i,t} = \bar{p}_{i,t}$$

$$\Leftarrow \frac{1+r}{c}L \left(\frac{1+r+c+cr+c}{1+r} - cL - \frac{c}{1+r}L^{-1} \right) p_{i,t} = \frac{1+r}{c}Lp_{i,t}$$

$$\Leftarrow \left(\frac{1+r}{c} + 1 + r + 1 \right) L - (1+r)L^2 - 1 \right) p_{i,t} = \frac{1+r}{c}Lp_{i,t}$$

We can factor $\frac{1+r}{c} + 1 + r + 1 - (1+r)x^2 - 1$ as $-(1 - \lambda_1x)(1 - \lambda_2x)$ where

$$\lambda_1 + \lambda_2 = \frac{1+r}{c} + 1 + r + 1,$$

$$\lambda_1 \lambda_2 = 1 + r,$$

and therefore

$$(1 - \lambda_1)(1 - \lambda_2) = 1 - (\lambda_1 + \lambda_2) + \lambda_1 \lambda_2 = -\frac{1+r}{c}. \quad (1)$$

Since the sum and the product of λ_1 and λ_2 are positive, both roots are positive. Furthermore, equation (1) implies that one of the root is greater than one and while the other is smaller than one. Let λ_1 be the smaller root so that we have $0 < \lambda_1 < 1 < \lambda_2$.

Factorization then yields:

$$\Leftarrow -(1 - \lambda_1L)(1 - \lambda_2L)p_{i,t} = \frac{1+r}{c}Lp_{i,t}$$

$$\Leftarrow -(1 - \lambda_1L) \left(\frac{1 - \lambda_2L}{\lambda_2L} \right) p_{i,t} = \frac{1+r}{c} \lambda_2Lp_{i,t}$$
\[-(1 - \lambda_1 L) \left(\frac{1}{\lambda_2} L^{-1} - 1 \right) p_{i,t} = \frac{1 + r}{c} \frac{1}{\lambda_2} p_{i,t}^* \]

\[(1 - \lambda_1 L) \left(1 - \frac{1}{\lambda_2} L^{-1} \right) p_{i,t} = \frac{1 + r}{c} \frac{1}{\lambda_2} p_{i,t}^* \]

\[(1 - \lambda_1 L) p_{i,t} = \frac{1 + r}{c} \frac{1}{\lambda_2} \frac{1}{1 - \frac{1}{\lambda_2} L^{-1}} p_{i,t}^* \]

\[(1 - \lambda_1 L) p_{i,t} = \frac{1 + r}{c} \frac{1}{\lambda_2} \sum_{j=0}^{\infty} \left(\frac{1}{\lambda_2} L^{-1} \right)^j p_{i,t+j}^* \]

where in the last line we used the fact that \(\frac{1}{\lambda_2} \) is inside the unit circle. At this point, we just need to use the lag operator to get the expression we are looking for:

\[p_{i,t} = \lambda_1 p_{i,t-1} + \frac{1 + r}{c} \frac{1}{\lambda_2} \sum_{j=0}^{\infty} \left(\frac{1}{\lambda_2} \right)^j \mathbb{E}_t \left(p_{i,t+j}^* \right). \]

Therefore, the current price charged by the firm is a weighted average between the price in the past period and its expectation of the optimal price in the present and the future periods. (This problem was adapted from a paper by Julio Rotemberg published in the Review of Economic Studies in 1982.)