
Economics 230a, Fall 2014 
Lecture Note 4: Further Optimal Tax Results 

The basic Ramsey rule is derived under the assumption that we are trying to maximize the utility 
of a representative individual, so only efficiency considerations matter.  Yet to make sense of our 
inability to use lump-sum taxes, we need some sort of heterogeneity in the population.  So, 
assume that individuals differ in some unspecified manner, and consider an extension of the 
optimal tax problem where we have the same set of instruments but now seek to maximize social 
welfare, W(V1(p) V2(p), …, VH(p)), subject to satisfying the revenue constraint that (p – q)′X ≥ R, 
where X = Σhxh

 is the vector of total consumption by households.  Setting up the Lagrangian with 
µ as the shadow price of the revenue constraint, we obtain the first-order conditions: 
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where Whλh is the marginal welfare of individual h’s income.  Once again using the Slutsky 
equation to break each individual price effect 𝑑𝑥𝑗ℎ 𝑑𝑝𝑖⁄  into income and substitution effects, and 
grouping terms, we get:  
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where Sji

 = ∑ 𝑠𝑗𝑖ℎℎ  is the sum of the Slutsky terms across individuals and we may think of 
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 as the social marginal welfare of income associated with 

good i; it equals the average of the social welfare of individual incomes, αh, weighted by 
individual shares in good i’s consumption, 𝑥𝑖ℎ 𝑋𝑖⁄ .  Recalling that the term −∑ 𝑡𝑗𝑆𝑗𝑖𝑗  equals the 
marginal excess burden from an increase in the tax on good i, expression (2) implies that the 
ratio of this excess burden to the revenue associated with good i, 𝑋𝑖 + ∑ 𝑡𝑗𝑆𝑗𝑖𝑗 , should equal 𝜇−𝛼𝑖

𝛼𝑖
.  

Now, it is no longer optimal to set the marginal cost of funds (revenue plus excess burden per 
unit of revenue) equal for all revenue sources; we now wish to take into account who consumes 
the goods being taxed.  In particular, for goods with a higher positive correlation between 𝑥𝑖ℎ 𝑋𝑖⁄  
and αh, 𝛼𝑖 will be higher and hence the desired marginal cost of funds should be lower.  In other 
words, relative to the representative agent case, we should lower taxes on goods purchased 
relatively intensively by those with higher social income weights – presumably those of lower 
ability and income – and higher taxes on goods purchased relatively intensively by those with 
lower social income weights.  As to the overall impact of equity and efficiency considerations, 
consider again the example with two taxed goods.  The modified Ramsey rule in (2) becomes: 
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Since only the first terms in numerator and denominator differ, the proportional tax on good 1 
will now be higher than the tax on good 2 if and only if  𝜀20 𝜋2⁄  >𝜀10 𝜋1⁄ .  So, we now adjust the 
leisure cross-elasticities with terms representing distributional concerns.  Note that distributional 
concerns will matter only if πi varies across goods, which won’t be the case if utility satisfies 
homothetic separability, i.e., has the form u(x0, ϕ( x1, x2)), with ϕ( ⋅) homogeneous in its 
arguments.  Here, consumption bundles are the same across individuals, varying only by scale. 
 
An application is the choice of VAT rates on different commodities.  We might wish to tax some 
goods more heavily for efficiency reasons but less heavily for equity reasons.  This could help 
explain why existing VATs impose lower rates of tax on necessities such as food, even though 
necessities typically have lower own elasticities of demand (and hence in general lower cross-
elasticities of demand with respect to other commodities, such as leisure).  But what if we could 
expand our set of tax instruments a bit? The individual’s budget constraint in the three-good 
problem considered here is 𝑝1(1 + 𝜃1)𝑥1 + 𝑝2(1 + 𝜃2)𝑥2 = −𝑥0, where −𝑥0 is labor income 
and θi is the proportional tax on good i.  Note that we could also write this budget constraint as 
 
𝑝1x1 + 𝑝2

(1+𝜃2)
(1+𝜃1)𝑥2 = −𝑥0

(1+𝜃1),   or  𝑝1𝑥1 + 𝑝2(1 + 𝜏2)𝑥2 = (1 − 𝜏0)(−𝑥0) 
 
(Here, the tax on labor, τ0, is expressed on a tax inclusive basis, applying to all labor income; the 
consumption tax is expressed on a tax exclusive basis, applying to net consumption expenditures 
rather than expenditures inclusive of tax.  We could express either using the alternate convention, 
but this is typically how consumption taxes and income taxes are expressed.)  That is, since the 
choice of the untaxed good is arbitrary, we could also have considered the problem as one with 
taxes on goods 0 and 2 – a labor income tax plus a separate tax on good 2.  If the prior analysis 
had led us to choose equal taxes on commodities 1 and 2, we would now wish to tax only labor 
income – a labor income tax is equivalent in this model to a uniform consumption tax.  Suppose 
that, in addition to the labor income tax and a tax on good 2, we also had available a uniform 
lump-sum tax, say T.  (Note that we are not assuming that we can impose lump-sum taxes that 
vary across individuals.)  Then, the budget constraint would involve a tax on good 2 plus a linear 
income tax on labor income, of the form T + τ0(-x0).  With this additional tax instrument, when 
would we want to utilize the consumption tax on good 2? Not surprisingly, with an additional tax 
instrument, the condition is weaker than before; a sufficient condition (see Auerbach and Hines, 
p. 1372) is that households have separable utility with linear Engel curves with the same slopes, 
for which homothetic separability and equal bundles across incomes is a sufficient condition but 
not a necessary one.  Indeed, if we allowed for a more general, nonlinear labor income tax, for 
which the mathematical derivation is more complex, an even weaker sufficient condition for 
uniform commodity taxation would hold, that the utility function is weakly separable, i.e., has 
the form u(x0, ϕ( x1, x2)), with no restriction at all on the shape of Engel curves (Atkinson and 
Stiglitz, 1976). 

Application: Tax Treatment of the Family 
A classic application of optimal tax theory is the treatment of the family.  Let the three goods, x0, 
x1, and x2 now be consumption, husband’s labor, and wife’s labor, respectively, and let good 0 
(consumption) be the untaxed numeraire commodity.  Assuming that elasticities ε12 and ε21 are 
zero (or, more generally, small), we can apply the inverse elasticity rule when only efficiency 
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concerns matter, and tax more heavily the income of the spouse with the lower compensated 
labor supply elasticity; empirical evidence suggests that this would be the husband.  A second 
step to consider, though, is distributional concerns, where issues like the extent of assortative 
mating come up.  For example, will women with high incomes typically be found in families 
with high incomes? A third issue that is relevant is how families make decisions.  The standard 
optimal tax approach treats the family as a single optimizing unit, but given empirical evidence 
other approaches may be more plausible, such as intrafamily bargaining.  The paper by Alesina 
et al. considers the optimal taxation of a representative couple (so there is no issue of distribution 
across families), but it assumes intrafamily bargaining and also generates differing labor supply 
elasticities endogenously, as a consequence of differences in bargaining power or comparative 
advantage.  A key result of the paper is that, if government can make transfers within the family 
(which matter given that bargaining determines outcomes), then the standard result that men 
should face higher marginal tax rates than women still generally holds. 
 
One further issue that the paper (and the previous literature) generally ignores is that there are 
couples as well as single taxpayers that the tax system must deal with simultaneously.  How to 
tax singles vs. couples is a complicated question, not only because the marriage decision may be 
affected, but also because it is not obvious how to compare one-individual and two-individual 
units.  The US has separate tax schedules for single individuals and married couples, while many 
other countries use one schedule for individual taxation, regardless of whether the individual is 
married.  Even in such countries, though, elements of the transfer system, such as low-income 
payments, are often family based.  This is how the UK tax and transfer system operates, for 
example. 

Application: The Taxable Income Elasticity 
Sometimes, we observe a taxpayer response that reflects several decisions.  For example, when 
we see the response of taxable income to the income tax rate, this reflects not only the decision 
of how much to work, but also the mix of compensation between taxed and untaxed forms (e.g., 
fringe benefits like health insurance) and the mix of expenditures between tax-deductible forms 
(e.g., mortgage interest, charitable contributions, etc.) and non-deductible ones.  In such a case, 
the relevant elasticity will, under certain assumptions, be the overall response.  Following 
Feldstein (1999), consider a household with a utility function, U(C, l, E, D), facing the budget 
constraint: 
 
C + (1-t)D= (1-t)[w(𝐿�-l) – E]  
 
where E is the portion of compensation provided in untaxed form and D is spending that is 
deductible from income before tax is applied.  In this case, C represents the portion of spending 
that is non-deductible, rather than all consumption. We can rewrite the budget constraint as: 
 
C = (1-t)[w(𝐿�-l) – E – D]  
 
from which it is clear that the relevant elasticity affecting the deadweight loss of an income tax is 
the elasticity of demand for non-deductible consumption, C, which equals the taxable income 
elasticity – the elasticity of taxable income [w(𝐿�-l) – E – D] with respect to the tax rate.  As 
Feldstein emphasized, this elasticity may be substantially larger in magnitude than the labor 
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supply elasticity, suggesting more deadweight loss for a given tax rate and possibly making other 
taxes more attractive. 
 
Note that the taxable income elasticity matters here only because we have assumed that tax rates 
cannot be set separately on E and D.  Indeed, the taxable income elasticity depends on the tax 
structure (Kopczuk, J. Pub. Econ. 2005); for example, if no spending were deductible (D ≡ 0) 
and all compensation taxable (E ≡ 0), then the taxable income elasticity would equal the labor 
supply elasticity.  Also, even without changes in the tax base definition, the taxable income 
elasticity may need to be adjusted if some of the individual costs from behavioral responses do 
not fully reflect social costs, for example if the sheltering of income increases other taxes (e.g., if 
sheltered income is in the form of tax-deferred saving on which future taxes are paid) or if part of 
the behavioral response involves tax evasion subject to fines (Chetty AEJ: Policy 2009). 

Application: Internet Sales 
Most individual US states rely heavily on sales taxes as a source of revenue.  But constitutional 
issues limit the extent to which states can require out-of-state vendors to collect sales tax on 
remote (e.g., internet and mail-order) purchases by state residents.  This means that residents face 
sales tax on direct purchases from retail stores and remote sellers but effectively not on remote 
purchases from out-of-state sellers.  The paper by Einav et al. finds online purchases to be quite 
sensitive to state tax rates using data from eBay, where potential buyers find out whether a seller 
is in the same state (and hence required to collect sales tax) only after expressing interest in an 
item.  Their results also show that when a state sales tax is higher, residents purchase more on the 
internet (relative to in-state retail purchases) but less from remote in-state vendors. 
 
From an optimal-tax perspective, one might see this case as one with two very closely-related 
commodities, direct purchases and remote out-of-state purchases, with a high cross-elasticity of 
demand, where the state can impose tax on one but not the other.  The high demand elasticity of 
the taxable commodity is likely to limit the extent to which the state might wish to tax it. 

The Production Efficiency Theorem 
Let us modify the general optimal tax analysis, with heterogeneity, to allow producer prices to 
vary.  That is, rather than assuming that the producer price vector q is fixed, assume that it is 
determined by efficient production behavior, and that production is determined by a constant 
returns to scale function f(Z) ≤ 0, where Z is the vector of inputs and outputs.  Given that relative 
prices may vary as we impose taxes, we express the government’s revenue requirement in terms 
of a quantity vector of goods the government wishes to purchase, R.  Rather than writing down a 
separate government budget constraint, we may combine it with the production constraint by 
writing f(X + R) ≤ 0, where X is, as before, the aggregate private vector of inputs and outputs. 
 
We wish to maximize the Lagrangian, W(V1(p), V2(p), …, VH(p)) - µf(X + R), with respect to 
taxes.  However, under normal circumstances (see Auerbach and Hines, footnote 15), we can 
maximize with respect to prices, as any vector of taxes can be achieved through a choice of 
prices.  The first-order conditions are:  
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Without loss of generality we can choose the units of production are such that f0 = 1, and hence f0 
= q0.   Since production efficiency implies that fi/fj = qi/qj  ∀𝑖, 𝑗, it follows that fi = qi ∀𝑖.   Also, 
since for each h, p′xh = 0, it follows that 𝑥𝑖ℎ + ∑ 𝑝𝑗 𝑑𝑥𝑗ℎ 𝑑𝑝𝑖⁄ = 0𝑗 .  Therefore, we can subtract 
𝑥𝑖ℎ + ∑ 𝑝𝑗 𝑑𝑥𝑗ℎ 𝑑𝑝𝑖⁄𝑗  from the term in brackets in (4) to obtain: 
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which is identical to expression (1).  That is, the standard optimal tax results are not changed by 
the assumption that producer prices may vary, if there are no pure profits (i.e., under constant 
returns to scale).  If there are pure profits, the result still holds, but only if the profits are first 
taxed away (see Auerbach and Hines, p. 1367).  Intuitively, if there are constant returns to scale, 
producer prices may vary, but in equilibrium the producer of any good faces constant costs, just 
as in the case where prices are fixed.  Thus, only demand-side terms enter into the optimal tax 
expression.  This does not mean that the equilibrium will be the same in the two cases, since 
changes in the vector X will depend on demand and supply responses. 
 
We have assumed thus far that production is efficient.  This means not only the absence of 
market failures on the production side, but also no government policy interventions within the 
production sector (for example, a wage subsidy for some producers but not others.)  But the 
intuition of second-best theory suggests that we might want to use such interventions as well. 
 
Assume now that there are two production sectors, with production functions and vectors f(Z) 
and g(S), both constant returns to scale.  Also assume that production in each sector is efficient, 
but that overall production may not be.  For example, we may provide subsidies to widget 
production in sector g(⋅) but not sector f(⋅).  Let us assume the government chooses S directly, 
although it could accomplish this indirectly through the use of sector-specific taxes and 
subsidies.  Then, using the fact that private plus public consumption equals total production, i.e., 
X + R = Z + S, we seek to maximize the Lagrangian 
 
W(V1(p) V2(p), …, VH(p)) - µf(X + R - S) - ζg(S) 
 
with respect to p and S.  The first-order conditions for p are the same as before.  For S, we get: 
 
µfi = ζgi ∀𝑖 
 
which implies that the marginal rates of transformation on all margins must be the same in the 
two sectors, i.e., fi/ fj = gi/ gj.  This is the Diamond-Mirrlees production efficiency theorem.  Even 
though there are existing distortions, production distortions don’t contribute anything (contrary 
to general second-best reasoning) because they effectively achieve consumption distortions 
indirectly (for example, raising the output price of a good whose inputs are taxed in one of the 
two production sectors) while also pushing production inside the production frontier.  If we can 
achieve consumption distortions directly, we are better off doing so, because we will achieve an 
outcome that Pareto-dominates the one based on the production distortion. 
 
Applications: social discount rate; tariffs and export subsidies. 
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