Economics 101A
(Lecture 5, Revised)

Stefano DellaVigna

September 9, 2003
Outline

1. Properties of Preferences (continued)

2. From Preferences to Utility (and vice versa)

3. Common Utility Functions

4. (Utility maximization)
1 Properties of Preferences (ctd)

- Indifference relation \sim: $x \sim y$ if $x \succeq y$ and $y \succeq x$

- Strict preference: $x \succ y$ if $x \succeq y$ and not $y \succeq x$

- Exercise. If \succeq is rational,
 - \succ is transitive
 - \sim is transitive
 - Reflexive property of \succeq. For all x, $x \succeq x$.
• Other features of preferences

• Preference relation \succeq is:

 – *monotonic* if $x \geq y$ implies $x \succeq y$.

 – *strictly monotonic* if $x \geq y$ and $x_j > y_j$ for some j implies $x \succ y$.

 – *convex* if for all x, y, and z in X such that $x \succeq z$ and $y \succeq z$, then $tx + (1 - t)y \succeq z$ for all t in $[0, 1]$
2 From preferences to utility

- Nicholson, Ch. 3

- Economists like to use utility functions $u : X \rightarrow R$

- $u(x)$ is ‘liking’ of good x

- $u(a) > u(b)$ means: I prefer a to b.

- **Def.** Utility function u represents preferences \succeq if, for all x and y in X, $x \succeq y$ if and only if $u(x) \geq u(y)$.

- **Theorem.** If preference relation \succeq is rational and continuous, there exists a continuous utility function $u : X \rightarrow R$ that represents it.
Proof for case $X = R^2_+$ and \succeq strongly monotonic.

- Define $u(x) =$?

- Consider the points in the diagonal, (t, t)

- Set $\{t : (t, t) \succeq x\}$ is non-empty by monotonicity

- Set $\{t : x \succeq (t, t)\}$ is non-empty by monotonicity

- Both sets are closed by continuity

- (Connected set X: $A \subset X$ closed, $B \subset X$ closed, and $A \cup B = X \implies A \cap B$ non-empty)

- By connectedness of R, the two sets have non-empty intersection $\implies \exists t_x$ such that $(t_x, t_x) \sim x$. Define $u(x) = t_x$.

- Does \(u \) represent \(\succeq \)?

- \(x \succeq y \) implies \((u(x), u(x)) \sim x \succeq y \sim (u(y), u(y)) \Rightarrow \)
[by transitivity] \((u(x), u(x)) \succeq (u(y), u(y)) \Rightarrow \)
[by monotonicity] \(u(x) \geq u(y) \)

- Similarly can prove other direction (exercise!)

- (We do not prove continuity of \(u(x) \))
• Utility function representing \succeq is not unique

• Take $\exp(u(x))$

• $u(a) > u(b) \iff \exp(u(a)) > \exp(u(b))$

• If $u(x)$ represents preferences \succeq and f is a strictly increasing function, then $f(u(x))$ represents \succeq as well.

• If preferences are represented from a utility function, are they rational?

 – completeness

 – transitivity
• Indifference curves: \(u(x_1, x_2) = \tilde{u} \)

• They are just implicit functions! \(u(x_1, x_2) - \tilde{u} = 0 \)

\[
\frac{dx_2}{dx_1} = -\frac{U'_x}{U'_{x_2}} = MRS
\]

• Indifference curves for:

 – monotonic preferences;

 – strictly monotonic preferences;

 – convex preferences
3 Common utility functions

- Nicholson, Ch. 3, pp. 80–84

1. Cobb-Douglas preferences: \(u(x_1, x_2) = x_1^\alpha x_2^{1-\alpha} \)

 - \(MRS = -\alpha x_1^{a-1} x_2^{1-\alpha} / (1-a) x_1^\alpha x_2^{-\alpha} = \frac{\alpha x_2}{1-\alpha x_1} \)

2. Perfect substitutes: \(u(x_1, x_2) = \alpha x_1 + \beta x_2 \)

 - \(MRS = -\alpha / \beta \)
3. Perfect complements: \(u(x_1, x_2) = \min(\alpha x_1, \beta x_2) \)

- \(MRS \) discontinuous at \(x_2 = \frac{\alpha}{\beta} x_1 \)

4. Constant Elasticity of Substitution: \(u(x_1, x_2) = (\alpha x_1^\rho + \beta x_2^\rho)^{1/\rho} \)

- \(MRS = -\frac{\alpha}{\beta} \left(\frac{x_1}{x_2}\right)^{\rho-1} \)
- if \(\rho = 1 \), then...
- if \(\rho = 0 \), then...
- if \(\rho \to +\infty \), then...