Economics 101A
(Lecture 11)

Stefano DellaVigna

October 7, 2004
Outline

1. Mid-Term Suggestions
2. Charitable Donations II
3. Risk Aversion
4. Insurance
5. Investment in Risky Asset
6. Measures of Risk Aversion
1 Mid-Term Suggestions

• Suggestions from you...
2 Charitable Donations II

• A quick look at the evidence

• From Andreoni (2002)
3 Risk aversion

• Nicholson, Ch. 18, pp. 535–541 [OLD: Ch. 8, pp. 200-206].

• Risk aversion:
 – individuals dislike uncertainty
 – u concave, $u'' < 0$

• Implications?
 – purchase of insurance (possible accident)
 – investment in risky asset (risky investment)
 – choice over time (future income uncertain)
• Experiment — Are you risk-averse?
4 Insurance

• Nicholson, Ch. 18, pp. 545–551 [OLD: Ch. 8, pp. 211-216] Notice: different treatment than in class

• Individual has:

 – wealth \(w \)

 – utility function \(u \), with \(u' > 0, u'' < 0 \)

• Probability \(p \) of accident with loss \(L \)

• Insurance offers coverage:

 – premium \(q \) for each \($1 \) paid in case of accident

 – units of coverage purchased \(\alpha \)
• Individual maximization:

$$\max_{\alpha} (1 - p) u (w - q\alpha) + pu (w - q\alpha - L + \alpha)$$

s.t. $\alpha \geq 0$

• Assume $\alpha^* \geq 0$, check later

• First order conditions:

$$0 = -q (1 - p) u' (w - q\alpha) + (1 - q) pu' (w - q\alpha - L + \alpha)$$

or

$$\frac{u' (w - q\alpha)}{u' (w - q\alpha - L + \alpha)} = \frac{1 - q}{q} \frac{p}{1 - p}.$$

• Assume first $q = p$ (insurance is fair)

• Solution for $\alpha^* =$?
• $\alpha^* > 0$, so we are ok!

• What if $q > p$ (insurance needs to cover operating costs)?

• Insurance will be only partial (if at all)

• Exercise: Check second order conditions!
5 Investment in Risk Asset

• Individual has:
 – wealth \(w \)
 – utility function \(u \), with \(u' > 0 \)

• Two possible investments:
 – Asset B (bond) yields return 1 for each dollar
 – Asset S (stock) yields uncertain return \((1 + r)\):
 * \(r = r_+ > 0 \) with probability \(p \)
 * \(r = r_- < 0 \) with probability \(1 - p \)
 * \(Er = pr_+ + (1 - p) r_- > 0 \)

• Share of wealth invested in stock \(S = \alpha \)
• Individual maximization:
\[
\max_{\alpha} (1 - p) u (w [(1 - \alpha) + \alpha (1 + r_-)]) +
+ pu (w [(1 - \alpha) + \alpha (1 + r_+)])
\]
\[
s.t. 0 \leq \alpha \leq 1
\]

• Case of risk neutrality: \(u(x) = a + bx, \ b > 0 \)

• Assume \(a = 0 \) (no loss of generality)

• Maximization becomes
\[
\max_{\alpha} b (1 - p) (w [1 + \alpha r_-]) + bp (w [1 + \alpha r_+])
\]
or
\[
\max_{\alpha} bw + \alpha bw [(1 - p) r_- + pr_+]
\]

• Sign of term in square brackets? Positive!

• Set \(\alpha^* = 1 \)
• Case of risk aversion: \(u'' < 0 \)

• Assume \(0 \leq \alpha^* \leq 1 \), check later

• First order conditions:

\[
0 = (1 - p)(wr_-)u'(w[1 + \alpha r_-]) +
+ p(wr_+)u'(w[1 + \alpha r_+])
\]

• Can \(\alpha^* = 0 \) be solution?

• Solution is \(\alpha^* > 0 \) (positive investment in stock)

• Exercise: Check s.o.c.
6 Next lecture and beyond

• Tu:
 – Time consistency
 – Time inconsistency
 – Application to health clubs

• Th:
 – Production!
 – Returns to scale
 – Cost minimization