Outline

1. Time Inconsistency II
2. Health Club Attendance
3. Production: Introduction
4. Production Function
5. Returns to Scale
6. Two-step Cost Minimization
1 Time Inconsistency II

- Alternative specification (Akerlof, 1991; Laibson, 1997; O’Donoghue and Rabin, 1999)

- Utility at time t is $u(c_t, c_{t+1}, c_{t+2})$:

 $$u(c_t) + \frac{\beta}{1 + \delta} u(c_{t+1}) + \frac{\beta}{(1 + \delta)^2} u(c_{t+2}) + ...$$

- Discount factor is

 $$1, \frac{\beta}{1 + \delta}, \frac{\beta}{(1 + \delta)^2}, \frac{\beta}{(1 + \delta)^3}, ...$$

 instead of

 $$1, \frac{1}{1 + \delta}, \frac{1}{1 + \delta}, \frac{1}{(1 + \delta)^2}, \frac{1}{(1 + \delta)^3}, ...$$

- What is the difference?

- Immediate gratification: $\beta < 1$
Back to our problem: **Period 1.**

Maximization problem:

\[
\max U(c_1) + \frac{\beta}{1 + \delta} EU(c_2) \\
s.t. \ c_1 + \frac{1}{1 + r} c_2 \leq M_1' + \frac{1}{1 + r} M_2
\]

First order conditions:

Ratio of f.o.c.s:

\[
\frac{U'(c_1^*)}{EU'(c_2^*)} = \beta \frac{1 + r}{1 + \delta}
\]
• Now, **period 0** with commitment.

• Maximization problem:

$$\max U(c_0) + \frac{\beta}{1 + \delta} U(c_1) + \frac{\beta}{(1 + \delta)^2} EU(c_2)$$

subject to

$$c_1 + \frac{1}{1 + r}c_2 \leq M_1' + \frac{1}{1 + r}M_2$$

• First order conditions:

• Ratio of f.o.c.s:

$$\frac{U'(c_1^*, c)}{EU'(c_2^*, c)} = \frac{1 + r}{1 + \delta}$$

• The two conditions differ!

• Time inconsistency: $c_{1^*, c} < c_1^*$ and $c_{2^*, c} > c_2^*$

• The agent allows him/herself too much immediate consumption and saves too little
• Ok, we agree. but should we study this as economists?

• YES!
 – One trillion dollars in credit card debt;
 – Most debt is in teaser rates;
 – Two thirds of Americans are overweight or obese;
 – $10bn health-club industry

• Is this testable?
 – In the laboratory?
 – In the field?
2 Health Club Attendance

• Health club industry study (DellaVigna and Malmendier, 2002)

• 3 health clubs

• Data on attendance from swiping cards

• Choice of contracts:

 – Monthly contract with average price of $75

 – 10-visit pass for $100

• Consider users that choose monthly contract. Attendance?
• Attend on average 4.8 times per month

• Pay on average over $17

• Average delay of 2.2 months ($185) between last attendance and contract termination

• Over membership, user could have saved $700 by paying per visit
• Health club attendance:

 – immediate cost c

 – delayed benefit b

• At sign-up (attend tomorrow):

$$NB^t = -\frac{\beta}{1 + \delta}c + \frac{\beta}{(1 + \delta)^2}b$$

• Plan to attend if $NB^t > 0$

$$c < \frac{1}{(1 + \delta)}b$$
• Once moment to attend comes:

\[NB = -c + \frac{\beta}{(1 + \delta)} b \]

• Attend if \(NB > 0 \)

\[c < \frac{\beta}{(1 + \delta)} b \]
• Interpretations?

• Users are buying a commitment device

• User underestimate their future self-control problems:
 – They overestimate future attendance
 – They delay cancellation
3 Production: Introduction

- Second half of the economy. Production

- Example. Ford and the Minivan (Petrin, 2002):
 - Ford had idea: "Mini/Max" (early '70s)
 - Did Ford produce it?
 - No!
 - Ford was worried of cannibalizing station wagon sector
 - Chrysler introduces Dodge Caravan (1984)
 - Chrysler: $1.5bn profits (by 1987)!
• Why need separate treatment?

• Perhaps firms maximize utility...

• ...we can be more precise:
 – Competition
 – Institutional structure
Production Function

- Production function: \(y = f (z) \). Function \(f : \mathbb{R}^n_+ \rightarrow \mathbb{R}_+ \)

- Inputs \(z = (z_1, z_2, ..., z_n) \): labor, capital, land, human capital

- Output \(y \): Minivan, Intel Pentium III, mangoes (Philippines)

- Properties of \(f \):
 - no free lunches: \(f (0) = 0 \)
 - positive marginal productivity: \(f_1' (z) > 0 \)
 - decreasing marginal productivity: \(f'_{i,i} (z) < 0 \)
- Isoquants $Q(y) = \{x | f(x) = y\}$

- Set of inputs z required to produce quantity y

- Special case. Two inputs:

 - $z_1 = L$ (labor)

 - $z_2 = K$ (capital)

- Isoquant: $f(L, K) - y = 0$

- Slope of isoquant $dK/dL = MRTS$
• Convex production function if convex isoquants

• Reasonable: combine two technologies and do better!

• Mathematically, \(\frac{d^2K}{d^2L} = \)
5 Returns to Scale

- Nicholson, Ch. 7, pp. 190–193 [OLD: Ch. 11, pp. 275–278]

- Effect of increase in labor: f'_L

- Increase of all inputs: $f(tz)$ with t scalar, $t > 1$

- How much does input increase?

 - Decreasing returns to scale: for all z and $t > 1$,

 $$f(tz) < tf(z)$$

 - Constant returns to scale: for all z and $t > 1$,

 $$f(tz) = tf(z)$$
– Increasing returns to scale: for all z and $t > 1$,

\[f(tz) > tf(z) \]
• Example: \(y = f(K, L) = AK^\alpha L^\beta \)

• Marginal product of labor: \(f'_L = \)

• Decreasing marginal product of labor: \(f''_L = \)

• \textit{MRTS} =

• Convex isoquant?

• Returns to scale: \(f(tK, tL) = A(tK)^\alpha (tL)^\beta = t^{\alpha+\beta} AK^\alpha L^\beta = t^{\alpha+\beta} f(K, L) \)
6 Two-step Cost minimization

- Nicholson, pp. 212–220 [OLD, Ch. 12, pp. 298–307]

- Objective of firm: Produce output that generates maximal profit.

- Decompose problem in two:
 - Given production level y, choose cost-minimizing combinations of inputs
 - Choose optimal level of y.

- First step. Cost-Minimizing choice of inputs
Two-input case: Labor, Capital

Input prices:

- Wage w is price of L
- Interest rate r is rental price of capital K

Expenditure on inputs: $wL + rK$

Firm objective function:

$$\min wL + rK$$

$$s.t. f(L, K) \geq y$$
• Compare with expenditure minimization for consumers

• First order conditions:

\[w - \lambda f'_{L} = 0 \]

and

\[r - \lambda f'_{K} = 0 \]

• Rewrite as

\[\frac{f'_{L}(L^*, K^*)}{f'_{K}(L^*, K^*)} = \frac{w}{r} \]

• MRTS (slope of isoquant) equals ratio of input prices
• Graphical interpretation
• Derived demand for inputs:

\[- L = L^* (w, r, y)\]

\[- K = K^* (w, r, y)\]

• Value function at optimum is \textbf{cost function:}

\[c (w, r, y) = wL^* (r, w, y) + rK^* (r, w, y) \]
• Second step. Given cost function, choose optimal quantity of y as well

• Price of output is p.

• Firm’s objective:

$$\max p y - c (w, r, y)$$

• First order condition:

$$p - c_y' (w, r, y) = 0$$

• Price equals marginal cost – very important!
7 Next Lecture

- Continue Cost Minimization
- Solve an Example
- Cases in which s.o.c. are not satisfied
- Start Profit Maximization