Outline

1. Returns to Scale

2. Two-step Cost Minimization

3. Cost Minimization: Example

4. Geometry of Cost Curves
1 Returns to Scale

• Nicholson, Ch. 7, pp. 190–193 [OLD: Ch. 11, pp. 275–278]

• Effect of increase in labor: f_L'

• Increase of all inputs: $f(tz)$ with t scalar, $t > 1$

• How much does output increase?

 – Decreasing returns to scale: for all z and $t > 1$,

 $f(tz) < tf(z)$
− Constant returns to scale: for all z and $t > 1$,
\[f(tz) = tf(z) \]

− Increasing returns to scale: for all z and $t > 1$,
\[f(tz) > tf(z) \]
• Example: \(y = f(K, L) = AK^\alpha L^\beta \)

• Marginal product of labor: \(f'_L = \)

• Decreasing marginal product of labor: \(f''_L = \)

• \(MRTS = \)

• Convex isoquant?

• Returns to scale: \(f(tK, tL) = A(tK)^\alpha (tL)^\beta = t^{\alpha+\beta} AK^\alpha L^\beta = t^{\alpha+\beta} f(K, L) \)
2 Two-step Cost minimization

- Nicholson, pp. 212–220 [OLD, Ch. 12, pp. 298–307]

- Objective of firm: Produce output that generates maximal profit.

- Decompose problem in two:

 - Given production level y, choose cost-minimizing combinations of inputs

 - Choose optimal level of y.

- *First step.* Cost-Minimizing choice of inputs
• Two-input case: Labor, Capital

• Input prices:

 – Wage w is price of L

 – Interest rate r is rental price of capital K

• Expenditure on inputs: $wL + rK$

• Firm objective function:

\[
\begin{align*}
\min_{L,K} & \quad wL + rK \\
\text{s.t.} & \quad f(L, K) \geq y
\end{align*}
\]
Equality in constraint holds if:

1. $w > 0$, $r > 0$;
2. f strictly increasing in at least L or K.

Counterexample if ass. 1 is not satisfied

Counterexample if ass. 2 is not satisfied
• Compare with expenditure minimization for consumers

• First order conditions:

\[w - \lambda f'_L = 0 \]

and

\[r - \lambda f'_K = 0 \]

• Rewrite as

\[\frac{f'_L(L^*, K^*)}{f'_K(L^*, K^*)} = \frac{w}{r} \]

• MRTS (slope of isoquant) equals ratio of input prices
• Graphical interpretation
• Derived demand for inputs:

\[L = L^* (w, r, y) \]

\[K = K^* (w, r, y) \]

• Value function at optimum is **cost function**:

\[c (w, r, y) = wL^* (r, w, y) + rK^* (r, w, y) \]
• **Second step.** Given cost function, choose optimal quantity of y as well

• Price of output is p.

• Firm’s objective:
 \[
 \max p y - c(w, r, y)
 \]

• First order condition:
 \[
 p - c'_y(w, r, y) = 0
 \]

• Price equals marginal cost – very important!
• Second order condition:

\[-c''_{y,y}(w, r, y^*) < 0\]

• For maximum, need increasing marginal cost curve.
3 Cost Minimization: Example

• Continue example above: \(y = f(L, K) = AK^\alpha L^\beta \)

• Cost minimization:

\[
\min wL + rK \\
\text{s.t.} AK^\alpha L^\beta = y
\]

• Solutions:

 – Optimal amount of labor:

\[
L^*(r, w, y) = \left(\frac{y}{A} \right)^{\frac{1}{\alpha+\beta}} \left(\frac{w \alpha}{r \beta} \right)^{-\frac{\alpha}{\alpha+\beta}}
\]

 – Optimal amount of capital:

\[
K^*(r, w, y) = w \frac{\alpha}{r \beta} \left(\frac{y}{A} \right)^{\frac{1}{\alpha+\beta}} \left(\frac{w \alpha}{r \beta} \right)^{-\frac{\alpha}{\alpha+\beta}} = \]

\[
= \left(\frac{y}{A} \right)^{\frac{1}{\alpha+\beta}} \left(\frac{w \alpha}{r \beta} \right)^{\frac{\beta}{\alpha+\beta}}
\]
• Check various comparative statics:

 – \(\partial L^*/\partial A < 0 \) (technological progress and unemployment)

 – \(\partial L^*/\partial y > 0 \) (more workers needed to produce more output)

 – \(\partial L^*/\partial w < 0, \partial L^*/\partial r > 0 \) (substitute away from more expensive inputs)

• Parallel comparative statics for \(K^* \)
• Cost function

\[c(w, r, y) = wL^*(r, w, y) + rK^*(r, w, y) = \]
\[
= \left(\frac{y}{A} \right)^{\frac{1}{\alpha + \beta}} \left[w \left(\frac{w \alpha}{r \beta} \right)^{-\frac{\alpha}{\alpha + \beta}} + r \left(\frac{w \alpha}{r \beta} \right)^{\frac{\beta}{\alpha + \beta}} \right]
\]

• Define \(B := w \left(\frac{w \alpha}{r \beta} \right)^{-\frac{\alpha}{\alpha + \beta}} + r \left(\frac{w \alpha}{r \beta} \right)^{\frac{\beta}{\alpha + \beta}} \)

• Cost-minimizing output choice:

\[
\max p y - B \left(\frac{y}{A} \right)^{\frac{1}{\alpha + \beta}}
\]
• First order condition:

\[p - \frac{1}{\alpha + \beta} B \left(\frac{y}{A} \right) \frac{1-(\alpha+\beta)}{\alpha+\beta} = 0 \]

• Second order condition:

\[-\frac{1}{\alpha + \beta} \frac{1-(\alpha + \beta)}{\alpha + \beta} \frac{B}{A^2} \left(\frac{y}{A} \right) \frac{1-2(\alpha+\beta)}{\alpha+\beta} \]

• When is the second order condition satisfied?
• Solution:

- \(\alpha + \beta = 1 \) (CRS):

 * S.o.c. equal to 0

 * Solution depends on \(p \)

 * For \(p > \frac{1}{\alpha+\beta} \frac{B}{A} \), produce \(y^* \rightarrow \infty \)

 * For \(p = \frac{1}{\alpha+\beta} \frac{B}{A} \), produce any \(y^* \in [0, \infty) \)

 * For \(p < \frac{1}{\alpha+\beta} \frac{B}{A} \), produce \(y^* = 0 \)
- $\alpha + \beta > 1$ (IRS):

 * S.o.c. positive

 * Solution of f.o.c. is a minimum!

 * Solution is $y^* \to \infty$.

 * Keep increasing production since higher production is associated with higher returns
− \(\alpha + \beta < 1 \) (DRS):

∗ s.o.c. negative. OK!

∗ Solution of f.o.c. is an interior optimum

∗ This is the only "well-behaved" case under perfect competition

∗ Here can define a supply function
4 Geometry of cost curves

- Nicholson, Ch. 8, pp. 220–228; Ch. 9, pp. 256–259 [OLD: Ch. 12, pp. 307–312 and Ch. 13, pp. 342–346.]

- Marginal costs $MC = \partial c / \partial y \rightarrow$ Cost minimization

\[
p = MC = \frac{\partial c (w, r, y)}{\partial y}
\]

- Average costs $AC = c / y \rightarrow$ Does firm break even?

\[
\pi = py - c (w, r, y) > 0 \text{ iff } \\
\frac{\pi}{y} = p - c (w, r, y) / y > 0 \text{ iff } \\
c (w, r, y) / y = AC < p
\]
• **Supply function** (quantity as function of price).

• Portion of marginal cost MC above average costs. (price equals marginal cost)
• Assume only 1 input (expenditure minimization is trivial)

• **Case 1.** Production function. \(y = L^\alpha \)

 - Cost function? (cost of input is \(w \)):
 \[
 c(w, y) = wL^*(w, y) = wy^{1/\alpha}
 \]

 - Marginal cost?
 \[
 \frac{\partial c(w, y)}{\partial y} = \frac{1}{\alpha}w y^{(1-\alpha)/\alpha}
 \]

 - Average cost \(c(w, y)/y \)?
 \[
 \frac{c(w, y)}{y} = \frac{wy^{1/\alpha}}{y} = wy^{(1-\alpha)/\alpha}
 \]
• **Case 1a.** $\alpha > 1$. Plot production function, total cost, average and marginal. Supply function?

• **Case 1b.** $\alpha = 1$. Plot production function, total cost, average and marginal. Supply function?

• **Case 1c.** $\alpha < 1$. Plot production function, total cost, average and marginal. Supply function?
• **Case 2.** *Non-convex technology.* Plot production function, total cost, average and marginal. Supply function?

• **Case 3.** *Technology with setup cost.* Plot production function, total cost, average and marginal. Supply function?
5 Next Lecture

- Profit Maximization