Outline

1. Cost Curves and Supply Function

2. One-step Profit Maximization

3. Introduction to Market Equilibrium

4. Aggregation

5. Market Equilibrium in the Short-Run
1 Cost Curves

- Nicholson, Ch. 8, pp. 220–228; Ch. 9, pp. 256–259 [OLD: Ch. 12, pp. 307–312 and Ch. 13, pp. 342–346.]

- Marginal costs $MC = \frac{\partial c}{\partial y} \rightarrow$ Cost minimization

 \[p = MC = \frac{\partial c(w, r, y)}{\partial y} \]

- Average costs $AC = \frac{c}{y} \rightarrow$ Does firm break even?

 \[\pi = py - c(w, r, y) > 0 \text{ iff} \]

 \[\frac{\pi}{y} = p - c(w, r, y) / y > 0 \text{ iff} \]

 \[\frac{c(w, r, y)}{y} = AC < p \]

- **Supply function.** Portion of marginal cost MC above average costs. (price equals marginal cost)
• Assume only 1 input (expenditure minimization is trivial)

• **Case 1.** Production function. $y = L^\alpha$

 - Cost function? (cost of input is w):
 $$ c(w, y) = wL^*(w, y) = wy^{1/\alpha} $$

 - Marginal cost?
 $$ \frac{\partial c(w, y)}{\partial y} = \frac{1}{\alpha} wy^{(1-\alpha)/\alpha} $$

 - Average cost $c(w, y) / y$?
 $$ \frac{c(w, y)}{y} = \frac{wy^{1/\alpha}}{y} = wy^{(1-\alpha)/\alpha} $$
• **Case 1a.** \(\alpha > 1 \). Plot production function, total cost, average and marginal. Supply function?

• **Case 1b.** \(\alpha = 1 \). Plot production function, total cost, average and marginal. Supply function?

• **Case 1c.** \(\alpha < 1 \). Plot production function, total cost, average and marginal. Supply function?
• **Case 2.** *Non-convex technology.* Plot production function, total cost, average and marginal. Supply function?

• **Case 3.** *Technology with setup cost.* Plot production function, total cost, average and marginal. Supply function?
1.1 Supply Function

- Supply function: \(y^* = y^* (w, r, p) \)

- What happens to \(y^* \) as \(p \) increases?

- Is the supply function upward sloping?

- Remember f.o.c:
 \[
 p - c'_y (w, r, y) = 0
 \]

- Implicit function:
 \[
 \frac{\partial y^*}{\partial p} = -\frac{1}{-c''_{y,y} (w, r, y)} > 0
 \]
 as long as s.o.c. is satisfied.

- Yes! Supply function is upward sloping.
2 One-step Profit Maximization

- Nicholson, Ch. 9, pp. 265–270 [OLD: Ch. 13, pp. 346–350].

- One-step procedure: maximize profits

- Perfect competition. Price p is given

 - Firms are small relative to market

 - Firms do not affect market price p_M

 - Will firm produce at $p > p_M$?

 - Will firm produce at $p < p_M$?

 $\Rightarrow p = p_M$
• Revenue: $py = pf(L, K)$

• Cost: $wL + rK$

• Profit $pf(L, K) - wL - rK$
• Agent optimization:

\[
\max_{L,K} pf(L, K) - wL - rK
\]

• First order conditions:

\[
\frac{pf_L(L, K)}{L} - w = 0
\]

and

\[
\frac{pf_K(L, K)}{K} - r = 0
\]

• Second order conditions? \(pf''_{L,L}(L, K) < 0 \) and

\[
|H| = \begin{vmatrix} pf''_{L,L}(L, K) & pf''_{L,K}(L, K) \\ pf''_{L,K}(L, K) & pf''_{K,K}(L, K) \end{vmatrix} = p^2 \left[f''_{L,L} f''_{K,K} - (f''_{L,K})^2 \right] > 0
\]

• Need \(f''_{L,K} \) not too large for maximum
Comparative statics with respect to p, w, and r.

What happens if w increases?

\[
\frac{\partial L^*}{\partial w} = -\frac{\begin{vmatrix} -1 & p_f^{II}_{L,K}(L,K) \\ 0 & p_f^{II}_{K,K}(L,K) \end{vmatrix}}{\begin{vmatrix} p_f^{II}_{L,L}(L,K) & p_f^{II}_{L,K}(L,K) \\ p_f^{II}_{L,K}(L,K) & p_f^{II}_{K,K}(L,K) \end{vmatrix}} < 0
\]

and

\[
\frac{\partial L^*}{\partial r} =
\]

Sign of $\partial L^*/\partial r$ depends on $f''_{L,K}$.
3 Introduction to Market Equilibrium

• Nicholson, Ch. 10, pp. 279–295 [OLD: Ch. 14, pp. 368–382.

• Two ways to analyze firm behavior:
 – Two-Step Cost Minimization
 – One-Step Profit Maximization

• What did we learn?
 – Optimal demand for inputs L^*, K^* (see above)
 – Optimal quantity produced y^*
• **Supply function.** $y = y^* (p, w, r)$

 – From profit maximization:
 $$y = f \left(L^* (p, w, r), K^* (p, w, r) \right)$$

 – From cost minimization:
 $$MC \text{ curve above } AC$$

 – Supply function is increasing in p

• Market Equilibrium. Equate demand and supply.

• Aggregation?

• Industry supply function!
4 Aggregation

4.1 Producers aggregation

- J companies, $j = 1, \ldots, J$, producing good i

- Company j has supply function
 \[y_i^j = y_i^{j*}(p_i, w, r) \]

- Industry supply function:
 \[Y_i(p_i, w, r) = \sum_{j=1}^{J} y_i^{j*}(p_i, w, r) \]

- Graphically,
4.2 Consumer aggregation

- Nicholson, Ch. 10, pp. 279–282 [OLD: Ch. 7, pp. 172–176]

- One-consumer economy

- Utility function $u(x_1, \ldots, x_n)$

- Prices p_1, \ldots, p_n

- Maximization \Rightarrow

\[
\begin{align*}
x_1^* &= x_1^* (p_1, \ldots, p_n, M), \\
& \quad \vdots \\
x_n^* &= x_n^* (p_1, \ldots, p_n, M).
\end{align*}
\]
Focus on good i. Fix prices $p_1, \ldots, p_{i-1}, p_{i+1}, \ldots, p_n$ and M.

Single-consumer demand function:

\[x_i^* = x_i^*(p_i|p_1, \ldots, p_{i-1}, p_{i+1}, \ldots, p_n, M) \]

- What is sign of $\partial x_i^*/\partial p_i$?
 - Negative if good i is normal
 - Negative or positive if good i is inferior
- **Aggregation**: J consumers, $j = 1, \ldots, J$

- Demand for good i by consumer j:

 $$x_{i}^{j*} = x_{i}^{j*}(p_1, \ldots, p_n, M_j)$$

- Market demand X_i:

 $$X_i (p_1, \ldots, p_n, M^1, \ldots, M^J) = \sum_{j=1}^{J} x_{i}^{j*}(p_1, \ldots, p_n, M^j)$$

- Graphically,
• Notice: market demand function depends on distribution of income M^J

• Market demand function X_i:
 – Consumption of good i as function of prices p
 – Consumption of good i as function of income distribution M^j
5 Market Equilibrium in the Short-Run

- Nicholson, Ch. 14, pp. 368–382.

- What is equilibrium price \(p_i \)?

- Magic of the Market...

- Equilibrium: No excess supply, No excess demand

- Prices \(p^* \) equates demand and supply of good \(i \):

\[
Y^* = Y^S_i (p^*_i, w, r) = X^D_i (p^*_1, ..., p^*_n, M^1, ..., M^J)
\]
• Graphically,

• Notice: in short-run firms can make positive profits
• Comparative statics exercises with endogenous price p_i:

 – increase in wage w or interest rate r:

 – change in income distribution
6 Next Lecture

- Comparative Statics of Equilibrium
- Taxes and Subsidies
- Long-Run Equilibrium