Economics 101A
(Lecture 11)

Stefano DellaVigna

October 5, 2006
Outline

1. Altruism and charitable donations II

2. Introduction to probability

3. Expected Utility

4. Risk Aversion
1 Altruism and Charitable Donations II

- Wendy computes the utility of Mark as a function of the donation D

- Mark maximizes

$$\max_{c_M} u(c_M)$$

subject to $c_M \leq M_M + D$

- Solution: $c_M^* = M_M + D$

- Wendy maximizes

$$\max_{c_M, D} u(c_W) + \alpha u(M_M + D)$$

subject to $c_W \leq M_W - D$
Rewrite as:
\[\max_D u(M_W - D) + \alpha u (M_M + D) \]

First order condition:
\[-u'(M_W - D^*) + \alpha u' (M_M + D^*) = 0 \]

Second order conditions:
\[u''(M_W - D^*) + \alpha u'' (M_M + D^*) < 0 \]
• Assume $\alpha = 1$.

 – Solution?

 – \[u'(M_W - D) = u'(M_M + D^*) \]

 – \[M_W - D^* = M_M + D^* \] or \[D^* = (M_W - M_M) / 2 \]

 – Transfer money so as to equate incomes!

 – Careful: $D < 0$ (negative donation!) if $M_M > M_W$

• Corrected maximization:

\[
\max_D u(M_W - D) + \alpha u(M_M + D) \\
\text{s.t.} \quad D \geq 0
\]

• Solution ($\alpha = 1$):

\[
D^* = \begin{cases}
(M_W - M_M) / 2 & \text{if } M_W - M_M > 0 \\
0 & \text{otherwise}
\end{cases}
\]
• Assume interior solution. \((D^* > 0)\)

• Comparative statics 1 (altruism):

\[
\frac{\partial D^*}{\partial \alpha} = -\frac{u'(M_M + D^*)}{u''(M_W - D^*) + \alpha u''(M_M + D^*)} > 0
\]

• Comparative statics 2 (income of donor):

\[
\frac{\partial D^*}{\partial M_W} = -\frac{-u''(M_W + D^*)}{u''(M_W - D^*) + \alpha u''(M_M + D^*)} > 0
\]

• Comparative statics 3 (income of recipient):

\[
\frac{\partial D^*}{\partial M_M} = -\frac{\alpha u''(M_M + D^*)}{u''(M_W - D^*) + \alpha u''(M_M + D^*)} < 0
\]
• A quick look at the evidence

• From Andreoni (2002)
2 Introduction to Probability

• So far deterministic world:
 – income given, known M
 – interest rate known r

• But some variables are unknown at time of decision:
 – future income M_1?
 – future interest rate r_1?

• Generalize framework to allow for uncertainty
 – Events that are truly unpredictable (weather)
 – Event that are very hard to predict (future income)
• Probability is the language of uncertainty

• Example:

 - Income M_1 at $t = 1$ depends on state of the economy

 - Recession ($M_1 = 20$), Slow growth ($M_2 = 25$), Boom ($M_3 = 30$)

 - Three probabilities: p_1, p_2, p_3

 - $p_1 = P(M_1) = P($recession$)$

• Properties:

 - $0 \leq p_i \leq 1$

 - $p_1 + p_2 + p_3 = 1$
• Mean income: \(EM = \sum_{i=1}^{3} p_i M_i \)

• If \((p_1, p_2, p_3) = (1/3, 1/3, 1/3)\),
 \[
 EM = \frac{1}{3}20 + \frac{1}{3}25 + \frac{1}{3}30 = \frac{75}{3} = 25
 \]

• Variance of income: \(V(M) = \sum_{i=1}^{3} p_i (M_i - EM)^2 \)

• If \((p_1, p_2, p_3) = (1/3, 1/3, 1/3)\),
 \[
 V(M) = \frac{1}{3} (20 - 25)^2 + \frac{1}{3} (25 - 25)^2 + \frac{1}{3} (30 - 25)^2
 \]
 \[
 = \frac{1}{3} 5^2 + \frac{1}{3} 5^2 = 2/3 * 25
 \]

• Mean and variance if \((p_1, p_2, p_3) = (1/4, 1/2, 1/4)\)?
3 Expected Utility

- Nicholson, Ch. 18, pp. 533–541 [OLD: Ch. 8, pp. 198–206]

- Consumer at time 0 asks: what is utility in time 1?

- At \(t = 1 \) consumer maximizes

\[
\max U(c^1) \\
\text{s.t. } c^1_i \leq M^1_i + (1 + r)(M^0 - c^0)
\]

with \(i = 1, 2, 3 \).

- What is utility at optimum at \(t = 1 \) if \(U' > 0 \)?

- Assume for now \(M^0 - c^0 = 0 \)

- Utility \(U(M^1_i) \)

- This is uncertain, depends on which \(i \) is realized!
• How do we evaluate future uncertain utility?

• **Expected utility**

\[
EU = \sum_{i=1}^{3} p_i U \left(M_i^1 \right)
\]

• In example:

\[
EU = \frac{1}{3} U(20) + \frac{1}{3} U(25) + \frac{1}{3} U(30)
\]

• Compare with \(U(EC) = U(25) \).

• Agents prefer riskless outcome \(EM \) to uncertain outcome \(M \) if

\[
\frac{1}{3} U(20) + \frac{1}{3} U(25) + \frac{1}{3} U(30) < U(25) \quad \text{or} \quad \frac{1}{3} U(20) + \frac{1}{3} U(30) < \frac{2}{3} U(25) \quad \text{or} \quad \frac{1}{2} U(20) + \frac{1}{2} U(30) < U(25)
\]
• Picture
• Depends on sign of \(U'' \), on concavity/convexity

• Three cases:

 - \(U''(x) = 0 \) for all \(x \). (linearity of \(U \))
 \[
 * U(x) = a + bx
 \]
 \[
 * 1/2U(20) + 1/2U(30) = U(25)
 \]

 - \(U''(x) < 0 \) for all \(x \). (concavity of \(U \))
 \[
 * 1/2U(20) + 1/2U(30) < U(25)
 \]

 - \(U''(x) > 0 \) for all \(x \). (convexity of \(U \))
 \[
 * 1/2U(20) + 1/2U(30) > U(25)
 \]
• If $U''(x) = 0$ (linearity), consumer is indifferent to uncertainty

• If $U''(x) < 0$ (concavity), consumer dislikes uncertainty

• If $U''(x) > 0$ (convexity), consumer likes uncertainty

• Do consumers like uncertainty?

• Do you like uncertainty?
• **Theorem. (Jensen’s inequality)** If a function $f(x)$ is concave, the following inequality holds:

$$f(Ex) \geq Ef(x)$$

where E indicates expectation. If f is strictly concave, we obtain

$$f(Ex) > Ef(x)$$

• Apply to utility function U.

• Individuals dislike uncertainty:

$$U(Ex) \geq EU(x)$$

• Jensen’s inequality then implies U concave ($U'' \leq 0$)

• Relate to diminishing marginal utility of income
4 Risk aversion

- Nicholson, Ch. 18, pp. 535–541 [OLD: Ch. 8, pp. 200–206].

- Risk aversion:
 - individuals dislike uncertainty
 - \(u \) concave, \(u'' < 0 \)

- Implications?
 - purchase of insurance (possible accident)
 - investment in risky asset (risky investment)
 - choice over time (future income uncertain)
• Experiment — Are you risk-averse?
5 Next Lectures

• Coefficient of risk aversion

• Applications:
 – Insurance
 – Portfolio choice
 – Consumption choice II