Economics 101A
(Lecture 12)

Stefano DellaVigna

October 10, 2006
Outline

1. Nobel Prize winners

2. Risk Aversion and Lottery

3. Insurance

4. Investment in Risky Asset

5. Measures of Risk Aversion

6. Mid-Term Feedback
1 Nobel Prize winner

• Edmund Phelps (Columbia University)

• Macroeconomist – You get to hear about him in 101B

• Contribution:
 – Price setting should account for price expectations
 – You cannot keep raising money supply to lower unemployment
 – People will come to expect the price increase

• Also: Model in Phelps and Pollak (1968) – Antecedent of self-control models (next lecture)
2 Risk Aversion and Lottery

- Are you risk-averse?

- Let’s see...
3 Insurance

- Nicholson, Ch. 18, pp. 545–551 [OLD: Ch. 8, pp. 211-216] Notice: different treatment than in class

- Individual has:
 - wealth w
 - utility function u, with $u' > 0$, $u'' < 0$

- Probability p of accident with loss L

- Insurance offers coverage:
 - premium q for each 1 paid in case of accident
 - units of coverage purchased α
• Individual maximization:

\[
\max_{\alpha} (1 - p) u (w - q\alpha) + pu (w - q\alpha - L + \alpha) \\
\text{s.t.} \alpha \geq 0
\]

• Assume \(\alpha^* \geq 0 \), check later

• First order conditions:

\[
0 = -q (1 - p) u' (w - q\alpha) \\
+ (1 - q) pu' (w - q\alpha - L + \alpha)
\]

or

\[
\frac{u' (w - q\alpha)}{u' (w - q\alpha - L + \alpha)} = \frac{1 - q}{q} \frac{p}{1 - p}.
\]

• Assume first \(q = p \) (insurance is fair)

• Solution for \(\alpha^* =? \)
• $\alpha^* > 0$, so we are ok!

• What if $q > p$ (insurance needs to cover operating costs)?

• Insurance will be only partial (if at all)

• Exercise: Check second order conditions!
4 Investment in Risk Asset

- Individual has:
 - wealth \(w \)
 - utility function \(u \), with \(u' > 0 \)

- Two possible investments:
 - Asset B (bond) yields return 1 for each dollar
 - Asset S (stock) yields uncertain return \((1 + r)\):
 * \(r = r_+ > 0 \) with probability \(p \)
 * \(r = r_- < 0 \) with probability \(1 - p \)
 * \(Er = pr_+ + (1 - p) r_- > 0 \)

- Share of wealth invested in stock \(S = \alpha \)
- Individual maximization:

\[
\max_{\alpha} (1 - p) \, u(w[(1 - \alpha) + \alpha (1 + r_-)]) + \\
+ pu(w[(1 - \alpha) + \alpha (1 + r_+)])
\]

\[
s.t. 0 \leq \alpha \leq 1
\]

- Case of risk neutrality: \(u(x) = a + bx, \ b > 0 \)

- Assume \(a = 0 \) (no loss of generality)

- Maximization becomes

\[
\max_{\alpha} b (1 - p) (w[1 + \alpha r_-]) + bp (w[1 + \alpha r_+])
\]

or

\[
\max_{\alpha} bw + \alpha bw [(1 - p) r_- + pr_+]
\]

- Sign of term in square brackets? Positive!

- Set \(\alpha^* = 1 \)
• Case of risk aversion: \(u'' < 0 \)

• Assume \(0 \leq \alpha^* \leq 1 \), check later

• First order conditions:

\[
0 = (1 - p) (wr_-) u'(w [1 + \alpha r_-]) + \\
+ p (wr_+) u'(w [1 + \alpha r_+])
\]

• Can \(\alpha^* = 0 \) be solution?

• Solution is \(\alpha^* > 0 \) (positive investment in stock)

• Exercise: Check s.o.c.
5 Measures of Risk Aversion

- Nicholson, Ch. 18, pp. 541–545 [OLD: Ch. 8, pp. 207–210].

- How risk averse is an individual?

- Two measures:

 - Absolute Risk Aversion r_A:
 \[
 r_A = - \frac{u''(x)}{u'(x)}
 \]

 - Relative Risk Aversion r_R:
 \[
 r_R = - \frac{u''(x)}{u'(x)} x
 \]

- Examples in the Problem Set
6 Mid-Term Feedback

• Thanks for the feedback!
7 Next lecture and beyond

- **Tu:**
 - Time consistency
 - Time Inconsistency
 - Application to health clubs

- **Then:**
 - Begin Production
 - Returns to scale
 - Cost minimization