Outline

1. Cost Minimization: Example II

2. Cost Curves and Supply Function

3. One-step Profit Maximization

4. Introduction to Market Equilibrium
1 Cost Minimization: Example II

- Continue example above: \(y = f(L, K) = AK^\alpha L^\beta \)

- Define \(B := w \left(\frac{w \alpha}{r \beta} \right)^{-\frac{\alpha}{\alpha+\beta}} + r \left(\frac{w \alpha}{r \beta} \right)^{\frac{\beta}{\alpha+\beta}} \)

- Cost-minimizing output choice:

\[
\max p y - B \left(\frac{y}{A} \right)^{\frac{1}{\alpha+\beta}}
\]

- First order condition:

\[
p - \frac{1}{\alpha + \beta} \frac{B}{A} \left(\frac{y}{A} \right)^{\frac{1-(\alpha+\beta)}{\alpha+\beta}} = 0
\]

- Second order condition:

\[
- \frac{1}{\alpha + \beta} \frac{1 - (\alpha + \beta) B}{A^2} \left(\frac{y}{A} \right)^{\frac{1-2(\alpha+\beta)}{\alpha+\beta}} < 0
\]
• Solution:

- $\alpha + \beta > 1$ (IRS):

 * S.o.c. positive

 * Solution of f.o.c. is a minimum!

 * Solution is $y^* \to \infty$.

 * Keep increasing production since higher production is associated with higher returns
- $\alpha + \beta < 1$ (DRS):

 * s.o.c. negative. OK!

 * Solution of f.o.c. is an interior optimum

 * This is the only "well-behaved" case under perfect competition

 * Here can define a supply function
2 Cost Curves

• Nicholson, Ch. 8, pp. 220–228; Ch. 9, pp. 256–259 [OLD: Ch. 12, pp. 307–312 and Ch. 13, pp. 342–346.]

• Marginal costs $MC = \frac{\partial c}{\partial y} \rightarrow$ Cost minimization

 $$p = MC = \frac{\partial c (w, r, y)}{\partial y}$$

• Average costs $AC = \frac{c}{y} \rightarrow$ Does firm break even?

 $$\pi = py - c (w, r, y) > 0 \text{ iff }$$
 $$\frac{\pi}{y} = p - \frac{c (w, r, y)}{y} > 0 \text{ iff }$$
 $$\frac{c (w, r, y)}{y} = AC < p$$

• Supply function. Portion of marginal cost MC above average costs.(price equals marginal cost)
• Assume only 1 input (expenditure minimization is trivial)

• **Case 1.** Production function. \(y = L^\alpha \)

 – Cost function? (cost of input is \(w \)):

 \[
 c(w, y) = wL^*(w, y) = wy^{1/\alpha}
 \]

 – Marginal cost?

 \[
 \frac{\partial c(w, y)}{\partial y} = \frac{1}{\alpha}wy^{(1-\alpha)/\alpha}
 \]

 – Average cost \(c(w, y)/y \)?

 \[
 \frac{c(w, y)}{y} = \frac{wy^{1/\alpha}}{y} = wy^{(1-\alpha)/\alpha}
 \]
• **Case 1a.** \(\alpha > 1 \). Plot production function, total cost, average and marginal. Supply function?

• **Case 1b.** \(\alpha = 1 \). Plot production function, total cost, average and marginal. Supply function?

• **Case 1c.** \(\alpha < 1 \). Plot production function, total cost, average and marginal. Supply function?
• **Case 2.** *Non-convex technology.* Plot production function, total cost, average and marginal. Supply function?

• **Case 3.** *Technology with setup cost.* Plot production function, total cost, average and marginal. Supply function?
2.1 Supply Function

- Supply function: \(y^* = y^* (w, r, p) \)

- What happens to \(y^* \) as \(p \) increases?

- Is the supply function upward sloping?

- Remember f.o.c:
 \[p - c'_y (w, r, y) = 0 \]

- Implicit function:
 \[\frac{\partial y^*}{\partial p} = - \frac{1}{-c''_{y,y} (w, r, y)} > 0 \]
 as long as s.o.c. is satisfied.

- Yes! Supply function is upward sloping.
3 One-step Profit Maximization

- Nicholson, Ch. 9, pp. 265–270 [OLD: Ch. 13, pp. 346–350].

- One-step procedure: maximize profits

- Perfect competition. Price p is given
 - Firms are small relative to market
 - Firms do not affect market price p_M

- Will firm produce at $p > p_M$?
- Will firm produce at $p < p_M$?
 - $\implies p = p_M$
• Revenue: $py = pf(L, K)$

• Cost: $wL + rK$

• Profit $pf(L, K) - wL - rK$
• Agent optimization:

$$\max_{L,K} pf(L, K) - wL - rK$$

• First order conditions:

$$pf'_{L}(L, K) - w = 0$$

and

$$pf'_{K}(L, K) - r = 0$$

• Second order conditions? $$pf''_{L,L}(L, K) < 0$$ and

$$|H| = \begin{vmatrix}
 pf''_{L,L}(L, K) & pf''_{L,K}(L, K) \\
 pf''_{L,K}(L, K) & pf''_{K,K}(L, K)
\end{vmatrix} =$$

$$= p^2 \left[f''_{L,L}f''_{K,K} - \left(f''_{L,K} \right)^2 \right] > 0$$

• Need $$f''_{L,K}$$ not too large for maximum
• Comparative statics with respect to to p, w, and r.

• What happens if w increases?

$$\frac{\partial L^*}{\partial w} = -\frac{\begin{vmatrix} -1 & p f''_{L,K}(L,K) \\ 0 & p f''_{K,K}(L,K) \end{vmatrix}}{p f''_{L,L}(L,K) \quad p f''_{L,K}(L,K) \quad p f''_{K,L}(L,K) \quad p f''_{K,K}(L,K)} < 0$$

and

$$\frac{\partial L^*}{\partial r} =$$

• Sign of $\frac{\partial L^*}{\partial r}$ depends on $f''_{L,K}$.
4 Introduction to Market Equilibrium

- Two ways to analyze firm behavior:
 - Two-Step Cost Minimization
 - One-Step Profit Maximization

- What did we learn?
 - Optimal demand for inputs L^*, K^* (see above)
 - Optimal quantity produced y^*
• **Supply function.** $y = y^* (p, w, r)$

 – From profit maximization:
 $$y = f (L^* (p, w, r), K^* (p, w, r))$$

 – From cost minimization:
 \[MC \text{ curve above } AC \]

 – Supply function is increasing in p

• Market Equilibrium. Equate demand and supply.

• Aggregation?

• Industry supply function!
5 Next Lecture

• Aggregation

• Market Equilibrium

• Comparative Statics of Equilibrium

• Taxes and Subsidies

• Long-Run Equilibrium