Outline

1. Example of General Equilibrium

2. Existence and Welfare Theorems

3. Asymmetric Information: Introduction

4. Hidden Action (Moral Hazard)
1 Example

• Consumer 1 has Leontieff preferences:
 \[u(x_1, x_2) = \min (x_1^1, x_2^1) \]

• Bundle demanded by consumer 1:
 \[x_1^{1*} = x_2^{1*} = x^{1*} = \frac{p_1 \omega_1^1 + p_2 \omega_2^1}{p_1 + p_2} = \]
 \[= \frac{\omega_1^1 + (p_2/p_1) \omega_2^1}{1 + (p_2/p_1)} \]

• Graphically
• Comparative statics:

 – increase in ω

 – increase in p_2/p_1:

 $$\frac{dx_1^{1*}}{dp_2/p_1} = \frac{\omega_2^1 (1 + (p_2/p_1))}{1 + (p_2/p_1)^2} = \frac{\omega_2^1 - \omega_1^1}{(1 + (p_2/p_1))^2}$$

 – Effect depends on income effect through endowments:

 * A lot of good 2 → increase in price of good 2 makes richer

 * Little good 2 → increase in price of good 2 makes poorer

• Notice: Only ratio of prices matters (general feature)
• Consumer 2 has Cobb-Douglas preferences:

\[u(x_1, x_2) = (x_1^2)^{0.5} (x_2^2)^{0.5} \]

• Demands of consumer 2:

\[x_1^{2*} = \frac{0.5 (p_1 \omega_1^1 + p_2 \omega_2^1)}{p_1} = 0.5 \left(\frac{\omega_1^1 + p_2 \omega_1^2}{p_1} \right) \]

and

\[x_2^{2*} = \frac{0.5 (p_1 \omega_1^1 + p_2 \omega_2^1)}{p_2} = 0.5 \left(\frac{p_1 \omega_1^1 + \omega_2^1}{p_2} \right) \]
Comparative statics:

- increase in $\omega \rightarrow$ Increase in final consumption
- increase in $p_2/p_1 \rightarrow$ Unambiguous increase in x_{1*}^2 and decrease in x_{2*}^2
• Impose Walrasian equilibrium in market 1:

\[x_1^* + x_2^* = \omega_1 + \omega_2 \]

This implies

\[
\frac{\omega_1 + (p_2/p_1) \omega_2}{1 + (p_2/p_1)} + \frac{.5 \left(\omega_1 + \frac{p_2}{p_1} \omega_2 \right)}{1 + (p_2/p_1)} = \omega_1 + \omega_2
\]

or

\[
.5 - .5 \left(\frac{p_2}{p_1} \right) \omega_1 + \frac{.5 \left(\frac{p_2}{p_1} \right) + .5 \left(\frac{p_2}{p_1} \right)^2 - 1}{1 + (p_2/p_1)} \omega_2 = 0
\]

or

\[
(\omega_1 - 2\omega_2) + (\omega_1 + \omega_2) \left(\frac{p_2}{p_1} \right) + \omega_2 \left(\frac{p_2}{p_1} \right)^2 = 0
\]
• Solution for p_2/p_1:

$$
\frac{p_2}{p_1} = \frac{-\left(\omega_1^1 - 2\omega_2^1\right) + \sqrt{\frac{\left(\omega_1^1 + \omega_2^1\right)^2}{-4 \left(\omega_1^1 - 2\omega_2^1\right) \omega_2^1}}}{2 \left(\omega_1^1 - 2\omega_2^1\right)}
$$

• Some complicated solution!

• Problem set has solution that is easier to compute (and interpret)
2 Existence and Welfare Theorems

- Does Walrasian Equilibrium always exist? In general, yes, as long as preference convex

- Is Walrasian Equilibrium always unique? Not necessarily

- Is Walrasian Equilibrium efficient? Yes.
• **First Fundamental Welfare Theorem.** All Walrasian Equilibria are on Contract Curve (and therefore are Pareto Efficient).

• Figure
• **Second Fundamental Welfare theorem.** Given convex preferences, for every Pareto efficient allocation \(((x_1^1, x_1^1), (x_1^2, x_2^2))\) there exists some endowment \((\omega_1, \omega_2)\) such that \(((x_1^1, x_1^1), (x_1^2, x_2^2))\) is a Walrasian Equilibrium for endowment \((\omega_1, \omega_2)\).

• Figure
• Significance of these results:

 – First Theorem: Smithian Invisible Hand. Market leads to an allocation that is Pareto Efficient.

 – BUT: problems with externalities and public good

 – BUT: what about distribution?

 – Second Theorem: Can redistribute endowments to achieve any efficient outcome as a WE.

 – But redistribution is hard to implement, and distortive.
3 Asymmetric Information: Introduction

- Nicholson, Ch. 18, pp. 627-632 \[NOT in 9th Ed.\]

- Common economic relationship

- Contract between two parties:
 - Principal
 - Agent

- Two parties have asymmetric information
 - Principal offers a contract to the agent
 - Agent chooses an action
 - Action of agent (or his type) is not observed by principle
• Example 1: *Manager and worker*
 – Manager employs worker and offers wage
 – Worker exerts effort (not observed)
 – Manager pays worker as function of output

• Example 2: *Car Insurance*
 – Car insurance company offers insurance contract
 – Driver chooses quality of driving (not observed)
 – Insurance company pays for accidents

• Example 3: *Shareholders and CEO*
 – Shareholders choose compensation for CEO
 – CEO puts effort
 – CEO paid as function of stock price
• In all of these cases (and many more!), common structure
 – Principal would like to observe effort (of worker, of CEO, of driver)
 – Unfortunately, this is not observable
 – Only a related, noisy proxy is observable: output, accident, success
 – Contract offered by principal is function of this proxy

• This means that occasionally an agent that put a lot of effort but has bad luck is ‘punished’

• Also, agents that shirked may instead be compensated

• These principle-agent problems are called hidden action or moral hazard
• Second category (next lecture): *hidden type* or *adverse selection*

• Example 1: *Manager and worker*
 – Manager employs worker and offers wage
 – Worker can be hard-working or lazy

• Example 2: *Car Insurance*
 – Car insurance company offers insurance contract
 – Drivers ex ante can be careful or careless

• Example 3: *Shareholders and CEO*
 – Shareholders choose compensation for CEO
 – CEO is high-quality or thief
• Problem is similar (action is not observed), but with a twist

 – *Hidden action*: principal can convince agent to exert high effort with the appropriate incentives

 – *Hidden type*: agent’s behavior is not affected by incentives, but by her type

• Different task for principal:

 – *Hidden action*: Principal wants to incentivize agent to work hard

 – *Hidden type*: Principal wants to make sure to recruit ‘good’ agent, not ‘bad’ one

• Two look similar, but analysis is different

• Start from *Hidden Action*
4 Hidden Action (Moral Hazard)

- Nicholson, Ch. 18, pp. 632-637 [NOT in 9th Ed.]

- Example 3: Shareholders and CEO
 - Division of ownership and control

- Shareholders (owners of firm):
 - Have capital, but do not have time to run company themselves
 - Want firm run so as to maximize profits

- CEO (manager)
 - Has time and managerial skill
 - Does not have capital to own the firm
• If CEO owns the company (private enterprises), problem is solved → Infeasible in large companies

• Agent chooses effort e (unobserved)

 – Induces output $y = e + \varepsilon$, where ε is a noise term, with $E(\varepsilon) = 0$

 – Example: Despite putting effort, investment project did not succeed

• Principal pays a salary w to the agent

 – Salary is a function of output y: $w = w(y)$

 – Remember: Salary cannot be function of effort e
• Principal maximizes expected profits

\[E [\pi] = E [y - w(y)] = e - E [w(y)] \]

• Agent is risk averse and maximizes

\[E [U (w(e + \varepsilon))] - c(e) \]

- \(c(e) \) is cost of effort: assume \(c'(e) > 0 \) and \(c''(e) > 0 \) for all \(e \)

- Utility function \(U \) satisfies \(U' > 0 \) and \(U'' < 0 \)

- Notice: Agent is risk-averse, Principal is risk-neutral

• Assume \(U(w) = -e^{-\gamma w} \) and \(\varepsilon \sim N(0, \sigma^2) \)

• Can solve explicitly for \(EU(w) \):

\[EU(w) = -\frac{1}{\sqrt{2\pi}} \int e^{-\gamma w} e^{-\frac{1}{2} \frac{w-\mu_w}{\sigma_w^2}} dw = \mu_w - \frac{\gamma}{2} \sigma_w^2 \]

[Take this for granted]
• Expected utility of agent is $EU (w) = \mu_w - \frac{\gamma}{2} \sigma^2_w$

• Note: μ_w is average salary and σ^2_w is variance of salary

 – Agent likes high mean salary μ_w

 – Agent dislikes variance in salary σ^2_w

 – Dislike for variance increases in risk aversion γ

• Assume that contract is linear: $w = a + by = a + be + b\varepsilon$

 – Compute $\mu_w = E (w) = E [a + be + b\varepsilon] = a + be + bE [\varepsilon] = a + be$

 – Compute $\sigma^2_w = Var [a + be + b\varepsilon] = b^2 \sigma^2$

• Rewrite expected utility as

 $$EU (w) = a + be - \frac{\gamma}{2} b^2 \sigma^2$$
- Back to Principal-Agent problem

- Solve problem in three Steps, starting from last stage (backward induction)

 - **Step 1** (*Effort Decision*). Given contract \(w(y) \), what effort \(e^* \) is agent going to put in?

 - **Step 2.** (*Individual Rationality*) Given contract \(w(y) \) and anticipating to put in effort \(e^* \), does agent accept the contract?

 - **Step 3.** (*Profit Maximization*) Anticipating that the effort of the agent \(e^* \) (and the acceptance of the contract) will depend on the contract, what contract \(w(y) \) does principal choose to maximize profits?
• **Step 1.** Solve effort maximization of agent:

\[Max_{ea} + be - \frac{\gamma}{2} b^2 \sigma^2 - c(e) \]

• Solution:

\[c'(e) = b \]

• If assume \(c(e) = ce^2/2 \rightarrow e^* = b/c \)

• Check comparative statics

 – With respect to \(b \rightarrow \) What happens with more pay-for-performance?

 – With respect to \(c \rightarrow \) What happens with higher cost of effort?
• **Step 2.** Agent needs to be willing to work for principal

• *Individual rationality* condition:

\[
EU (w(e^*)) - c(e^*) \geq 0
\]

• Substitute in the solution for \(e^*\) and obtain

\[
a + be^* - \frac{\gamma}{2} b^2 \sigma^2 - c(e^*) \geq 0
\]

• Will be satisfied with equality: \(a^* = -be^* + \frac{\gamma}{2} b^2 \sigma^2 + c(e^*)\)
• **Step 3:** Owner maximizes expected profits

\[
\max_{a,b} E[\pi] = e - E[w(y)] = e - a - be
\]

• Substitute in the two constraints: \(c'(e) = b \) (Step 1) and \(a^* = -be^* + \frac{\gamma}{2} b^2 \sigma^2 + c(e^*) \) (Step 2)

• Obtain

\[
E[\pi] = e - \left(-be + \frac{\gamma}{2} b^2 \sigma^2 + c(e) \right) - c'(e) e \\
= e + be - \frac{\gamma}{2} b^2 \sigma^2 - c(e^*) - c'(e) e \\
= e + c'(e) e - \frac{\gamma}{2} \left(c'(e) \right)^2 \sigma^2 - c(e^*) - c'(e) e \\
= e - \frac{\gamma}{2} \left(c'(e) \right)^2 \sigma^2 - c(e^*)
\]

• Profit maximization yields f.o.c.

\[
1 - \gamma c'(e) \sigma^2 c''(e) - c'(e) = 0
\]
and hence
\[c'(e^*) = \frac{1}{1 + \gamma\sigma^2 c''(e^*)} \]

- Notice: This implies \(c'(e^*) < 1 \)

- Substitute \(c(e) = ce^2/2 \) to get
\[e^* = \frac{1}{c} \frac{1}{1 + \gamma\sigma^2 c} \]

- Comparative Statics:
 - Higher risk aversion \(\gamma \rightarrow \)
 - Higher variance of output \(\sigma \rightarrow \)
 - Higher effort cost \(c \rightarrow \)
• Also, remember \(b^* = c'(e^*) = ce^* \) and hence

\[
b^* = ce^* = c \frac{1}{1 + \gamma \sigma^2 c} = \frac{1}{1 + \gamma \sigma^2 c}
\]

• Notice \(0 < b^* < 1 \):

 – Agent gets paid increasing function of output to incentivize

 – Does not get paid one-on-one \((b = 1)\) because that would pass on too much risk to agent

 – (Remember \(w^* = a^* + b^* y = a^* + b^* e + b^* \varepsilon \))

 – Comparative Statics: what happens to \(b^* \) if \(\gamma = 0 \) or \(\sigma = 0 \)? Interpret
• Compare this solution to solution when effort is observable

• This is so-called **first best** since it eliminates the uncertainty involved in connecting pay to performance (as opposed to effort)

 – Principal offers a flat wage $w = a$ as long as agent works e^*

 – Agent accepts job if

 $$a - c(e^*) \geq 0$$

 – Principal wants to pay minimal necessary and hence sets $a^* = c(e^*)$

 – Substitute into profit of principal

 $$\max_{a,b} E[\pi] = e - E[w(y)] = e - a^* = e - c(e)$$
- Solution for e^*: $c'(e^*) = 1$ or

 $e^*_{FB} = 1/c$

- Compare e^* above and e^*_{FB} in first best

- \rightarrow With observable effort (first best) agent works harder
• Summary of hidden-action solution with risk-averse agent:

• **Risk-incentive trade-off:**

 – Agent needs to be incentivized \((b^* > 0)\) or will not put in effort \(e\)

 – Cannot give too much incentive \((b^* too high)\) because of risk-aversion

 – Trade-off solved if

 * Action \(e\) observable OR

 * No risk aversion \((\gamma = 0)\) OR

 * No noise in outcome \((\sigma^2 = 0)\)

 – Otherwise, effort \(e^*\) in equilibrium is sub-optimal

• Same trade-off applies to other cases
• Example 2: *Insurance* (Not fully solved)

 - Two states of the world: Loss and No Loss
 - Probability of Loss is $\pi(e)$, with $\pi'(e) < 0$
 * Example: Careful driving (Car Insurance)
 * Example: Maintaining your house better (House insurance)
 - Agent chooses quantity of insurance α purchased
 - Agent risk averse: $U(c)$ with $U' > 0$ and $U'' < 0$
• Qualitative solution:

 – No hidden action \Rightarrow Full insurance: $\alpha^* = L$

 – Hidden action \Rightarrow

 * Trade-off risk-incentives \Rightarrow Only Partial insurance $0 < \alpha^* < L$

 * Need to make agent partially responsible for accident to incentivize

 * Do not want to make too responsible because of risk-aversion
5 Next lecture

- Asymmetric Information
- Moral Hazard