Outline

1. Mid-Term Feedback

2. Risk Aversion and Lottery

3. Measures of Risk Aversion

4. Production: Introduction

5. Production Function
1 Mid-Term Feedback

• Thanks for the feedback!
2 Risk aversion

• Risk aversion:
 – individuals dislike uncertainty
 – u concave, $u'' < 0$

• Implications?
 – purchase of insurance (possible accident)
 – investment in risky asset (risky investment)
 – choice over time (future income uncertain)
Theorem. (Jensen’s inequality) If a function $f(x)$ is concave, the following inequality holds:

$$f(Ex) \geq Ef(x)$$

where E indicates expectation. If f is strictly concave, we obtain

$$f(Ex) > Ef(x)$$

- Apply to utility function U.

- Individuals dislike uncertainty:

$$U(Ex) \geq EU(x)$$

- Jensen’s inequality then implies U concave ($U'' \leq 0$)

- Relate to diminishing marginal utility of income
• Experiment — Are you risk-averse?
3 Measures of Risk Aversion

- Nicholson, Ch. 7, pp. 209-213 (Ch. 18, pp. 541–545, 9th)

- How risk averse is an individual?

- Two measures:
 - Absolute Risk Aversion r_A:
 $$ r_A = - \frac{u''(x)}{u'(x)} $$
 - Relative Risk Aversion r_R:
 $$ r_R = - \frac{u''(x)}{u'(x)} x $$

- Examples in the Problem Set
4 Production: Introduction

- Second half of the economy. Production

- Example. Ford and the Minivan (Petrin, 2002):
 - Ford had idea: "Mini/Max" (early '70s)
 - Did Ford produce it?
 - No!
 - Ford was worried of cannibalizing station wagon sector
 - Chrysler introduces Dodge Caravan (1984)
 - Chrysler: $1.5bn profits (by 1987)!
• Why need separate treatment?

• Perhaps firms maximize utility...

• ...we can be more precise:
 – Competition
 – Institutional structure
5 Production Function

• Nicholson, Ch. 9, pp. 295-301; 306-311 (Ch. 7, pp. 183–190; 195–200, 9th)

• Production function: \(y = f(z) \). Function \(f : R_+^n \rightarrow R_+ \)

• Inputs \(z = (z_1, z_2, \ldots, z_n) \): labor, capital, land, human capital

• Output \(y \): Minivan, Intel Pentium III, mangoes (Philippines)

• Properties of \(f \):

 – no free lunches: \(f(0) = 0 \)

 – positive marginal productivity: \(f'_{i}(z) > 0 \)

 – decreasing marginal productivity: \(f''_{i,i}(z) < 0 \)
- Isoquants $Q(y) = \{x | f(x) = y\}$

- Set of inputs z required to produce quantity y

- Special case. Two inputs:
 - $z_1 = L$ (labor)
 - $z_2 = K$ (capital)

- Isoquant: $f(L, K) - y = 0$

- Slope of isoquant $dK/dL = MRTS$
• Convex production function if convex isoquants

• Reasonable: combine two technologies and do better!

• Mathematically, \(\frac{d^2 K}{d^2 L} = \)
6 Next Lecture

- Two-Step Cost Minimization
- Solve an Example
- Cases in which s.o.c. are not satisfied
- Start Profit Maximization