Outline

1. Properties of Preferences II

2. From Preferences to Utility (and vice versa)

3. Common Utility Functions

4. Utility maximization
1 Properties of Preferences II

- Indifference relation \sim: $x \sim y$ if $x \succeq y$ and $y \succeq x$

- Strict preference: $x \succ y$ if $x \succeq y$ and not $y \succeq x$

- Exercise. If \succeq is rational,
 - \succ is transitive
 - \sim is transitive
 - Reflexive property of \succeq. For all x, $x \succeq x$.
• Other features of preferences

• Preference relation \succeq is:

 – \textit{monotonic} if $x \geq y$ implies $x \succeq y$.

 – \textit{strictly monotonic} if $x \geq y$ and $x_j > y_j$ for some j implies $x \succ y$.

 – \textit{convex} if for all $x, y,$ and z in X such that $x \succeq z$ and $y \succeq z$, then $tx + (1 - t)y \succeq z$ for all t in $[0, 1]$.
2 From preferences to utility

- Nicholson, Ch. 3

- Economists like to use utility functions $u : X \to R$

- $u(x)$ is ‘liking’ of good x

- $u(a) > u(b)$ means: I prefer a to b.

- **Def.** Utility function u represents preferences \succeq if, for all x and y in X, $x \succeq y$ if and only if $u(x) \geq u(y)$.

- **Theorem.** If preference relation \succeq is rational and continuous, there exists a continuous utility function $u : X \to R$ that represents it.
• [Skip proof]

• Example:

\[(x_1, x_2) \succeq (y_1, y_2) \iff x_1 + x_2 \geq y_1 + y_2\]

• Draw:

• Utility function that represents it: \(u(x) = x_1 + x_2\)

• But... Utility function representing \(\succeq\) is not unique

• Take \(3u(x)\) or \(\exp(u(x))\)

• \(u(a) > u(b) \iff \exp(u(a)) > \exp(u(b))\)
• If $u(x)$ represents preferences \succeq and f is a strictly increasing function, then $f(u(x))$ represents \succeq as well.

• If preferences are represented from a utility function, are they rational?

 – completeness

 – transitivity
• Indifference curves: \(u(x_1, x_2) = \bar{u} \)

• They are just implicit functions! \(u(x_1, x_2) - \bar{u} = 0 \)

\[
\frac{dx_2}{dx_1} = -\frac{U'_x}{U'_{x_2}} = MRS
\]

• Indifference curves for:

 – monotonic preferences;

 – strictly monotonic preferences;

 – convex preferences
3 Common utility functions

- Nicholson, Ch. 3, pp. 100-104 (82-86, 9th)

1. Cobb-Douglas preferences: \(u(x_1, x_2) = x_1^\alpha x_2^{1-\alpha} \)
 - \(MRS = -\alpha x_1^{a-1} x_2^{1-\alpha} / (1-a)x_1^\alpha x_2^{-\alpha} = \frac{\alpha x_2}{1-\alpha x_1} \)

2. Perfect substitutes: \(u(x_1, x_2) = \alpha x_1 + \beta x_2 \)
 - \(MRS = -\alpha / \beta \)
3. Perfect complements: \(u(x_1, x_2) = \min(\alpha x_1, \beta x_2) \)

- \(MRS \) discontinuous at \(x_2 = \frac{\alpha}{\beta} x_1 \)

4. Constant Elasticity of Substitution: \(u(x_1, x_2) = (\alpha x_1^\rho + \beta x_2^\rho)^{1/\rho} \)

- \(MRS = -\frac{\alpha}{\beta} \left(\frac{x_1}{x_2} \right)^{\rho-1} \)

- if \(\rho = 1 \), then...

- if \(\rho = 0 \), then...

- if \(\rho \to -\infty \), then...
4 Utility Maximization

- Nicholson, Ch. 4, pp. 114–124 (94–105, 9th)

- $X = R^2_+$ (2 goods)

- Consumers: choose bundle $x = (x_1, x_2)$ in X which yields highest utility.

- Constraint: income = M

- Price of good 1 = p_1, price of good 2 = p_2

- Bundle x is feasible if $p_1 x_1 + p_2 x_2 \leq M$

- Consumer maximizes

$$\max_{x_1, x_2} u(x_1, x_2)$$

subject to:

- $p_1 x_1 + p_2 x_2 \leq M$
- $x_1 \geq 0$, $x_2 \geq 0$
• Maximization subject to inequality. How do we solve that?

• Trick: \(u \) strictly increasing in at least one dimension. \((\succeq \text{ strictly monotonic})\)

• Budget constraint always satisfied with equality

• Ignore temporarily \(x_1 \geq 0, x_2 \geq 0 \) and check afterwards that they are satisfied for \(x_1^* \) and \(x_2^* \).
• Problem becomes

\[
\max_{x_1, x_2} u(x_1, x_2) \\
\text{s.t. } p_1 x_1 + p_2 x_2 - M = 0
\]
5 Next Class

• Utility Maximization (ctd)

• Utility Maximization – tricky cases

• Indirect Utility Function