Outline

1. Existence of Equilibrium and Welfare Theorems

2. Asymmetric Information: Introduction

3. Hidden Action (Moral Hazard)
1 Existence and Welfare Theorems

- Does Walrasian Equilibrium always exist? In general, yes, as long as preference convex

- Is Walrasian Equilibrium always unique? Not necessarily

- Is Walrasian Equilibrium efficient? Yes.
• **First Fundamental Welfare Theorem.** All Walrasian Equilibria are on Contract Curve (and therefore are Pareto Efficient).

• Figure
• **Second Fundamental Welfare theorem.** Given convex preferences, for every Pareto efficient allocation \(((x_1^1, x_1^1), (x_1^2, x_2^2)) \) there exists some endowment \((\omega_1, \omega_2)\) such that \(((x_1^1, x_1^1), (x_1^2, x_2^2)) \) is a Walrasian Equilibrium for endowment \((\omega_1, \omega_2)\).

• Figure
• Significance of these results:

 – First Theorem: Smithian Invisible Hand. Market leads to an allocation that is Pareto Efficient.

 – BUT: problems with externalities and public good

 – BUT: what about distribution?

 – Second Theorem: Can redistribute endowments to achieve any efficient outcome as a WE.

 – But redistribution is hard to implement, and distortive.
2 Asymmetric Information: Introduction

- Nicholson, Ch. 18, pp. 627-632 [NOT in 9th Ed.]

- Common economic relationship

- Contract between two parties:
 - Principal
 - Agent

- Two parties have asymmetric information
 - Principal offers a contract to the agent
 - Agent chooses an action
 - Action of agent (or his type) is not observed by principle
• Example 1: *Manager and worker*

 – Manager employs worker and offers wage

 – Worker exerts effort (not observed)

 – Manager pays worker as function of output

• Example 2: *Car Insurance*

 – Car insurance company offers insurance contract

 – Driver chooses quality of driving (not observed)

 – Insurance company pays for accidents

• Example 3: *Shareholders and CEO*

 – Shareholders choose compensation for CEO

 – CEO puts effort

 – CEO paid as function of stock price
In all of these cases (and many more!), common structure

- Principal would like to observe effort (of worker, of CEO, of driver)
- Unfortunately, this is not observable
- Only a related, noisy proxy is observable: output, accident, success
- Contract offered by principal is function of this proxy

This means that occasionally an agent that put a lot of effort but has bad luck is ‘punished’

Also, agents that shirked may instead be compensated

These principle-agent problems are called hidden action or moral hazard
• Second category (next lecture): *hidden type* or *adverse selection*

• Example 1: *Manager and worker*

 – Manager employs worker and offers wage

 – Worker can be hard-working or lazy

• Example 2: *Car Insurance*

 – Car insurance company offers insurance contract

 – Drivers ex ante can be careful or careless

• Example 3: *Shareholders and CEO*

 – Shareholders choose compensation for CEO

 – CEO is high-quality or thief
• Problem is similar (action is not observed), but with a twist

 – *Hidden action*: principal can convince agent to exert high effort with the appropriate incentives

 – *Hidden type*: agent’s behavior is not affected by incentives, but by her type

• Different task for principal:

 – *Hidden action*: Principal wants to incentivize agent to work hard

 – *Hidden type*: Principal wants to make sure to recruit ‘good’ agent, not ‘bad’ one

• Two look similar, but analysis is different

• Start from *Hidden Action*
3 Hidden Action (Moral Hazard)

• Nicholson, Ch. 18, pp. 632-637 [NOT in 9th Ed.]

• Example 3: Shareholders and CEO
 – Division of ownership and control

• Shareholders (owners of firm):
 – Have capital, but do not have time to run company themselves
 – Want firm run so as to maximize profits

• CEO (manager)
 – Has time and managerial skill
 – Does not have capital to own the firm
• If CEO owns the company (private enterprises), problem is solved \rightarrow Infeasible in large companies

• Agent chooses effort e (unobserved)

 – Induces output $y = e + \varepsilon$, where ε is a noise term, with $E(\varepsilon) = 0$

 – Example: Despite putting effort, investment project did not succeed

• Principal pays a salary w to the agent

 – Salary is a function of y: $w = w(y)$

 – Remember: Salary cannot be function of e
• Principal maximizes expected profits

\[E [\pi] = E [y - w (y)] = e - E [w (y)] \]

• Agent is risk averse and maximizes

\[E [U (w (e + \varepsilon))] - c (e) \]

- \(c (s) \) is cost of effort: assume \(c' (s) > 0 \) and \(c'' (s) > 0 \) for all \(s \)

- Utility function \(U \) satisfies \(U' > 0 \) and \(U''' < 0 \)

- Notice: Agent is risk-averse, Principal is risk-neutral

• Assume \(U (w) = -e^{-\gamma w} \) and \(\varepsilon \sim N (0, \sigma^2) \)

• Can solve explicitly for \(EU (w) \):

\[EU (w) = -\frac{1}{\sqrt{2\pi}} \int e^{-\gamma w e^{-\frac{1}{2} \frac{w - \mu w}{\sigma^2 w}}} dw = \mu_w - \frac{\gamma}{2} \sigma^2 w \]
• Expected utility of agent is $EU(w) = \mu_w - \frac{\gamma}{2} \sigma_w^2$

• Note: μ_w is average salary and σ_w^2 is variance of salary

 – Agent likes high mean salary μ_w

 – Agent dislikes variance in salary σ_w^2

 – Dislike for variance is higher the higher is γ

• Assume that contract is linear: $w = a + by = a + be + b\varepsilon$

 – Compute $\mu_w = E(w) = E[a + be + b\varepsilon] = a + be + bE[\varepsilon] = a + be$

 – Compute $\sigma_w^2 = Var[a + be + b\varepsilon] = b^2\sigma^2$

• Rewrite expected utility as $EU(w) = a + be - \frac{\gamma}{2} b^2 \sigma^2$
• Solve problem from last stage (backward induction)

• Solve effort maximization of agent:

\[\max e a + b e - \frac{\gamma}{2} b^2 \sigma^2 - c(e) \]

• Solution:

\[c'(e) = b \]

• If assume \(c(e) = ce^2/2 \) \(\Rightarrow e^* = b/c \)

• Check comparative statics

 – With respect to \(b \)

 – With respect to \(c \)
• Next condition: Agent needs to be willing to work for principal

• Individual rationality condition:

$$EU (w(e^*)) - c(e^*) \geq 0$$

• Substitute in the solution for e^* and obtain

$$a + be^* - \frac{\gamma}{2} b^2 \sigma^2 - c(e^*) \geq 0$$

• Will be satisfied with equality: $a^* = -be^* + \frac{\gamma}{2} b^2 \sigma^2 + c(e^*)$

• Finally, the owner maximizes expected profits

$$\max_{a,b} E[\pi] = e - E[w(y)] = e - a - \texttt{be}$$

• Substitute in the two constraints: $c'(e) = b$ and $a^* = -be^* + \frac{\gamma}{2} b^2 \sigma^2 + c(e^*)$
Obtain

\[E[\pi] = e - \left(-be + \frac{\gamma b^2 \sigma^2}{2} + c(e)\right) - c'(e)e \]

\[= e + c'(e)e - \frac{\gamma}{2} \left(c'(e)\right)^2 \sigma^2 - c(e^*) - c'(e)e \]

\[= e - \frac{\gamma}{2} \left(c'(e)\right)^2 \sigma^2 - c(e^*) \]

Maximization of principal yields f.o.c.

\[1 - \gamma c'(e) \sigma^2 c''(e) - c'(e) = 0 \]

and hence

\[c'(e^*) = \frac{1}{1 + \gamma \sigma^2 c''(e^*)} \]

This implies \(c'(e^*) < 1 \)

Substitute \(c(e) = ce^2 / 2 \) to get

\[e = \frac{1}{c \frac{1}{1 + \gamma \sigma^2 c}} \]
• Compare this to case in which effort is observable

 – Principal offers a flat wage \(w = a \) as long as agent works \(e^* \)

 – Agent accepts job if

 \[
 a - c(e^*) \geq 0
 \]

 – Substitute (with equality) into profit of principal

 \[
 \max_{a,b} E[\pi] = e - E[w(y)] = e - c(e)
 \]

 – Solution for \(e^* \): \(c'(e^*) = 1 \) or

 \[
 e^* = 1/c
 \]

• Notice: With observable effort agent works harder
4 Next lecture

- Asymmetric Information: Adverse Selection

- Then: Empirical Economics

- Some examples of Empirical Economics
 - House insurance
 - Save More Tomorrow
 - Fox News