Outline

1. More on Default Effects
2. Comparison to Effect of Financial Education
3. Default Effects and Present Bias
4. Default Effects: Alternative Explanations
5. Present Bias and Consumption
6. Investment Goods: Homework
7. Investment Goods: Exercise
1 More on Default Effects

- Summary of Madrian and Shea (2001)
 - OLD and NEW cohorts invest very differently one year after initial hire
 * Fact 1. **Fact 1. Majority of investors follow Default Plan**
 * Fact 1a. Applies to participation (yes/no)
 * Fact 1b. Applies also to contribution level and allocation

 (Less commonly cited) WINDOW cohort resembles OLD cohort
 * Fact 2. ‘**Suggested choice**’ not very attractive unless default
• BUT: Default effects not informative of optimal saving plans.
 – Is OLD cohort under-saving?
 – Or is NEW cohort over-saving?

• Introduction of Active Choice (Carroll et al., 2007) – Large Fortune-500 Company, Financial sector

• Comparison between Active Choice (before) and No Enrollment (after)

• Fact 3. Active Choice resembles Default Investment
<table>
<thead>
<tr>
<th></th>
<th>Effective January 1, 1997</th>
<th>Effective November 23, 1997</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eligibility</td>
<td>U.S. employees, age 18+</td>
<td>U.S. employees, age 18+</td>
</tr>
<tr>
<td>First eligible</td>
<td>Immediately upon hire</td>
<td>Immediately upon hire</td>
</tr>
<tr>
<td>Employer match eligible</td>
<td>Immediately upon hire</td>
<td>Immediately upon hire</td>
</tr>
<tr>
<td>Enrollment</td>
<td>First 30 days of employment or January 1 of succeeding calendar years</td>
<td>Daily</td>
</tr>
<tr>
<td>Contributions</td>
<td>Up to 17% of compensation</td>
<td>Up to 17% of compensation</td>
</tr>
<tr>
<td>Employee contributions</td>
<td>50% of employee contribution up to 5% of compensation</td>
<td>50% of employee contribution up to 5% of compensation</td>
</tr>
<tr>
<td>Non-discretionary employer match</td>
<td>Up to 100% of employee contribution depending on company profitability (50% for bonus-eligible employees); 100% in 1997.</td>
<td>Up to 100% of employee contribution depending on company profitability (50% for bonus-eligible employees); varied from 0% to 100% for 1997-2000.*</td>
</tr>
<tr>
<td>Discretionary employer match</td>
<td>Immediate</td>
<td>Immediate</td>
</tr>
<tr>
<td>Vesting</td>
<td>Available</td>
<td>Available</td>
</tr>
<tr>
<td>Loans</td>
<td>Not available</td>
<td>Available; 2 maximum</td>
</tr>
<tr>
<td>Hardship withdrawals</td>
<td>Available</td>
<td>Available</td>
</tr>
<tr>
<td>Investment choices</td>
<td>6 options. Employer stock also available, but only for after-tax contributions.</td>
<td>8 options + employer stock (available for before- and after-tax contributions)</td>
</tr>
</tbody>
</table>
• ACTIVE Cohort, hired 1/1/97-7/31/97
 – 30 days to return 401(k) form with legal packet
 – Next enrollment period: January 1998
 – Paper-and-pencil form

• OLD2 Cohort, hired 1/1/98-7/31/98
 – Standard, no-saving-default (like OLD)
 – Can enroll any time
 – Telephone-based enrollment, 24/7
• Step 1. Check Design

– Summary Stats (Table 2)—No substantial difference across cohorts

<table>
<thead>
<tr>
<th>Table 2. Comparison of worker characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study company</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Average age (years)</td>
</tr>
<tr>
<td>Gender</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Marital Status</td>
</tr>
<tr>
<td>Single</td>
</tr>
<tr>
<td>Married</td>
</tr>
<tr>
<td>Compensation</td>
</tr>
<tr>
<td>Avg. monthly base pay</td>
</tr>
<tr>
<td>Median monthly base pay</td>
</tr>
<tr>
<td>Avg. annual income*</td>
</tr>
<tr>
<td>Median annual income*</td>
</tr>
</tbody>
</table>
• Step 2. Compare plan choices (Figures 1 and 2)

 – *Participation* rates in 401(k) using cross-sectional data (Figure 1):

 * ACTIVE: 69% – OLD2: 41% (at month 3)

 * Compare to NEW (86%) and OLD (57%) in MS01 after >6 months

 * Does not depend on month of hire (see below)
• Contribution rates (including zeros) (Figure 3)

 * ACTIVE: 4.8% – OLD2: 3.5% (at month 9, when longitudinal data becomes available)
• Contribution rates (excluding zeros) (Figure 4)
 * ACTIVE: 6.8% – OLD2: 7.5% (at month 9)
 * Selection effect: Marginal individuals are lower savers
• Differences between ACTIVE and OLD2 disappear by year 3 (Figure 2)

- Still: Important because no catch-up in levels, and because of frequent changes in employers
Summary.

- ACTIVE is close to NEW and differs from OLD and OLD2
 * Fact 3. Active Choice resembles Default Investment
 * Fact 3b. Month of Hire does not matter

- Fact 4. Effect of default mostly disappears after three years

- Prevalence of OLD Default can (at least in part) explain under-saving for retirement
• Other evidence on default effects in choice of savings: Cronqvist and Thaler (2004, AER P&P)

 – 456 funds, 1 default fund (chosen by government)
 – Year 2000:
 * Choice of default is discouraged with massive marketing campaign.
 * Among new participants, 43.3 percent chooses default
 – Year 2003:
 * End of marketing campaign.
 * Among new participants, 91.6 percent chooses default
– Side point for us (but key point in paper): Portfolio actively chosen in year 2000 does much worse than default

<table>
<thead>
<tr>
<th>Portfolio characteristic</th>
<th>Default</th>
<th>Mean actively chosen portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset allocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equities</td>
<td>82</td>
<td>96.2</td>
</tr>
<tr>
<td>Sweden</td>
<td>17</td>
<td>48.2</td>
</tr>
<tr>
<td>Americas</td>
<td>35</td>
<td>23.1</td>
</tr>
<tr>
<td>Europe</td>
<td>20</td>
<td>18.2</td>
</tr>
<tr>
<td>Asia</td>
<td>10</td>
<td>6.7</td>
</tr>
<tr>
<td>Fixed-income securities</td>
<td>10</td>
<td>3.8</td>
</tr>
<tr>
<td>Hedge funds</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Private equity</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Indexed</td>
<td>60</td>
<td>4.1</td>
</tr>
<tr>
<td>Fee</td>
<td>0.17</td>
<td>0.77</td>
</tr>
<tr>
<td>Beta</td>
<td>0.98</td>
<td>1.01</td>
</tr>
<tr>
<td>Ex post performance</td>
<td>−29.9</td>
<td>−39.6</td>
</tr>
</tbody>
</table>
• Additional evidence of default effects in other contexts:

1. SMRT plan for savings (Benartzi and Thaler, JPE 2004)
2. Health-club contracts (DellaVigna and Malmendier, 2006)
3. Car insurance plan choice (Johnson et al, 1993)
4. Car option purchases (Park, Yun, and MacInnis, 2000)
5. Consent to e-mail marketing (Johnson, Bellman and Lohse, 2003)
6. TV channel choice (Esteves-Sorenson, 2008)
7. Organ donation (Johnson and Goldstein, 2003; Abadie and Gay, 2006)
Abadie and Gay, *Journal of Health economics*, 2006

- Organ donation: Presumed Consent vs. Informed Consent
- Comparison across Countries (too few within-country changes)
Dependent variable: Natural logarithm of cadaveric donors per million population

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legislation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presumed consent</td>
<td>.1559*</td>
<td>.1027</td>
<td>.2615**</td>
<td>.2577**</td>
<td>.2839**</td>
<td>.2562*</td>
<td>.3111**</td>
<td>.2493**</td>
</tr>
<tr>
<td></td>
<td>(1352)</td>
<td>(1316)</td>
<td>(1206)</td>
<td>(1233)</td>
<td>(1294)</td>
<td>(1386)</td>
<td>(1238)</td>
<td>(1164)</td>
</tr>
<tr>
<td>Wealth & health expenditures:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log GDP per capita</td>
<td>.2191*</td>
<td>.2561*</td>
<td>.3138**</td>
<td>.3032**</td>
<td>.3145**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1205)</td>
<td>(1205)</td>
<td>(1374)</td>
<td>(1448)</td>
<td>(1309)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log of health expenditures per capita</td>
<td>.2061*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1175)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Religious beliefs:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catholic country</td>
<td>.1705</td>
<td>.0913</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1717)</td>
<td>(1846)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legislative system:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common law</td>
<td>.1636</td>
<td>.3109*</td>
<td>.3233*</td>
<td>.3460**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1084)</td>
<td>(1609)</td>
<td>(1668)</td>
<td>(1643)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential donors:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log of MVA & CVD deaths (per 1000 pop.)</td>
<td>.4090*</td>
<td>.4104*</td>
<td>.4863**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.2282)</td>
<td>(.2244)</td>
<td>(.1938)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Include Spain

- yes
- no

Specification test (p-value)

- .9504
- .3876
- .9074
- .2230
- .2340
- .3863

R-squared

- .0587
- .0342
- .2111
- .2124
- .2754
- .3216
- .3111
- .3636

Number of observations

- 213
- 203
- 213
- 186
- 213
- 146
- 146
- 140
- Concern: Consent default reflects higher social capital

- “Placebo”: Blood donations (social capital measure) do not predict default

<table>
<thead>
<tr>
<th>Variables from Table II, columns (6) and (7):</th>
<th>Dependent variable: Natural log of cadaveric donors pmp</th>
<th>Dependent variable: Presumed consent country</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Presumed consent</td>
<td>.2940** (.1334)</td>
<td>.3613** (.1158)</td>
</tr>
<tr>
<td>Log GDP per capita</td>
<td>.2121 (.1558)</td>
<td>.2182 (.1479)</td>
</tr>
<tr>
<td>Catholic country</td>
<td>.1328 (.1589)</td>
<td></td>
</tr>
<tr>
<td>Common law</td>
<td>.4175** (.1805)</td>
<td>.4265** (.1862)</td>
</tr>
<tr>
<td>Log of MVA & CVD deaths (per 1000 pop.)</td>
<td>.2740 (.2571)</td>
<td>.2975 (.2542)</td>
</tr>
<tr>
<td>Social preferences:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log of blood donations (per 1000 pop.)</td>
<td>.4374* (.2500)</td>
<td>.3459 (.2770)</td>
</tr>
</tbody>
</table>
2 Comparison to Effect of Financial Education

• Studies of the effect of financial education:
 – Cross-Sectional surveys (Bernheim and Garrett, 2003; Bayer, Bernheim, and Scholz, 1996)
 * Sizeable impact
 * BUT: Strong Biases (Reverse Causation + Omitted Vars)
 – Time-series Design (McCarthy and McWhirter 2000; Jacobius 2000)
 * Sizeable impact
 * BUT: Use self-reported desired saving
 – Need for plausible design
Choi et al. (2005):

- Financial education class (one hour) in Company D in 2000
- Participation rate: 17 percent
- People are asked: “After attending today’s presentation, what, if any, action do you plan on taking toward your personal financial affairs?”
- Administrative data on Dec. 1999 (before) and June 2000 (after)
- Examine effect:
 * participants (self-selected) – 12% of them were not saving before
 -> Demand for financial education comes from people who already save!
 * non-participants

- Effect likely biased upwards
TABLE 5. Financial Education and Actual vs. Planned Savings Changes (Company C)

<table>
<thead>
<tr>
<th>Planned Action</th>
<th>Seminar Attendees</th>
<th>Non-Attendees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Planned Change</td>
<td>Actual Change</td>
</tr>
<tr>
<td>Non-participants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enroll in 401(k) plan</td>
<td>100%</td>
<td>14%</td>
</tr>
<tr>
<td>401(k) participants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increase contribution rate</td>
<td>28%</td>
<td>8%</td>
</tr>
<tr>
<td>Change fund selection</td>
<td>47%</td>
<td>15%</td>
</tr>
<tr>
<td>Change fund allocation</td>
<td>36%</td>
<td>10%</td>
</tr>
</tbody>
</table>

The sample is active 401(k)-eligible employees at company locations that offered financial education seminars from January-June 2000. Actual changes in savings behavior are measured over the period from December 31, 1999 through June 30, 2000. Planned changes are those reported by seminar attendees in an evaluation of the financial education seminars at the conclusion of the seminar. The planned changes from surveys responses of attendees have been scaled to reflect the 401(k) participation rate of seminar attendees.

- Result: Very little impact on changes in savings, compared to non-attendees or to control time period
• Duflo and Saez (2003), *Quarterly Journal of Economics*

 – Target staff in prestigious university (Harvard? MIT?)

 – Randomized Experiment in a university:

 * 1/3 of 330 Departments control group

 * 2/3 of 330 Departments treatment group:

 • 1/2 not-enrolled staff: letter with $20 reward for attending a fair

 • 1/2 not-enrolled staff: no reward

• Measure attendance to the fair and effect on retirement savings
<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>DESCRIPTIVE STATISTICS, BY GROUPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Treated departments</td>
</tr>
<tr>
<td></td>
<td>All (group D = 1)</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>TDA participation before the fair (Sept. 2000)</td>
<td>0.010</td>
</tr>
<tr>
<td>Observations</td>
<td>(0.0015)</td>
</tr>
<tr>
<td>Sex (fraction male)</td>
<td>0.398</td>
</tr>
<tr>
<td>Observations</td>
<td>(0.0076)</td>
</tr>
<tr>
<td>Years of service</td>
<td>5.898</td>
</tr>
<tr>
<td>Observations</td>
<td>(0.114)</td>
</tr>
<tr>
<td>Annual salary</td>
<td>38,547</td>
</tr>
<tr>
<td>Observations</td>
<td>(304)</td>
</tr>
<tr>
<td>Age</td>
<td>38.3</td>
</tr>
<tr>
<td>Observations</td>
<td>(0.17)</td>
</tr>
<tr>
<td>PANEL B: FAIR ATTENDANCE (REGISTRATION DATA)</td>
<td></td>
</tr>
<tr>
<td>Fair attendance rate among non-TDA enrollees</td>
<td>0.214</td>
</tr>
<tr>
<td>Observations</td>
<td>(0.0064)</td>
</tr>
<tr>
<td>Fair attendance rate for all staff employees</td>
<td>0.192</td>
</tr>
<tr>
<td>Observations</td>
<td>6687</td>
</tr>
<tr>
<td>PANEL C: TDA PARTICIPATION (ADMINISTRATIVE DATA)</td>
<td></td>
</tr>
<tr>
<td>TDA participation rate after 4.5 months</td>
<td>0.049</td>
</tr>
<tr>
<td>Observations</td>
<td>(0.0035)</td>
</tr>
<tr>
<td>TDA participation rate after 11 months</td>
<td>0.088</td>
</tr>
<tr>
<td>Observations</td>
<td>(0.005)</td>
</tr>
</tbody>
</table>
• Summary of effects:
 – Large effect of subsidy on attendance (including peer effect)
 – Small effects of attendance on retirement savings

<table>
<thead>
<tr>
<th></th>
<th>Dependent variable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fair attendance</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Treated</td>
<td>0.166</td>
</tr>
<tr>
<td>Department dummy (D)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>Observations</td>
<td>6144</td>
</tr>
<tr>
<td>\text{PANEL A: Average effect of department treatment}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>\text{Letter dummy} (L)</td>
</tr>
<tr>
<td></td>
<td>(0.0226)</td>
</tr>
<tr>
<td>Treated</td>
<td>0.102</td>
</tr>
<tr>
<td>Department dummy (D)</td>
<td>(0.0139)</td>
</tr>
<tr>
<td>Observations</td>
<td>6144</td>
</tr>
<tr>
<td>\text{PANEL B: Effect of letter and department treatment}</td>
<td></td>
</tr>
</tbody>
</table>
• Results:
 – Approximately: Of the people induced to attend the fair, 10% sign up
 – Compare to Default effects: Change allocations for 40%-50% of employees

• Summary:
 – Just explaining retirement savings not very effective at getting people to save
 – Effect of changing default much larger
 – Interesting variation: Re-Do this study but give opportunity to sign up at fair
3 Default effects and Present Bias

• How do we explain the default effects?
 – Present-bias ((quasi-) hyperbolic discounting – (β, δ) preferences):

 \[U_t = u_t + \beta \sum_{s=1}^{\infty} \delta^s u_{t+s} \]

 with $\beta \leq 1$. Discount function: $1, \beta \delta, \beta \delta^2, \ldots$

• Time inconsistency. Discount factor for self t is
 – $\beta \delta$ between t and $t+1 \implies$ short-run impatience;
 – δ between $t+1$ and $t+2 \implies$ long-run patience.

• Naiveté about time inconsistency
 – Agent believes future discount function is $1, \hat{\beta} \delta, \hat{\beta} \delta^2, \ldots$, with $\hat{\beta} \geq \beta$.
Non-Automatic Enrollment (OLD Cohort in Madrian-Shea, 2001)

• Setup of O’Donoghue and Rabin (2001): One-time decision (investment)
 – immediate (deterministic) cost $k_N > 0$ with $k_N = k'_N + k''_N$:
 * $k'_N > 0$ – effort of filling up forms
 * $k''_N > 0$ – effort of finding out optimal plan
 – delayed (deterministic) benefit $b > 0$
 – $T = 1$ (can change investment every day)

• When does investment take place?
• **Exponential** employee ($\beta = \hat{\beta} = 1$):

• Compares investing now to never investing:

$$-k_N + \sum_{t=1}^{\infty} \delta^t b = -k_N + \frac{\delta b}{1 - \delta} \geq 0$$

• Invests if

$$k_N \leq \frac{\delta b}{1 - \delta}$$
• **Sophisticated** present-biased employee ($\beta = \hat{\beta} < 1$):

 – Would like tomorrow’s self to invest if:

 $$\beta \delta \left[-k_N + \frac{\delta b}{1 - \delta} \right] \geq 0$$

 – Would like to invest now if:

 $$-k_N + \beta \delta \frac{b}{1 - \delta} \geq 0$$

 – War of attrition between selves
• Multiple equilibria in the investing period: Invest every τ periods

• Example for $\tau = 3$. List strategies to Invest (I) and Not Invest (N) over the time periods $0, 1, 2, 3$, etc. Set of equilibria:

 – $(I, N, N, I, N, N, I, N, N,...) \rightarrow$ Invest at $t = 0$

 – $(N, N, I, N, N, I, N, N, I,...) \rightarrow$ Invest at $t = 2$

 – $(N, I, N, N, I, N, N, I, N,...) \rightarrow$ Invest at $t = 1$

• There is no equilibria such that agent delays more than 2 periods
• **Bound on delay in investment.**

 - Agent prefers investing now to waiting for \(T \) periods if

 \[
 -k_N + \beta\delta \frac{b}{1 - \delta} \geq \beta\delta^T \left[-k_N + \frac{\delta b}{1 - \delta} \right]
 \]

 - Simplify to

 \[
 k_N \leq \beta\delta \frac{b \left(1 - \delta^T \right)}{(1 - \delta)(1 - \beta\delta^T)} \approx \frac{\beta \delta b}{(1 - \beta\delta^T)} T \approx \frac{\beta b}{1 - \beta} T
 \]

 [Taylor expansion of \(1 - \delta^T \) for \(\delta \) going to 1: \(0 - T (\delta - 1) = (1 - \delta) T \)]

 - Maximum delay \(\bar{T} \):

 \[
 \bar{T} = k_N \frac{1 - \beta}{\beta b}
 \]
• (Fully) **Naive** present-biased employee ($\beta < \hat{\beta} = 1$)

 – Compares investment today or at the next occasion (in T days).

 – Expects to invest next period if

 $$-k_N + \frac{\delta b}{1 - \delta} \geq 0$$

 – Invest today if

 $$-k_N + \beta \delta \frac{b}{1 - \delta} \geq \beta \delta^T \left[-k_N + \frac{\delta b}{1 - \delta}\right]$$

 – Procrastinate forever if

 $$\frac{\beta b T}{1 - \beta} \preceq k_N \leq \frac{\delta b}{1 - \delta}$$
• Calibration

• Cost \(k_N \)?
 – Time cost: 3 hours
 – \(k_N \approx 3 \times \$12 = \$36 \)

• Benefit \(b \)?
 – Consume today \((t = T_0)\) with tax rate \(\tau_0 \), or at retirement \((t = T_R)\) with tax rate \(\tau_R \)
 – Compare utility at \(T_0 \) and at \(T_R \):
 * Spend \(S \) additional dollars at \(T_0 \): \(U' (C_0) \times (1 - \tau_0) \)
 * Save, get firm match \(\alpha \), and spend \(S \) dollars at \(T_R \): \(\delta^{T_R-T_0} U' (C_R) \times (1 + r)^{T_R-T_0} (1 - \tau_R) (1 + \alpha) S \)
 – Assumptions: \(U' (C_0) = U' (C_R) \) and \(\delta = 1/(1 + r) \)
- b is net utility gain from delayed consumption of S:

$$b = \left[\delta (1 + r)\right]^{T_R - T_0} (1 - \tau_R) (1 + \alpha) - (1 - \tau_0) S = \left[\tau_0 + \alpha - \tau_R (1 + \alpha)\right] S$$

- Calibration to Madrian and Shea (2001): 50 percent match ($\alpha = .5$), taxes $\tau_0 = .3$ and $\tau_R = .2$, saving $S = $5 (6\% out of daily $w = $83 (median individual income \approx $30,000))

$$b \approx [.3 + .5 - .2 \times (1.5)] S = .5S = $2.5$$

- Comparative statics:
 * What happens if $\alpha = 0$?
 * What happens is marginal utility at retirement is 10 percent higher than at present? (because of drop of consumption at retirement)
 * Effect of higher earnings S?
• What does model predict for different types of agents?

• **Exponential** agent invests if

\[k_N \leq \frac{\delta b}{1 - \delta} \]

- For \(\delta^{365} = .97 \), \(\delta b / (1 - \delta) = 10,000 \times b \)

- For \(\delta^{365} = .9 \), \(\delta b / (1 - \delta) = 3,464 \times b \)

- Invest immediately!

- Effect of \(k \) is dwarfed by effect of \(b \)
• **Sophisticated** maximum delay in days:

\[
\bar{T} = k_N \frac{1 - \beta}{\beta b}
\]

- For \(\beta = 1 \), \(\bar{T} = 0 \) days
- For \(\beta = .9 \), \(\bar{T} = 36/(9 \times 2.5) \approx 2 \) days
- For \(\beta = .8 \), \(\bar{T} = 36/(4 \times 2.5) \approx 4 \) days
- For \(\beta = .5 \), \(\bar{T} = 36/2.5 \approx 14 \) days

- Sophisticated waits at most a dozen of days
- Present Bias with sophistication induces only limited delay
• **(Fully) Naive** t.i. with $\beta = 0.8$ invests if

$$k_N \lesssim \frac{\beta Tb}{(1 - \beta)}$$

- For $T = 1$ (I'll do it tomorrow), investment if $36 < 2.5 \times \beta / (1 - \beta)$
 * $\beta = 0.8$ (or 0.5) \rightarrow Procrastination since $36 > 2.5 \times 4$ (or $36 > 2.5$)
- For $T = 7$ (I'll do it next week), investment if $36 < 5.6 \times \beta / (1 - \beta)$
 * $\beta = 0.8$ \rightarrow Investment since $36 < 7 \times 2.5 \times 4$
 * $\beta = 0.5$ \rightarrow Procrastination since $36 > 7 \times 2.5$
- Relatively small cost k can induce infinite delay (procrastination)
- Procrastination more likely if agent can change allocation every day
Automatic Enrollment (NEW Cohort in Madrian-Shea, 2001)

- Model:
 - \(k'_A < 0 \) – not-enrolling requires effort
 - \(k''_A = 0 \) – do not look for optimal plan
 - \(k_A = k'_A + k''_A < 0 \)
 - \(T = 1 \) (can enroll any day)

- Exp., Soph., and Naive invest immediately (as long as \(b > 0 \))

- No delay since investing has no immediate costs (and has delayed benefits)
• Fact 1. 40% to 50% investors follow Default Plan

• Exponentials and Sophisticates \rightarrow Should invest under either default

• Naives \rightarrow Invest under NEW, procrastinate under OLD

• Evidence of default effects consistent with naivete’

• (Although naivete’ predicts procrastination forever – need to introduce stochastic costs)
• Can b be negative?

• It can: liquidity-constrained agent not interested in saving

• (consumption-savings decision not modeled here)

• $b < 0$ for at least 14% of workers (NEW: 86% participate).

• Is there too much 401(k) investment with automatic enrollment?

• With $T = 1$ and $k_A < 0$, naive guys may invest even if $b < 0$.
Active Choice (ACTIVE Cohort)

- Model:

 - $k'_C = 0$ – not-enrolling requires effort

 - $k''_C > 0$? – harder to guess optimal plan than to set 0 investment

 - $k_C = k'_C + k''_C > 0$ (but smaller than before) or $k_C = 0$

 - $[T = 360$ under ACTIVE$]$
• Predictions:
 – Exponentials and Sophisticates:
 * Predicted enrollment: OLD2 ≈ OLD ≈ ACTIVE ≈ NEW
 – Naives:
 * $0 < k_C < k_A$ → Predicted enrollment: OLD2 = OLD ≺ ACTIVE ≤ NEW
 * [Move from $T = 360$ (ACTIVE) to $T = 1$ (OLD2) → Predicted enrollment: OLD = OLD2 ≺ ACTIVE]

• Fact 3. **Active Choice resembles Default Investment** (OLD ≺ ACTIVE ≈ NEW)

• Findings consistent with naivete’
• **Fact 4. Effect of default mostly disappears after three years**

• Problem for naivete’ with model above: delay *forever*

• Introduce Stochastic cancellation costs \(k \sim K \) \(\rightarrow \) Dynamic programming

• Solution for **exponential** agent. Threshold \(k^e \):

 – enroll if \(k \leq k^e \);

 – wait otherwise.

• For \(k = k^e \) indifference between investing and not:

\[
-k^e + \frac{\delta b}{1 - \delta} = \delta V^e (k^e)
\]
where $V^e(k^e)$ is continuation payoff for exponential agent assuming that threshold rule k^e is used in the future.

- Threshold k^n for **naive** agent satisfies:

$$-k^n + \beta \frac{\delta b}{1 - \delta} = \beta \delta V^e(k^e)$$

- This implies $k^n = \beta k^e$

 - \rightarrow Investment probability of exponential agent: $\Pr(k \leq k^e)$
 - \rightarrow Investment probability of naive agent: $\Pr(k \leq \beta k^e)$

- This implies that distribution of k has important effect on delay \rightarrow Left tail is thin implies larger delays for naives
4 Default Effects: Alternative explanations

• A list of alternative explanations:

1. Rational stories

2. Bounded Rationality. Problem is too hard

3. Persuasion. Implicit suggestion of firm

4. Memory. Individuals forget that they should invest

5. Reference point and loss aversion relative to firm-chosen status-quo
• Some responses to the explanations above:

1. Rational stories

 (a) Time effect between 1998 and 1999 / Change is endogenous (political economy)

 • Replicates in Choi et al. (2004) for 4 other firms

 (b) Cost of choosing plan is comparatively high (HR staff unfriendly) \(\rightarrow\) Switch investment elsewhere

 (c) Selection effect (People choose this firm because of default)

 • Why choose a firm with default at 3%?
2. Bounded Rationality: Problem is too hard

- In surveys employees say they would like to save more
- Replicate where can measure losses more directly (health club data)

3. Persuasion. Implicit suggestion of firm

- Why should individuals trust firms?
- **Fact 2.** Window cohort does not resemble New cohort
4. Memory. Individuals forget that they should invest
 • If individuals are aware of this, they should absolutely invest before they forget!
 • Need limited memory + naiveté

5. Reference point and loss aversion relative to firm-chosen status-quo
 • First couple month people get used to current consumption level
 • Under NonAut., employees unwilling to cut consumption
 • BUT: Why wait for couple of months to chose?
5 Present-Bias and Consumption

• Consider an agent that at time 1 can choose:
 – A consumption activity A with immediate payoff b_1 and delayed payoff (next period) b_2
 – An outside option O with payoff 0 in both periods

• Activity can be:
 – Investment good (exercise, do homework, sign document): $b_1 < 0$, $b_2 > 0$
 – Leisure good (borrow and spend, smoke cigarette): $b_1 > 0$, $b_2 < 0$
• How is consumption decision impacted by present-bias and naivété?

• **Desired consumption.** A time 0, agent wishes to consume A at $t = 1$ if

$$\beta \delta b_1 + \beta \delta^2 b_2 \geq 0 \text{ or } b_1 + \delta b_2 \geq 0$$

• **Actual consumption.** A time 1, agent consumes A if

$$b_1 + \beta \delta b_2 \geq 0$$

• **Self-control problem (if $\beta < 1$):**

 – Agent under-consumes investment goods ($b_2 > 0$)

 – Agent over-consumes leisure goods ($b_2 < 0$)
• **Forecasted consumption.** As of time 0, agent expects to consumer A if

$$b_1 + \hat{\beta} \delta b_2 \geq 0.$$

• **Naiveté (if $\beta < \hat{\beta}$):**

 – Agent over-estimates consumption of investment goods ($b_2 > 0$)

 – Agent under-estimates consumption of leisure goods ($b_2 < 0$)

• **Implications:**

 – Sophisticated agent will look for commitment devices to align desired and actual consumption

 – Naive agent will mispredict future consumption
• Present evidence on these predictions for:

1. Investment Goods:
 - Homeworks and Task Completion (Ariely and Werternbroch, 2002)
 - Exercise (DellaVigna and Malmendier, 2006)

2. Leisure Goods:
 - Credit Card Usage (Ausubel, 1999; Shui and Ausubel, 2005)
 - Life-cycle Savings (Laibson, Repetto, and Tobacman, 2006; Ashraf, Karlan, and Yin, 2006)
6 Investment Goods: Homeworks

- Experiment 1 in classroom:
 - sophisticated people: 51 executives at Sloan (MIT);
 - high incentives: no reimbursement of fees if fail class
 - submission of 3 papers, 1% grade penalty for late submission
Two groups:

- Group A: evenly-spaced deadlines
- Group B: set-own deadlines: 68 percent set deadlines prior to last week

→ Demand for commitment (Sophistication)
• Results on completion and grades:
 – No late submissions (!)
 – Papers: Grades in Group A (88.7) higher than grades in Group B (85.67)
 – Consistent with self-control problems
 – However, concerns:
 * Two sessions not randomly assigned
 * Sample size: $n = 2$ (correlated shocks in two sections)
• Experiment 2 deals with issues above. Proofreading exercise over 21 days, $N = 60$
 – Group A: evenly-spaced deadlines
 – Group B: no deadlines
 – Group C: self-imposed deadlines

• Predictions:
 – Standard Theory: $B = C > A$
 – Sophisticated Present-Biased (demand for commitment): $C > A > B$
 – Fully Naive Present-Biased: $A > B = C$
 – Partially Naive Present-Biased: $A > C > B$
Results on Performance: $A > C > B$

Fig. 2. Mean errors detected (a), delays in submissions (b), and earnings (c) in Study 2, compared across the three conditions (error bars are based on standard errors). Delays are measured in days, earnings in dollars.
• Main Results:

• Result 1. *Deadline setting helps performance*

 – Self-control Problem: $\beta < 1$

 – (Partial) Sophistication: $\hat{\beta} < 1$

• Result 2. *Deadline setting sub-optimal*

 – (Partial) Naïveté: $\beta < \hat{\beta}$

• Support for $(\beta, \hat{\beta}, \delta)$ model with partial naïveté
7 Investment Goods: Exercise

- Exercise as an investment good

- Present-Bias: Temptation not to exercise
Choice of flat-rate vs. per-visit contract

- Contractual elements: Per visit fee p, Lump-sum periodic fee L
- Menu of contracts
 - Flat-rate contract: $L > 0$, $p = 0$
 - Pay-per-visit contract: $L = 0$, $p > 0$
- Health club attendance
 - Immediate cost c_t
 - Delayed health benefit $h > 0$
 - Uncertainty: $c_t \sim G$, c_t i.i.d. $\forall t$.
Attendance decision.

- Long-run plans at time 0:

 Attend at \(t \iff \beta \delta^t(-p - c_t + \delta h) > 0 \iff c_t < \delta h - p. \)

- Actual attendance decision at \(t \geq 1 \):

 Attend at \(t \iff -p - c_t + \beta \delta h > 0 \iff c_t < \beta \delta h - p. \) (Time Incons.)

 Actual \(P(\text{attend}) = G(\beta \delta h - p) \)

- Forecast at \(t = 0 \) of attendance at \(t \geq 1 \):

 Attend at \(t \iff -p - c_t + \hat{\beta} \delta h > 0 \iff c_t < \hat{\beta} \delta h - p. \) (Naiveté)

 Forecasted \(P(\text{attend}) = G(\hat{\beta} \delta h - p) \)
Choice of contracts at enrollment

Proposition 1. If an agent chooses the flat-rate contract over the pay-per-visit contract, then

\[
a(T)L \leq pTG(\beta h) + (1 - \hat{\beta})d v T \left(G(\hat{\beta} h) - G(\hat{\beta} h - p) \right) \\
+ pT \left(G(\hat{\beta} h) - G(\beta h) \right)
\]

Intuition:
1. **Exponentials** ($\beta = \hat{\beta} = 1$) pay at most p per expected visit.
2. **Hyperbolic** agents may pay more than p per visit.
 (a) **Sophisticates** ($\beta = \hat{\beta} < 1$) pay for commitment device ($p = 0$). Align actual and desired attendance.
 (b) **Naïves** ($\beta < \hat{\beta} = 1$) overestimate usage.
- Estimate average attendance and price per attendance in flat-rate contracts

<table>
<thead>
<tr>
<th>Table 3—Price per average attendance at enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample: No subsidy, all clubs</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Users initially enrolled with a monthly contract</td>
</tr>
<tr>
<td>Month 1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Month 2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Month 3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Month 4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Month 5</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Month 6</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Months 1 to 6</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Users initially enrolled with an annual contract, who joined at least 14 months before the end of sample period</td>
</tr>
<tr>
<td>Year 1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
• Result is not due to small number of outliers
• 80 percent of people would be better off in pay-per-visit

<table>
<thead>
<tr>
<th></th>
<th>Sample: No subsidy, all clubs</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First contract monthly,</td>
<td>First contract annual,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>months 1–6 (monthly fee ≥ $70)</td>
<td>year 1 (annual fee ≥ $700)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average attendance per month</td>
<td>Average attendance per</td>
<td>Average attendance per</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>month (3)</td>
<td>month (4)</td>
</tr>
<tr>
<td></td>
<td>Price per attendance</td>
<td>Price per attendance</td>
<td>Price per attendance</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>(2)</td>
<td>(2)</td>
</tr>
<tr>
<td>Distribution of measures</td>
<td>Average attendance per month</td>
<td>0.24</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>Price per attendance</td>
<td>7.73</td>
<td>5.98</td>
</tr>
<tr>
<td></td>
<td>Average attendance per month</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>10th percentile</td>
<td>10.18</td>
<td>8.81</td>
<td></td>
</tr>
<tr>
<td>20th percentile</td>
<td>1.19</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>25th percentile</td>
<td>3.50</td>
<td>3.46</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>21.89</td>
<td>19.63</td>
<td></td>
</tr>
<tr>
<td>75th percentile</td>
<td>6.50</td>
<td>6.08</td>
<td></td>
</tr>
<tr>
<td>90th percentile</td>
<td>63.75</td>
<td>63.06</td>
<td></td>
</tr>
<tr>
<td>95th percentile</td>
<td>9.72</td>
<td>10.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>121.73</td>
<td>113.85</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.78</td>
<td>13.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>201.10</td>
<td>294.51</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N = 866</td>
<td>N = 145</td>
<td></td>
</tr>
</tbody>
</table>

Choice of contracts over time

- Choice at enrollment explained by sophistication or naiveté
- And over time? We expect some switching to payment per visit
- **Annual contract.** Switching after 12 months
• Monthly contract. No evidence of selective switching

• Puzzle. Why the different behavior?
• Simple Explanation — Again the power of defaults

 – Switching out in monthly contract takes active effort

 – Switching out in annual contract is default

• Model this as for 401(k)s with cost k of effort and benefit b (lower fees)

• In DellaVigna and Malmendier (2006), model with stochastic cost $k \sim N(15, 4)$

• Assume $\delta = .9995$ and $b = $1 (low attendance – save $1 per day)

• How may days on average would it take between last attendance and contract termination? Observed: 2.31 months
- Calibration for different β and different types

A. Simulated expected number of days before a monthly member switches to payment per visit
Assumptions: cost $k \sim N(15,4)$, daily savings $s=1$, and daily discount factor $\delta = 0.9995$. The observed average delay is 2.31 months (70 days) (Finding 4)
• Overall:

 – Present-Biased preferences with naïveté organize all the facts

 – Can explain magnitudes, not just qualitative patterns

• Alternative interpretations

 – **Overestimation of future efficiency.**

 – **Selection effect.** People that sign in gyms are already not the worst procrastinators

 – **Bounded rationality**

 – **Persuasion**

 – **Memory**
8 Next Week

- Leisure Goods:
 - Credit Card Usage (Ausubel, 1999; Shui and Ausubel, 2005)
 - Consumption (Laibson, Repetto, and Tobacman, 2006)

- Methodological Topic 1: Errors in Applying \((\beta, \delta)\) model