Econ 219B
Psychology and Economics: Applications (Lecture 11)

Stefano DellaVigna

April 18, 2007
Outline

1. Market Reaction to Biases: Introduction
2. Market Reaction to Biases: Behavioral Finance
3. Intro to Problem Set
4. Market Reaction to Biases: Pricing
1 Market Reaction to Biases: Introduction

- So far, we focused on consumer deviations from standard model

- Who exhibits these deviations?

1. **Self-control and naivety**. Consumers (health clubs, food, credit cards, smoking), workers (retirement saving, benefit take-up), students (homeworks)

2. **Reference dependence**. Workers (labor supply, increasing wages), (inexperienced) traders (sport cards), financial investors, consumers (insurance), house owners

3. **Social preferences**. Consumers (giving to charities)
4. **Inattention.** Individual investors, Consumers (eBay bidding)

5. **Menu Effects.** Individual investors, Consumers (loans)

6. **Social Pressure and Persuasion.** Voters, Employees (productivity), Individual investors (and analysts)

7. **Biased Beliefs.** Individual investors, CEOs, Consumers (purchases)

- What is missing from picture?
- Experienced agents
- Firms
- Broadly speaking, market interactions with ‘rational’ agents

- Market interactions
 - Everyone ‘born’ with biases
 - But: Effect of biases lower if:
 * learning with plenty of feedback
 * advice, access to consulting
 * specialization
• Competition ‘drives out of market’

• For which agents are these conditions more likely to be satisfied?

• Firms

• In particular, firms are likely to be aware of biases.
• Implications? Study biases in the market

• Five major instances:
 – Interaction between experienced and inexperienced investors (noise traders and behavioral finance — today)
 – Interaction between firms and consumers (contract design, price choice — today)
 – Interaction between managers and investors (corporate finance — briefly next week)
 – Interaction between employers and employees (labor economics — briefly next week)
 – Interaction between politicians and voters (political economy — next week)
2 Market Reaction to Biases: Behavioral Finance

- Who do ‘smart’ investors respond to investors with biases?

- First, brief overview of anomalies in Asset Pricing (from Barberis and Thaler, 2004)

 1. **Underdiversification.**

 (a) Too few companies.

 – Investors hold an average of 4-6 stocks in portfolio.

 – Improvement with mutual funds

 (b) Too few countries.

 – Investors heavily invested in own country.

 – Own country equity: 94% (US), 98% (Japan), 82% (UK)
– Own area: own local Bells (Huberman, 2001)

(c) Own company
– In companies offering own stock in 401(k) plan, substantial investment in employer stock

2. **Naive diversification.**
– Investors tend to distribute wealth ‘equally’ among alternatives in 401(k) plan (Benartzi and Thaler, 2001; Huberman and Jiang, 2005)

3. **Excessive Trading.**
– Trade too much given transaction costs (Odean, 2001)
4. **Disposition Effect in selling**
 - Investors more likely to sell winners than losers

5. **Attention Effects in buying**
 - Stocks with extreme price or volume movements attract attention (Odean, 2003)

- Should market forces and arbitrage eliminate these phenomena?
• **Arbitrage:**
 – Individuals attempt to maximize individual wealth
 – They take advantage of opportunities for free lunches

• Implications of arbitrage: ‘Strange’ preferences do not affect pricing

• Implication: For prices of assets, no need to worry about behavioral stories

• Is it true?
Fictitious example:

- Asset A returns $1 tomorrow with \(p = 0.5 \)
- Asset B returns $1 tomorrow with \(p = 0.5 \)

- Arbitrage \(\rightarrow \) Price of A has to equal price of B
- If \(p_A > p_B \),
 * sell A and buy B
 * keep selling and buying until \(p_A = p_B \)
- Viceversa if \(p_A < p_B \)
Problem: Arbitrage is limited (de Long et al., 1991; Shleifer, 2001)

In Example: can buy/sell A or B and tomorrow get fundamental value

In Real world: prices can diverge from fundamental value

Real world example. Royal Dutch and Shell
- Companies merged financially in 1907
- Royal Dutch shares: claim to 60% of total cash flow
- Shell shares: claim to 40% of total cash flow
- Shares are nothing but claims to cash flow
- Price of Royal Dutch should be $\frac{60}{40} = \frac{3}{2}$ price of Shell

- p_{RD}/p_S differs substantially from 1.5 (Fig. 1)
• Plenty of other example (Palm/3Com)

• What is the problem?
 – Noise trader risk, investors with correlated valuations that diverge from fundamental value
 – (Example: Naive Investors keep persistently bidding down price of Shell)
 – In the long run, convergence to cash-flow value
 – In the short-run, divergence can even increase
 – (Example: Price of Shell may be bid down even more)
• **Noise Traders**

• DeLong, Shleifer, Summers, Waldman (*JPE* 1990)

• Shleifer, *Inefficient Markets*, 2000

• Fundamental question: What happens to prices if:
 – (Limited) arbitrage
 – Some irrational investors with correlated (wrong) beliefs

• First paper on Market Reaction to Biases

• *The* key paper in Behavioral Finance
The model assumptions

A1: arbitrageurs risk averse and short horizon

→ Justification?

* Short-selling constraints
 (per-period fee if borrowing cash/securities)

* Evaluation of Fund managers.

* Principal-Agent problem for fund managers.
A2: noise traders (Kyle 1985; Black 1986)

misperceive future expected price at t by

\[\rho_t \sim i.i.d. \mathcal{N}(\rho^*, \sigma^2_\rho) \]

misperception correlated across noise traders ($\rho^* \neq 0$)

\[\rightarrow \] Justification?

* fads and bubbles (Internet stocks, biotechs)

* pseudo-signals (advice broker, financial guru)

* behavioral biases / misperception riskiness
What else?

- \(\mu \) arbitrageurs, \((1 - \mu)\) noise traders

- OLG model
 - Period 1: initial endowment, trade
 - Period 2: consumption

- Two assets with identical dividend \(r \)
 - safe asset: perfectly elastic supply
 \[\implies \text{price} = 1 \text{ (numeraire)} \]
 - unsafe asset: inelastic supply (1 unit)
 \[\implies \text{price?} \]

- Demand for unsafe asset: \(\lambda^a \) and \(\lambda^n \), with \(\lambda^a + \lambda^n = 1 \).
- **CARA:**

\[U(w) = -e^{-2\gamma w} \text{ (w wealth when old)} \]

\[E[U(w)] = \int_{-\infty}^{\infty} -e^{-2\gamma w} \cdot \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{1}{2\sigma^2}(w-\bar{w})} \]

\[= -e^{-2\gamma(\bar{w} - \gamma\sigma^2_w)} \]

\[\max E[U(w)] \quad \Rightarrow \quad \max \bar{w} - \gamma\sigma^2_w \]
Arbitrageurs:

\[
\max(w_t - \lambda^a_t p_t)(1 + r)
\]

\[
+ \lambda^a_t (E_t[p_{t+1}] + r)
\]

\[
- \gamma (\lambda^a_t)^2 \text{Var}_t(p_{t+1})
\]

Noise traders:

\[
\max(w_t - \lambda^n_t p_t)(1 + r)
\]

\[
+ \lambda^n_t (E_t[p_{t+1}] + \rho_t + r)
\]

\[
- \gamma (\lambda^n_t)^2 \text{Var}_t(p_{t+1})
\]

(Note: Noise traders know how to factor the effect of future price volatility into their calculations of values.)
f.o.c.

Arbitrageurs: \(\frac{\partial E[U]}{\partial \lambda^a_t} \overset{!}{=} 0 \)

\[
\lambda^a_t = \frac{r + E_t[p_{t+1}] - (1 + r)p_t}{2\gamma \cdot Var_t(p_{t+1})}
\]

Noise traders: \(\frac{\partial E[U]}{\partial \lambda^n_t} \overset{!}{=} 0 \)

\[
\lambda^n_t = \frac{r + E_t[p_{t+1}] - (1 + r)p_t}{2\gamma \cdot Var_t(p_{t+1})} \quad + \quad \frac{\rho_t}{2\gamma \cdot Var_t(p_{t+1})}
\]
Interpretation

- Demand for unsafe asset function of:
 - (+) expected return \(r + E_t[p_{t+1}] - (1 + r)p_t \)
 - (-) risk aversion \(\gamma \)
 - (-) variance of return \(Var_t(p_{t+1}) \)
 - (+) overestimation of return \(\rho_t \) (noise traders)

- Notice: noise traders hold more risky asset than arb. if \(\rho > 0 \) (and viceversa)

- Notice: Variance of prices come from noise trader risk. “Price when old” depends on uncertain belief of next periods’ noise traders.
Impose general equilibrium: $\lambda^a + \lambda^n = 1$

Price

$$p_t = 1 + \frac{\mu(\rho_t - \rho^*)}{1 + r} + \frac{\mu \rho^*}{r} - \frac{2\gamma \mu^2 \sigma^2_\rho}{r(1 + r)^2}$$

• Noise traders affect prices!

Interpretation

• Term 1: Variation in noise trader (mis-)perception
• Term 2: Average misperception of noise traders
• Term 3: Compensation for noise trader risk
• Special case: $\mu = 0$ (no noise traders)
Relative returns of noise traders

- Compare returns to noise traders R^n to returns for arbitrageurs R_a:

$$\Delta R = R^n - R^a = (\lambda^n_t - \lambda^a_t) [r + p_{t+1} - p_t (1 + r)]$$

$$E(\Delta R) = \rho^* - \frac{(1 + r)^2 (\rho^*)^2 + (1 + r)^2 \sigma^2}{2\gamma \mu \sigma^2_{\rho}}$$

- Noise traders hold more risky asset if $\rho^* > 0$

- Return of noise traders can be higher if $\rho^* > 0$ (and not too positive)

- Noise traders therefore may outperform arbitrageurs if optimistic!

- (Reason is that they are taking more risk)
Welfare

- Sophisticated investors have higher utility
- Noise traders have lower utility than they expect
- Noise traders may have higher returns (if $\rho^* > 0$)
- Noise traders do not necessarily disappear over time
• Three fundamental assumptions

1. OLG: no last period; short horizon

2. Fixed supply unsafe asset (\(a\) cannot convert safe into unsafe)

3. Noise trader risk systematic

• Noise trader models imply that biases affect asset prices:
 – Reference Dependence
 – Attention
 – Persuasion
• Here:
 – Biased investors
 – Non-biased investors

• Behavioral corporate finance:
 – Investors (biased)
 – CEOs (smart)

• Behavioral Industrial Organization:
 – Consumers (biased)
 – Firms (smart)
3 Intro to Problem Set

- Accounting — Information on company performance
 - accounting books
 - quarterly earnings announcement

- Two main focuses:
 - Optimal accounting rules
 - Stock price response to profitability information in accounting books
• What is right valuation of company?
 – Crucial to guarantee right allocation of capital
 – Denote $e_{t,k}$ earnings (profits) of company k in year t
 – Stock price = Discounted sum of future cash flows:
 \[
 p_{t,k} = e_{t,k} + \frac{e_{t+1,k}}{1 + r} + \frac{e_{t+2,k}}{(1 + r)^2} + \ldots
 \]
 – Need forecasts of future profitability $e_{t,k}$

• Two main components:
 – Short-run earnings performance
 – Long-run performance
 – Analysts provide forecasts on both
• **Analysts.** Process information on companies and make it available (for a fee)

 – Sell-side. Work for brokerage firm (investment bank)

 – Buy-side. Work for mutual funds

 – Sell-side analysts:
 * more likely to have conflict of interest (Inv. Bank selling shares of target company)

 * data widely available (IBES, FirstCall)
• Analysts generate two main outputs:
 1. Earning forecasts $\hat{e}_{t,k}$
 - Dollar earning per share of company
 - Quarterly or annual
 - Forecast h years into the future: $h \approx 3, 4$ years

 2. Long-term "growth rate" of earnings g_e

• Common forecasting model:

$$\hat{p}_{t,k} = e_{t,k} + \frac{\hat{e}_{t+1,k}}{1 + r} + \frac{\hat{e}_{t+2,k}}{(1 + r)^2} + \ldots$$

$$+ \sum_{t=0}^{\infty} \frac{1}{(1 + r)^{h+t}} \hat{e}_{t+h,k} \ast g_e$$
Company releases of information

- Each quarter: Announcement of accounting performance
 - Scheduled announcement, conference call
 - Release of accounting indicators
 - Special focus on earnings per share $e_{t,k}$

- Comparison of forecasted and realized earnings

- Measure of new information: earning surprise $e_{t,k} - \hat{e}_{t,k}$.

- Renormalize by price of share: $s_{t,k} = \left(e_{t,k} - \hat{e}_{t,k} \right) / p_{t,k}$

- Investors react to new information by updating stock price $p_{t,k}$
• Problem set

• Focus on response of stock prices to earning surprise

• Economic significance:
 – Processing of new information
 * Clean measure of information
 * Clean measure of response
 – Timing of release of information by company
• Identify in the data three anomalies:

• **Anomaly 1. Post-Earnings Announcement Drift.** (Chan, Jegadeesh, and Lakonishok, 1996; Bernard and Thomas, 1989).

 – Announcements of good news in earnings $e_{t,k}$ are followed by higher returns over next 2-3 quarters

 – Arbitrage should eliminate this

 – Interpretation: Investors are inattentive when news emerges, news incorporated slowly over time

• How to measure this? Use as measure of new information the earnings surprise $s_{t,k}$

• Follow standard ‘quantile’ procedure: Divide into quantiles based on $s_{t,k}$
- Plot returns for each quantile
- Focus on light blue line for now (Figure from DellaVigna and Pollet, 2006)
• Anomaly 2. Less Immediate Response and more Drift for Friday announcements (DellaVigna and Pollet, 2006)
 – Drift is stronger for announcements made on Friday
 – Immediate response is lower for announcements made on Friday
 – Inattention interpretation: More distracted investors on Friday
• **Anomaly 3.** (Degeorge, Patel, and Zeckhauser, 1999)
 – CEOs shift the earnings so as to meet analyst expectations

Figure 6. Histogram of Forecast Error for Earnings Per Share: Exploring the threshold of “meet analysts’ expectations”

\[\tau(0) = 6.61 \]
• Similar result if earnings compared to earnings 4 quarters ago or compared to zero profits

• Interpretation:
 – Investors have ‘bias’: They penalize significantly companies that fail to meet thresholds
 – Managers cater to this bias by manipulating earnings
4 Market Reaction to Biases: Pricing

- Consider now the case in which consumers purchasing products have biases
- Firm maximize profits
- Do consumer biases affect profit-maximizing contract design?
- How is consumer welfare affected by firm response?
- Analyze first the case for consumers with \((\beta, \hat{\beta}, \delta)\) preferences
4.1 Self-Control

MARKET (I). INVESTMENT GOODS

- Monopoly
- Two-part tariff: L (lump-sum fee), p (per-unit price)
- Cost: set-up cost K, per-unit cost a

Consumption of investment good

Payoffs relative to best alternative activity:

- Cost c at $t = 1$, stochastic
 - non-monetary cost
 - experience good, distribution $F(c)$
- Benefit $b > 0$ at $t = 2$, deterministic
CONSUMER BEHAVIOR.

- Long-run plans at $t = 0$:

 $\text{Consume} \iff \beta \delta (-p - c + \delta b) > 0$

 $\iff c < \delta b - p$

- Actual consumption decision at $t = 1$:

 $\text{Consume} \iff c < \beta \delta b - p$ (Time Inconsistency)

- Forecast at $t = 0$ of consumption at $t = 1$:

 $\text{Consume} \iff c < \hat{\beta} \delta b - p$ (Naiveté)
FIRM BEHAVIOR. Profit-maximization

$$\max_{L,p} \delta \left\{ L - K + F(\beta \delta b - p)(p - a) \right\}$$

s.t. $\beta \delta \left\{ -L + \int_{-\infty}^{\hat{\beta} b - p} (\delta b - p - c) dF(c) \right\} \geq \beta \hat{\delta} \hat{u}$

- Notice the difference between β and $\hat{\beta}$
Solution for the per-unit price p^*:

\[
p^* = a \quad \text{[exponentials]}
\]

\[
- (1 - \hat{\beta}) \delta b \frac{f (\hat{\beta} \delta b - p^*)}{f (\beta \delta b - p^*)} \quad \text{[sophisticates]}
\]

\[
- \frac{F (\hat{\beta} \delta b - p^*) - F (\beta \delta b - p^*)}{f (\beta \delta b - p^*)} \quad \text{[naives]}
\]

Features of the equilibrium

1. *Exponential agents* ($\beta = \hat{\beta} = 1$).

 Align incentives of consumers with cost of firm

 \implies marginal cost pricing: $p^* = a$.

\[p^* = a \]
\[- (1 - \hat{\beta}) \delta b \frac{f(\hat{\beta} \delta b - p^*)}{f(\beta \delta b - p^*)} \]
\[- \frac{F(\hat{\beta} \delta b - p^*) - F(\beta \delta b - p^*)}{f(\beta \delta b - p^*)} \]

2. Hyperbolic agents. Time inconsistency

\[\rightarrow \text{below-marginal cost pricing: } p^* < a. \]

(a) **Sophisticates** \((\beta = \hat{\beta} < 1)\): commitment.

(b) **Naives** \((\beta < \hat{\beta} = 1)\): overestimation of consumption.
MARKET (II). LEISURE GOODS

Payoffs of consumption at $t = 1$:

- Benefit at $t = 1$, stochastic
- Cost at $t = 2$, deterministic

\Rightarrow Use the previous setting: $-c$ is “current benefit”, $b < 0$ is “future cost.”

Results:

1. *Exponential agents.*

 Marginal cost pricing: $p^* = a$, $L^* = K$ (PC).

2. *Hyperbolic agents* tend to overconsume. \Rightarrow

EMPIRICAL PREDICTIONS

Two predictions for time-inconsistent consumers:

1. Investment goods (Proposition 1):
 (a) Below-marginal cost pricing
 (b) Initial fee (Perfect Competition)

2. Leisure goods (Corollary 1)
 (a) Above-marginal cost pricing
 (b) Initial bonus or low initial fee (Perfect Competition)
FIELD EVIDENCE ON CONTRACTS

- US Health club industry ($11.6bn revenue in 2000)
 - monthly and annual contracts
 - Estimated marginal cost: $3-$6 + congestion cost
 - Below-marginal cost pricing despite small transaction costs and price discrimination

- Vacation time-sharing industry ($7.5bn sales in 2000)
 - high initial fee: $11,000 (RCI)
 - minimal fee per week of holiday: $140 (RCI)
Credit card industry ($500bn outstanding debt in 1998)

- Resale value of credit card debt: 20% premium (Ausubel, 1991)
- No initial fee, bonus (car / luggage insurance)
- Above-marginal-cost pricing of borrowing

Gambling industry: Las Vegas hotels and restaurants:

- Price rooms and meals below cost, at bonus
- High price on gambling
WELFARE EFFECTS

Result 1. Self-control problems + Sophistication \Rightarrow First best

- Consumption if $c \leq \beta \delta b - p^*$
- Exponential agent:
 - $p^* = a$
 - consume if $c \leq \delta b - p^* = \delta b - a$
- Sophisticated time-inconsistent agent:
 - $p^* = a - (1 - \beta)\delta b$
 - consume if $c \leq \beta \delta b - p^* = \delta b - a$
- Perfect commitment device
- Market interaction maximizes joint surplus of consumer and firm
Result 2. Self-control + Partial naivété ⇒ Real effect of time inconsistency

\[p^* = a - \left[F(\delta b - p^*) - F(\beta \delta b - p^*) \right] / f(\beta \delta b - p^*) \]

• Firm sets \(p^* \) so as to accentuate overconfidence

• Two welfare effects:
 – Inefficiency: \(\text{Surplus}_{\text{naive}} \leq \text{Surplus}_{\text{soph}} \).
 – Transfer (under monopoly) from consumer to firm

• Profits are increasing in naivety’ \(\hat{\beta}(\text{monopoly}) \)

• Welfare_{naive} \leq \text{Welfare}_{soph}.

• Large welfare effects of non-rational expectations
4.2 Self-Control 2

- Extend DellaVigna and Malmendier (2004):
 - incorporate heterogeneity in naiveté
 - allow more flexible functional form in time inconsistency
 - different formulation of naiveté
• Setup:
 1. Actions:
 – Action \(a \in [0, 1] \) taken at time 2
 – At time 1 utility function is \(u(a) \)
 – At time 2 utility function is \(v(a) \)
 2. Beliefs: At time 1 believe:
 – Utility is \(u(a) \) with probability \(\theta \)
 – Utility is \(v(a) \) with probability \(1 - \theta \)
 – Heterogeneity: Distribution of types \(\theta \)
 3. Transfers:
 – Consumer pays firm \(t(a) \)
 – Restrictive assumption: no cost to firm of providing \(a \)
Therefore:

- Time inconsistency ($\beta < 1$) \rightarrow Difference between u and v

- Naiveté ($\hat{\beta} > \beta$) \rightarrow $\theta > 0$

- Partial naiveté here modelled as stochastic rather than deterministic

- Flexibility in capturing time inconsistency (self-control, reference dependence, emotions)
• Main result:

• **Proposition 1.** There are two types of contracts:

 1. Perfect commitment device for sufficiently sophisticated agents \((\theta < \theta)\)
 2. Exploitative contracts for sufficiently naive agents \((\theta > \theta)\)

• Commitment device contract:

 – Implement \(a_\theta = \max_a u(a)\)

 – Transfer:

 * \(t(a_\theta) = \max_a u(a)\)

 * \(t(a) = \infty\) for other actions

 – Result here is like in DM: Implement first best
• Exploitative contract:
 – Agent has negative utility:
 \[u(a_\theta^v) - t(a_\theta^v) < 0 \]
 – Maximize overestimation of agents:
 \[a_\theta^u = \arg\max (u(a) - v(a)) \]
4.3 Bounded Rationality

• Gabaix and Laibson (2003), *Competition and Consumer Confusion*

• Non-standard feature of consumers:
 − Limited ability to deal with complex products
 − Imperfect knowledge of utility from consuming complex goods

• Firms are aware of bounded rationality of consumers
 \rightarrow design products & prices to take advantage of bounded rationality of consumers
Three steps:

1. Given product complexity, given number of firms: What is the mark-up? Comparative statics.

2. Given product complexity: endogenous market entry. What is the mark-up? What is the number of firms?

3. Endogenous product complexity, endogenous market entry: What are mark-up, number of firms, and degree of product complexity?

We will go through 1 and talk about the intuition of 2 and 3.
Example: Checking account. Value depends on

- interest rates
- fees for dozens of financial services (overdraft, more than x checks per months, low average balance, etc.)
- bank locations
- bank hours
- ATM locations
- web-based banking services
- linked products (e.g. investment services)

Given such complexity, consumers do not know the exact value of products they buy.
Model

- Consumers receive noisy, unbiased signals about product value.
 - Agent a chooses from n goods.
 - True utility from good i:
 \[Q_i - p_i \]
 - Utility signal
 \[U_{ia} = Q_i - p_i + \sigma_i \varepsilon_{ia} \]

σ_i is complexity of product i.
ε_{ia} is zero mean, iid across consumers and goods, with density f and cumulative distribution F.
(Suppress consumer-specific subscript a;
$U_i \equiv U_{ia}$ and $\varepsilon_i \equiv \varepsilon_{ia}$.)
• Consumer decision rule: Picks the one good with highest signal U_i from $(U_i)_{i=1}^n$.

(Assumption! What justifies this assumption?) Demand for good i

$$D_i = P \left(U_i > \max_{j \neq i} U_j \right)$$

$$= E \left[P \left[\text{for all } j \neq i, U_i > U_j | \varepsilon_i \right] \right]$$

$$= E \left[\prod_{j \neq i} P \left[U_i > U_j | \varepsilon_i \right] \right]$$

$$= E \left[\prod_{j \neq i} P \left[\frac{Q_i - p_i - (Q_j - p_j) + \sigma_i \varepsilon_i}{\sigma_j} > \varepsilon_j | \varepsilon_i \right] \right]$$

$$D_i = \int f(\varepsilon_i) \prod_{j \neq i} F \left(\frac{Q_i - p_i - (Q_j - p_j) + \sigma_i \varepsilon_i}{\sigma_j} \right) d\varepsilon_i$$
Market equilibrium with exogenous complexity

Bertrand competition with

- \(Q_i \): quality of a good,
 \(\sigma_i \): complexity of a good,
 \(c_i \): production cost
 \(p_i \): price

- Simplification: \(Q_i, \sigma_i, c_i \) identical across firms. (Problematic simplification. How should consumers choose if all goods are known to be identical?)

- Firms maximize profit:
 \[
 \pi_i = (p_i - c_i) D_i
 \]

- Symmetry reduces demand to
\[D_i = \int f(\varepsilon_i) F\left(\frac{p_j - p_i + \sigma \varepsilon_i}{\sigma} \right)^{n-1} d\varepsilon_i \]

Consider different demand curves

1. Gaussian noise \(\varepsilon \sim N(0,1) \), 2 firms

Demand curve faced by firm 1:

\[
D_1 = P(Q - p_1 + \sigma \varepsilon_1 > Q - p_2 + \sigma \varepsilon_2)
\]

\[
= P\left(p_2 - p_1 > \sigma \sqrt{2} \eta \right) \text{ with } \eta = (\varepsilon_2 - \varepsilon_1) / \sqrt{2} \sim N(0,1)
\]

\[
= \Phi\left(\frac{p_2 - p_1}{\sigma \sqrt{2}}\right)
\]

Usual Bertrand case (\(\sigma = 0 \)) : infinitely elastic demand at \(p_1 = p_2 \)
\[D_1 \in \left\{ \begin{array}{ll} 1 & \text{if } p_1 < p_2 \\ [0, 1] & \text{if } p_1 = p_2 \\ 0 & \text{if } p_1 > p_2 \end{array} \right\} \]

Complexity case \((\sigma > 0)\): Smooth demand curve, no infinite drop at \(p_1 = p_2\). At \(p_1 = p_2 = p\) demand is \(1/2\).

\[
\max \Phi \left(\frac{p_2 - p_1}{\sigma \sqrt{2}} \right) [p_1 - c_1]
\]

\[
\frac{1}{\sigma \sqrt{2}} \phi \left(\frac{p_2 - p_1}{\sigma \sqrt{2}} \right) [p_1 - c_1] = \Phi \left(\frac{p_2 - p_1}{\sigma \sqrt{2}} \right)
\]

Intuition for non-zero mark-ups: Lower elasticity increases firm mark-ups and profits. Mark-up proportional to complexity \(\sigma\).
2. Other distributions.
 - Benefit of lower markup: probability of sale increases.
 - Benefit of higher markup: rent (if sale takes place) increases

For “thin tailed” noise, mark-up decreases in number of firms. Larger and larger numbers of firms entering drive the equilibrium price to MC.

For “fat tailed” noise, mark-up increases with number of firms. (“Cherry-Picking”)
Endogenous number of firms

Intuition: As complexity increases, mark-ups & industry profit margins increase, thus entry increases.

These effects strongest for fat-tailed case. (Endogenous increases in n reinforce the effects of σ on mark-ups.)

Endogenous complexity

- **Assumption:** $Q_i(\sigma_i)$

 Firms increase complexity, unless “clearly superior” products in model with heterogenous products.

In a nutshell: market does not help to overcome bounded rationality. Rather competition exacerbates the problem.
5 Next Lecture

- More Market Response to Biases
 - More Pricing: Behavioral IO
 - Employers: Contracting
 - Managers: Equity Issuance
- Methodology of Field Psychology and Economics
- Final Remarks