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Abstract

Long interest rates appear both excessively volatile and excessively sensitive to news
and monetary policy innovations compared to the predictions of standard macroecomic
models with constant steady state and fully informed agents. When a central bank
operates a time-varying in�ation target but does not communicate its value, bond mar-
kets may instead learn about the target from macroeconomic news and monetary policy
movements. Employing a forward-looking model of the macroeconomy paired with the
expectations hypothesis of the term struture, I show that bond-market learning about the
unknown in�ation target imparts additional volatility to interest rates at all maturities.
Calibrations suggest this accounts for one tenth to a ��th of the observed volatility in
10 year bonds. The paper also shows that learning raises the covariance between long
interest rates and transitory shocks, doubling the expected coe¢ cients from regressions of
long rates on in�ation surprises and policy rate innovations.
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1 Introduction

Bond markets exhibit puzzling behaviour in several respects. Long interest rates are more

volatile than standard macroeconomic models would predict when paired with the pure ex-

pectations hypothesis of the term structure, as is the spread between long and short interest

rates (Campbell and Shiller, 1991). In the wake of Shiller (1979) and Singleton�s (1980)

initial �ndings of excess volatility, an extensive literature has developed to address this be-

haviour. Some have turned to non-stationarity in short rates or time variation in term- and

risk premiums as explanations for the failure of the expectations hypothesis.1 Others have

pointed to time-varying monetary policy as a way to reconcile the data with theory (Fuhrer

(1996) and Rudebusch (1995)) but the issue remains open.

In addition to being overly volatile, long interest rates are sensitive at long horizons to

current events, what may be dubbed the excess sensitivity puzzle. Interest rates on bonds

as long as 30 years react on average positively and signi�cantly to current monetary policy

innovations (Cook and Hahn (1989), Kuttner (2001) and Ellingsen and Söderström (2004)).

Forward rates up to 15 years ahead respond to today�s news about in�ation and output and

exhibit as much volatility at long horizons as at short (Gürkaynak, Sack and Swanson (2003)).

Jointly, these behaviours are puzzling when judged against the benchmark predictions

of a macroeconomic model with constant steady state in which shocks are transitory and

agents are forward-looking and fully-informed. Even models incorporating a fair degree of

backward-lookingness and persistence have di¢ culty reproducing the lengthy response of long

rates.2 A number of authors have pointed to the role that imperfect information may play in

the sensitivity of long interest rates, in particular asymmetric information between the central

bank and bond markets about economic fundamentals and preferences (see Romer and Romer

(2000), Ellingsen and Söderström (2001) and Gürkaynak et al. (2003)). That theme is taken

up here.

The aim of this paper is to address two questions. First, does asymmetric information

and the sensitivity of long interest rates have any bearing on the puzzle of excess volatility and

1Tests of excess volatility are sensitive to the time series properties of short rates, with variance bounds tests
misleading when short rates are non-stationary (Flavin 1981, Marsh and Merton, 1986, Cushing and Ackert
1994) and any amount of volatility can be explained with enough term premium variation.

2 In the partially backward-looking model of Rudebusch (2002), the impulse response of forward rates to
shocks dies out completely within 10 years, implying only modest responses of 10 year bonds.
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if so, how? Second, does time-varying monetary policy and a departure from the standard

constant steady state model also play a role in explaining the excess sensitivity puzzle?

I present a simple New Keynsian model with a time-varying in�ation target and posit

two di¤erent information scenarios, one in which the in�ation target is communicated to

bond market participants and one in which it is not. In the latter, bond markets learn

about the in�ation target from observable variables and update upon new information. It

is the updating and revision of in�ation expectations inherent in this kind of learning that

will be key to several of the results in paper. Paired with the expectations hypothesis,

the model yields expressions for the volatility of bonds under the two scenarios and can be

used to address the overreaction of forward rates and long interest rates to new information.

The framework encompasses a useful counterfactual, that of communicated but time-varying

policy preferences. This device allows one to distinguish the implications for volatility and

overreaction of moving from a constant to a non-stationary in�ation target separately from

the implications of learning about the in�ation target.3

The adaptive learning mechanism used in this paper assumes that agents learn about un-

known state variables via a linear updating algorithm employing their own forecasts errors.

This follows recent literature on learning in macroeconomics, of which a good overview is

given by Evans and Honkapohja (2001). In short, bond markets lack key information about

shocks to the economy and policy preferences and derive a signal about these from unex-

pected macroeconomic news or monetary policy innovations. Unlike Ellingsen and Söder-

ström (2001), who assume that only one variable at a time is unobservable, in this paper there

is a true and repeated signal extraction problem which requires bond markets to decompose

information about in�ation into permanent and transitory elements.

Of relevance to the bond volatility results in this paper, Honkapohja and Mitra (2003) show

that an economy exhibits excess volatility when memory is bounded, by which is meant that an

endogenous variable has greater variance when learning about structural parameters cannot

converge to the rational expectations equilibrium. Orphanides and Williams (2003) also

employ �nite-memory, constant-gain learning to show that learning can result in pronounced

swings in in�ation expectations following large transitory shocks despite parameter stability

3 In this paper I do not attempt to model the central bank�s side of the information problem or their learning
behaviour.
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in the macroeconomy. This paper is in a similar spirit but extends the analysis to the case

when constant-gain learning is warranted by time-variation in the unknown state and draws

out the implications for �nancial market behaviour.

The key �ndings are as follows. Learning results in heightened sensitivity to transi-

tory shocks and imparts additional variance to forecast errors (Proposition 1) and additional

volatility to bonds of all maturities (Propositions 2 and 3). This is the case despite the rate

of learning (the gain in a Kalman �lter) being optimally calibrated to the true signal-to-noise

ratio in the economy. For plausible calibrations of the model and variation in the target,

learning adds between a tenth and a �fth to the volatility of a 10 year bond compared to the

counterfactual of full information. This is above and beyond the volatility imparted to long

interest rates because of time variation in the in�ation target.

Turning to the excess sensitivity behaviour described above, the introduction of a non-

stationary in�ation target is su¢ cient to qualitatively replicate the documented behaviour of

forward rates. The learning story posited by previous authors a¤ects the magnitude rather

than the nature of the results. Simulated coe¢ cient estimates from the model of the response

of long interest rates to surprise innovations in the policy rate are comparable to the estimated

values of Kuttner (2001) and Ellingsen and Söderström (2004) at the long end of the yield

curve. The simulations in the paper show that learning raises the covariance between long

and short interest rates such that the estimated coe¢ cients are up to double those that would

be observed if participants had full information about policy preferences (Proposition 4).

The paper is organized as follows. Section 2 introduces the model and solves for its

behaviour with optimal policy. Section 3 introduces the information assumptions, illustrates

how forecasting is carried in the two di¤erent information scenarios and derives analytical

expressions for forecast errors and bond volatility. Section 4 compares calibrations of the

model to empirical evidence and addresses the excess sensitivity puzzles described above.

Section 5 concludes.
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2 A Stylised Macroeconomy

In this section we present a stylised model of the macroeconomy and solve for its behaviour

with optimal policy in terms of the shocks arriving in the model. The model consists of a

forward-looking New Keynesian model based on agents�optimising behaviour akin to that of

Clarida, Gali and Gertler (1999) and Woodford (1999) but with the economic environment

modi�ed to include a time-varying in�ation target. Whilst more it is more forward-looking

than other commonly simulated models of the macroeconomy (Rudebusch (2002), for exam-

ple, is a popular choice), this characteristic keeps the model analytically tractable and key

features transparent.4 Estrella and Fuhrer (1999) criticise the ability of forward-looking New

Keynesian models to match the persistence of in�ation but this criticism may be less potent

once persistence is added via policy goals.

2.1 Economic Environment

The model is summarised by the following equations, both of which have their roots in the

microeconomic foundations of dynamic general equilibrium theory.

�t � ��t = �Et
�
�t+1 � ��t+1

�
+ �xt + ut (1a)

xt = �
[it � Et (�t+1)] + Et (xt+1) + gt (1b)

where �t is in�ation, ��t the time-varying in�ation target, xt the output gap (de�ned as the

log deviation of output around potential) and it the policy controlled nominal short interest

rate. The disturbance terms obey the following laws of motion

ut = �ut�1 + ût where ût � iid(0; �2û) and � 2 [0; 1) (2)

gt = �gt�1 + ĝt where ĝt � iid(0; �2ĝ) and � 2 [0; 1) (3)

where ût, ĝt are independent of one another, ie: E [vtv0t] =

264 �2û 0

0 �2ĝ

375 where v0t = [ût ĝt].
The aggregate demand curve (1a) is derived from the log-linearised consumption Euler

4Hybrid variants of such models which include both forward- and backward-looking elements can generally
not be solved analytically but must rely on numerical methods (see Söderlind (1999)).
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equation that solves the consumption-saving decision of the representative household. The

aggregate supply equation (1b) is the log-linear approximation of the aggregate �rm pricing

rule that arises from individual �rms�optimal pricing decisions given Calvo (1983) staggered

price setting. Appendix A sets out the maximisation problems that lead to both (1a) and

(1b). The economic environment in which �rms optimise is augmented to include a potentially

time-varying in�ation target as in Smets and Wouters (2003) and Adolfson, Laseen, Linde and

Villani (2004). This di¤ers importantly from the world described by Clarida, Gali, Gertler

(1999) in which the in�ation target is assumed constant endowing their model with a constant

nominal steady state. In brief, �rms who are unable to re-optimise in a given period index

their prices to a combination of past in�ation and the in�ation target. When indexation

adjusts immediately to the new in�ation target, the forward-looking nature of the Phillips

curve and the tractability of the model are preserved.5

The highly persistent and possibly non-stationary nature of in�ation in many industrialized

countries suggests that a model with constant steady state and mean-reverting nominal short

rates may be the wrong benchmark (for persistence see Fuhrer and Moore (1995), for evidence

of unit roots see Mishkin (1992), Wallace and Warner (1993)). I choose to model the in�ation

target as a random walk with innovation variance �2". Evidence for non-stationarity of the

in�ation target comes from several sources. Smets and Wouters (2003) �nd that a large

share of the movement in in�ation in both the US and Euro-area economies over the last

20 years can be explained by permanent shifts in a non-stationary process for the in�ation

target. Kozicki and Tinsley (2003) have similar success in describing the evolution of long

run in�ation expectations in the US by modelling the unknown in�ation target as a random

walk. In an exercise to back out those counterfactual policy parameters that reconcile the

pure expectations hypothesis with movements in US long interest rates, Fuhrer (1996) also

5Assuming otherwise, that non-optimised prices are partially indexed to past in�ation results in the familiar,
partly backward-looking Phillips curve. The assumption that price-setters know the value of the in�ation target
is strong given the later scenario in which bond market participants must learn about the target. However,
when price-setters�in�ation expectations are also formed through adaptive learning, as for example in Preston
(2002), the evolution of the macroeconomy becomes substantially more complicated and detracts from the
exposition of later results.
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�nds that the implied series for the in�ation target contains a unit root.6

��t = �
�
t�1 + "t where "t � iid(0; �2") (4)

The speci�cation in equation (4) has the advantage that it does not presume knowledge of

the number or type of potential policy regimes, unlike when the target is modelled as a Markov

switching process. One shortcoming though is that the process is evidently unbounded at long

horizons. However, for su¢ ciently small values of �2" the target tends to stay within plausible

bounds (empirical evidence suggests a standard deviation of around �1 per cent per decade).7

It also captures the idea that an apparently stable monetary policy regime may continue to

exhibit small adjustments in its relative preferences and in�ation target. The distribution of

innovations to the target can be chosen to permit large, infrequent changes in the target with

the bulk of the mass associated with very small adjustments.

Permanent shocks to the in�ation target are the only type of policy change in the model,

although to a �rst approximation, changes in the relative preference for output stability in

the loss function (�) can also be characterised as adjustments in the level of the target. All

other structural parameters in the economy are assumed constant and known.

2.2 Optimal Policy with Discretion

We consider the standard optimal policy problem of a central bank aiming to minimise the

following loss function with discretion

L = �1
2
Et
X

	j
�
�x2t+j + (�t+j � ��t+j)2

�
(5)

where � is the relative preference weight on output stability and f�t; ��t ; xtg as before. The

central bank chooses the pair fxt; �tg each period to minimise its loss function and sets the

appropriate value of the policy controlled interest rate it to achieve this. Given the purely

forward-looking nature of the economy, monetary policy has only a contemporaneous e¤ect

6For clarity, I do not augment the in�ation target process such as accomodation of cost-push shocks as in
Kozicki and Tinsley (2003) or adjustment to lagged in�ation as in Gürkaynak et al. (2003).

7The distinction between a highly persistent, stationary target and one with a unit root is �ne. Empirically
these are very di¢ cult to distinguish.
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and the intertemporal policy optimisation problem reduces to a sequence of static optimisa-

tions. This leads to a �rst order condition representing the standard policy trade-o¤ between

the output gap and in�ation gap,

xt = �
�

�
(�t � ��t ): (6a)

The model can be solved for yt and �t in terms of current shocks (see Appendix B);

�t � ��t =
�

�2 + �(1� ��)
ut (7)

xt = ��
�
[�t � ��t ] =

��
�2 + �(1� ��)

ut: (8)

Clarida et al. (1999) describe this policy as one of �leaning against the wind�, with the

central bank choosing how much of the in�ation shock to o¤set in any period according to its

preferences and the parameters of the economy. Larger values of � imply a larger in�ation

gap for a given shock ut. Higher serial correlation in in�ation shocks also raises the multiplier

in (7), ie: @�
@� > 0,

@�
@� > 0).

The optimal monetary policy reaction function takes a familiar form for this class of model,

resembling a Taylor rule in the sense that the policy controlled interest rate responds to the

current in�ation- and output gap. Here the nominal instrument is also pegged at the level of

the current in�ation target (the constant real interest rate is subsumed in the linearisation);

it = Et
�
��t+1

�
+

�
1 +

�(1� �)
�
�

�
Et
�
�t+1 � ��t+1

�
+
gt



Note that the coe¢ cient on expected in�ation exceeds unity for positive values of �, �, 


and �, a necessary condition for a stabilising rule. Rewriting this in terms of shocks in the

model,

it = �
�
t +

�
�+

�

�

(1� �)

�
�ut +

gt



(9)

where gt, can be seen as either the aggregate demand shock or a policy control error.
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3 Information Assumptions and Learning

The key relationships of the economy (equations (7), (8) and (9)) can be summarised as

�t = ��t + �ut where � =
�

�2 + �(1� ��)
��t = ��t�1 + "t

and it = ��t +

�
�+

�

�

(1� �)

�
�ut +

gt



where ut, gt and "t have the properties described in Section 2.1. In this environment,

forecasting the nominal short rate is a matter of forecasting the time varying in�ation target

and macroeconomic shocks in the economy.

We now present our information assumptions. The central bank is assumed to know the

structure of the economy at time t and can observe all current variables and shocks but has no

advantage over bond market analysts in forecasting them. That is, the central bank possesses

potentially superior information about the current state of the economy which may result in

more accurate forecasts.8 Bond market participants are assumed not to be able to observe

shocks but we consider two di¤erent scenarios regarding their information about the in�ation

target;

i) Full information - the in�ation target is communicated by the central bank every period

and thus is fully observable to bond market participants. Shocks, whilst not observable,

can be perfectly inferred from a combination of in�ation, the in�ation target and the

nominal policy short rate.

ii) Limited Information - the in�ation target is not communicated. Thus bond market

participants are unable to accurately decompose observed in�ation into its permanent

policy and transitory shock components. In all other respects bond market actors

are homogeneously well informed, knowing the structure and parameterization of the

economy as well as the central bank�s preference for output stability. Furthermore, they

believe correctly that the in�ation target follows a random walk and know the relative

variance of innovations to the target and aggregate supply shocks, �2"
�2�2u

.

8This is consistent with the evidence provided by Romer and Romer (2000) of the superiority of Federal
Reserve information due to better data processing.
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The �rst scenario is clearly information rich, more so than would be expected if a central

bank were conducting policy with a time-varying in�ation target, but it will later serve as a

useful counterfactual benchmark. It also incorporates the case of a central bank conducting

explicit, constant in�ation targeting.

The second scenario is a more realistic depiction of policy communication for most central

banks and requires that bond markets learn about shifts in policy preferences over time in

order to form long-run in�ation expectations. When the in�ation target is time-varying and

non-stationary it becomes optimal to place greater weight on recent observations and discount

older observations.9

The timing of the model is that all shocks (ût, ĝt and "t) are realised at the beginning of

period t and taking these into account the central bank sets its policy interest rate so as to

a¤ect the outcomes f�t; xtg in the same period. If it is communicated, the in�ation target is

announced at the beginning of the period.

3.1 Forecasting in�ation and nominal short interest rates

In the following section, we illustrate how bond market participants form their in�ation ex-

pectations and forecast the nominal short interest rate. In Section 3.2 we take a special case

of the general problem leading to several propositions about forecast errors and the interest

rate on a zero coupon m-period bond.

Full Information Forecasting is straightforward for the case when bond markets know the

in�ation target at time t. Denote the current information set as 
FIt , which includes all

information up to and including period t. Given the random walk property of the in�ation

target, the optimal forecast j-periods ahead conditional on 
FIt (denoted ��FIt+j=t) is

��FIt+j=t = ��t + Et
�Xj

i=1
"t+i j 
FIt

�
= ��t for all j > 1: (10)

9Such a strategy could also be motivated by arguing that agents su¤er from �nite memory, as in Orphanides
and Williams (2003), or fear structural change and are ever alert to the possibility. Generally, however, the
optimal learning strategy when there is no strutural change is to allow the sample to grow inde�nitely with
equal weights.
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The optimal projection of in�ation, �FIt+j=t, j periods ahead and conditional on 

FI
t is found

by leading (7) and employing the serial correlation of ut+j ;

�FIt+j=t = ��FIt+j=t + �ut+j=t

= ��t + ��
jut for all j > 1 (11)

Similarly leading the policy reaction function in (??) and substituting the optimal projections

��FIt+j=t, �
FI
t+j=t, ut+j=t and gt+j=t yields

iFIt+j=t = ��FIt+j=t +

�
�+

�

�

(1� �)

�
�ut+j=t +

1



gt+j=t

= ��t +

�
�+

�

�

(1� �)

�
��jut +

1



�jgt for all j > 1 (12)

From (12) we see that the e¤ect of transitory aggregate supply or aggregate demand shocks on

the predicted path of short rates dies out geometrically. If shocks are serially uncorrelated,

ie: � = � = 0, the forward rate for horizons j > 1 is simply today�s in�ation target. A

positive shock to the in�ation target is interpreted as permanent and raises the forecast of

the nominal short rate at all horizons.

Limited Information In order to forecast in�ation and the nominal short rate in the

limited information scenario, bond market participants need to learn the value of the in�ation

target. We assume they do so recursively, employing a linear algorithm to update their

estimate of the unobserved state variables via their forecast errors. This type of learning

has been treated in great detail by Evans and Honkapohja (2001) and is a straightforward

application of a Kalman �lter to the speci�c state space of this model (see Hamilton 1994

chapter 13 for a thorough discussion).

The stylised economy described above can be given a state-space representation in which

in�ation and the nominal short rate are observable variables whilst the in�ation target and

aggregate supply and demand shocks are unobservable state variables.10

10The output gap (xt) is unobservable in this setup and we assume that agents do not employ it as part of
their �ltering program to extract ��t . However, it could be broken into announced output and unobservable
potential output where agents would use an appropriate updating �lter to extract potential output - much as
is done today by professional economists.
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Observation equations:

264 �t
it

375 =
264 1 � 0

1
h
�+ �

�
 (1� �)
i
� 1




375
266664
��t

ut

gt

377775 (13)

State equations: 266664
��t+1

ut+1

gt+1

377775 =
266664
1 0 0

0 � 0

0 0 �

377775
266664
��t

ut

gt

377775 +

266664
"t+1

ût+1

ĝt+1

377775 (14)

where "t+1, ût+1 and ĝt+1 are distributed iid as before.11

The optimal Kalman updating algorithm is

266664
��t+1=t+1

ut+1=t+1

gt+1=t+1

377775 =
266664
1 0 0

0 � 0

0 0 �

377775
266664
��t=t

ut=t

gt=t

377775+
266664
��;� ��;i

�u;� �u;i

�g;� �g;i

377775
264 �t � �LIt=t�1
it � iLIt=t�1

375 (15)

where
�
�f;� �f;i

�
f = �; u; g are the steady state Kalman gains.12 Individuals update

their estimate of the in�ation target by attributing a constant fraction of the forecast error in

in�ation and the nominal short rates to the state variables. In the following section we will

illustrate how such gain is related to fundamental variances in the model.

This system nests three di¤erent learning strategies. When the �rst equation in (13) is

treated as the only observation equation, agents learn about the in�ation target through the

signal contained in in�ation and its forecast errors. When the second equation is treated

in isolation, bond markets update their estimates of the in�ation target and shocks in the

economy through unexpected innovations to the nominal short rate. This corresponds to the

ideas of Romer and Romer (2000) and Ellingsen and Söderström (2003) in which actions of the

central bank are a valuable signal because of the asymmetric information they possess. The

latter assume a simpli�ed environment in which either the policy position or a macroeconomic

11For the Kalman �lter to be the minimum variance estimator of the unknown states, the errors need to be
distributed normally. For all other distributions it is the best linear estimator.
12To possess steady state values, the eigenvalues of the coe¢ cient matrix in (14) must be in or on the unit

circle. This is closely related to Evans and Honkapojha�s (2001) concept of expectational stability.
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shock is unobservable but not both at the same time. Thus, the signal extraction problem is

trivial as the missing information is revealed immediately and completely upon observation

of the central bank�s policy movement.13

In this model, the policy short rate is in fact a noisier signal of the in�ation target due to

the additional variation contributed by gt and, depending on the parameters of the economy,

additional amplitude in
h
�+ �

�
 (1� �)
i
�. Gurkaynak et al and Kozicki and Tinsley (2003)

also assume learning via the short rate because in their more backward-looking models it may

be a more timely signal of policy change. The third learning strategy is to employ both

observation equations in tandem. Bond markets almost surely gain information from both

sources - con�rmed by their apparent overreaction to both in�ation news and monetary policy

innovations - but the timing of policy announcements rarely coincides with in�ation releases

as they do in this model.

Forecasting is still relatively straightforward and the optimal projections take a similar

form to the full information case. From the Law of Iterated Expectations we have that

Et

266664
��t+j

ut+j

gt+j

j 
LIt

377775 =
266664
��t+j=t

ut+j=t

gt+j=t

377775 =
266664
1 0 0

0 � 0

0 0 �

377775
j 266664

��t=t

ut=t

gt=t

377775 . (16)

Thus the optimal forecast of the target j periods ahead conditional on 
LIt is

��LIt+j=t = �
�
t=t + Et

�Xj

i=1
"t+i j 
LIt

�
= ��t=t for all j > 1 (17)

and the optimal projection of in�ation becomes

�LIt+j=t = �
�LI
t+j=t + �u

LI
t+j=t = �

�
t=t + ��

jut=t for all j > 1: (18)

The predicted path of short rates resembles that for full information but state values are

13Technically, the signal-to-noise ratio is either zero or in�nity, implying respectively a gain of zero or one.
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replaced by their unobserved estimates,

iLIt+j=t = ��LIt+j=t +

�
�+

�

�

(1� �)

�
�uLIt+j=t +

1



gLIt+j=t

= ��t=t +

�
�+

�

�

(1� �)

�
��jut=t +

1



�jgt=t for all j > 1 (19)

In the following section we will focus on the simplest possible case in order to illustrate

analytically the connection between learning, excess sensitivity and volatility. In the empirical

section we present evidence showing that the three learning strategies imply very similar

results.

3.2 Basic case

In this section we simplify the system in two ways. First by taking the case when bond

markets update through in�ation forecast errors and second, assuming that disturbances are

serially uncorrelated (ie: � = � = 0).

With these assumptions, the state space simpli�es to

Observation equation �t = ��t + �ût (20)

State equation ��t = ��t�1 + "t (21)

where ût can now be treated as the serially uncorrelated disturbance of the observation equa-

tion.

The optimal linear projections of in�ation, the in�ation target and nominal forward rates

simplify in the full information scenario to

�FIt+j=t = ��t+j=t = �
�
t for all j > 1 (22)

iFIt+j=t = ��t for all j > 1
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and when the target is not observed, to

�LIt+j=t = ��LIt+j=t = �
�
t=t for all j > 1 (23)

iLIt+j=t = ��t=t for all j > 1:

In the limited information environment, the task of bond market participants is to decompose

equation (20) into transitory shocks to in�ation and permanent shifts in the in�ation target.

In this univariate state-space, the Kalman �lter is still the optimal tool for updating the

estimate of the unknown in�ation target and takes a simpler form,

��t=t = �
�
t�1=t�1 + (1� �)(�t � �

LI
t=t�1) (24)

where (1 � �) is the steady state Kalman gain that regulates the proportion of the in�ation

forecast error attributed to the in�ation target. The optimally calibrated gain is a non-

linear function of the signal-to-noise ratio, � = �
�

�2"
�2�2u

�
, and bounded between 0 and 1 (see

Appendix C for speci�c functional form). The noisier innovations to the in�ation target

become relative to aggregate supply shocks, the more any forecast error is attributed to

adjustment of the in�ation target, that is, as �2"
�2�2u

!1, (1��)! 1 and �2"
�2�2u

! 0, (1��)!

0.

Figure 1 provides a graphical illustration from a simulation of the model of the inferred

and actual in�ation target, with a signal-to-noise ratio of 0:14 and optimal gain 0:28. The

perceived in�ation target, ��t=t, broadly tracks the actual in�ation target but with persistent

deviations that re�ect the dynamics of adaptive, constant-gain learning. With constant-gain

learning, even when the gain is optimally calibrated to the signal-to-noise ratio, the updated

estimate of the in�ation target will overreact to transitory shocks (ut) and under-react to true

changes in the target ("t).

The recursive nature of the updating in equation (24) means that the current estimate

of the target can be expressed as a geometric lagged polynomial of the history of observed

in�ation outcomes,

��t=t =
(1� �)
1� �L�t: (25)
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3.2.1 Forecast Errors

The one period ahead in�ation forecast error is central to updating the perceived target.

The nominal short rate forecast error Is a linear combination of the same ingredients and

comparing its variance between the full and limited information scenarios gives us a sense of

how learning adds noise via the revision of expectations.

Full Information Subtracting the one-period-ahead forecast of in�ation at t+ 1 from the

actual in�ation outcome yields a forecast error in terms of the independent shocks arriving to

the in�ation target and aggregate supply at t+ 1;

�t+1 � �FIt+1=t =
�
��t+1 + �ût+1

�
� ��t = "t+1 + �ût+1

var(�t+1 � �FIt+1=t) = �2" + �
2�2û

Similarly, subtracting the optimal forecast of the nominal short rate in (22) from the nominal

policy rate dictated by the reaction function (12) (note, with � = � = 0) yields a forecast

error which also re�ects shocks to aggregate demand,

it+1 � iFIt+1=t = "t+1 +
�

�

�ût+1 +

1



ĝt+1 (26)

This forecast error has variance

var(it+1 � it+1=t) = �2" +
�
�

�


�2
�2�2û +

�2ĝ

2

that intuitively is increasing in all innovation variances. The latter two are scaled by the

combination of structural and preference parameters that enter the reaction function. A

stronger preference for output stability (higher �) reduces the variance of the forecast error;

higher � calls for proportionately less movement in the nominal short rate via �
�
 for a given

shock and is less than fully o¤set by the widening of the tolerated in�ation gap
�
� = �

�2+�

�
.

Limited Information Forecast errors can be given similar expression in the limited infor-

mation scenario by subtracting the one-period-ahead projection of in�ation and the nominal
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short rate in (23) from their respective outcomes at t + 1. As before, forecast errors are

due to innovations at t + 1 but also incorporate a new term that re�ects uncertainty about

the state of policy preferences, that is, the gap between the true and inferred values of the

in�ation target
�
��t � ��t=t

�
.

�t+1 � �LIt+1=t = "t+1 +
�
��t � ��t=t

�
+ �ût+1

it+1 � iLIt+1=t = "t+1 +
�
��t � ��t=t

�
+
�

�

�ût+1 +

1



ĝt+1 (27)

The lagged polynomial form of ��t=t implies that
�
��t � ��t=t

�
is a function of the history of

shocks to the economy. This complicates the derivation of the variance somewhat and the

reader is referred to Appendix D. The result is stated here,

var(it+1 � iLIt+1=t) = �
2
"(

1

1� �2
) + �2�2û

"
�

�


2

+
(1� �)2

1� �2

#
+
�2ĝ

2

(28)

Proposition 1 The variance of the nominal short rate forecast error is unambiguously larger

when bond market participants are learning about the in�ation target than when the target is

perfectly observed. Because

�2"(
1

1� �2
) + �2�2û

"
�

�


2

+
(1� �)2

1� �2

#
+
�2ĝ

2

> �2" +
�

�


2

�2�2û +
�2ĝ

2

var(it+1 � iLIt+1=t) > var(it+1 � iFIt+1=t)

for any constant gain � 2 (0; 1). Proof in Appendix D.

Any degree of learning generates additional forecast error variance by enlarging the coe¢ -

cients attached to �2" and �
2
û. The source of this additional variance is revision to

�
��t � ��t=t

�
and intuitively the presence of � re�ects the dependence of ��t=t on the historical sequence of

transitory shocks ut�j ; j = 0; :::;1. The gain determines the extent to which these shocks

are attributed to ��t=t.

For given �2", �
2
û and �

2
ĝ,
�

1
1��2

�
is in rising in � whilst (1��)

2

1��2 is falling. However, these

variances interact to determine the value of �
�

�2"
�2�2u

�
when the gain is calibrated optimally

to the signal-to-noise ratio. An increase in the signal-to-noise ratio (that is, a rise in �2" for
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a given value of �2�2û) lowers
�

1
1��2

�
but not enough so to o¤set the rise in �2":

As one approaches the case of a constant in�ation target, ie: �2" ! 0 and �
�

�2"
�2�2u

�
! 1, the

forecast error variances of the the two information scenarios coincide. Forecast errors re�ect

only the arrival of transitory shocks when long-run in�ation expectations are well-anchored

by a constant target.

3.2.2 Building Bonds

Assuming that the expectations hypothesis of the term structure holds, it is straightforward

to characterise the interest rates on long bonds and derive bond volatility for the di¤erent

information scenarios. Denoting the interest rate on a zero-coupon bond with maturity m at

time t as imt , this interest rate is set as the average expected future short interest rate during

the time to maturity plus a term premium,

imt =
1

m

Xm�1

j=0
it+j=t + �

m
t

where it+j=t is as before the expected short interest rate j periods ahead and �
m
t is the term

premium at time t for maturity m. As in Ellingsen and Söderström (2001) and Fuhrer

(1996), I do not attempt to model time-variation in the term premium but assume that it is

independent of all relevant variables in the model. In the calibrations below, time variation in

the in�ation target rather than the term premium is used to match historical volatility data,

although time variation in term premiums would not change the spirit of the exercise. To

build long rates, bond market participants form expectations about the future path of short

interest rates based on their current information set, 
FI or 
LI . With the real interest rate

assumed to be constant, forecasts of shocks and in�ation expectations drive movements in the

term structure.14

Full Information Denote anm-period bond in the full information scenario as im
FI

t . Com-

bining the short rate at period t from the central bank reaction function in (??) with the

14This is broadly consistent with the �ndings of Ang and Bekaert (2004) who detect very little movement
in the real component of the term struture. They also conclude that the majority of movements in long term
nominal interest rates are due to changes in expected in�ation rather than in�ation risk premia.
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optimal projection of nominal short rates in (22) yields the following;

im
FI

t =
1

m

�
it + i

FI
t+1=t + : : :+ i

FI
t+m�1=t

�
+ �mt (29)

= ��t +
1

m

�
�

�

�ût +

ĝt



�
+ �mt :

The nominal yield is pegged at the level of the current in�ation target and re�ects transitory

shocks, ût and ĝt, only to the extent that they drive the current nominal short rate away from

its equilibrium level. As m increases, averaging ensures that the e¤ect of these shocks on

longer yields diminishes.

The non-stationary property of the nominal short rate means that variances in levels

are unbounded as t goes to in�nity. Instead we focus on a standard measure of volatility,

the variance (or standard deviation) of the period-to-period change in an m-period bond.

Di¤erencing (29) yields an expression for the change in anm-period bond between two periods;

im
FI

t � imFI

t�1 = "t +
1

m

�
�

�

� (ût � ût�1) +

ĝt � ĝt�1



�
+ �mt � �mt�1

Two simple features are worth pointing out. First, the change in the bond yield at any

maturity is one-for-one with any change in the in�ation target. Secondly, we have the intuitive

result that the e¤ect of transitory shocks diminishes with maturity. That is,

@
�
im

FI

t � imFI

t�1

�
@"t

= 1

@
�
im

FI

t � imFI

t�1

�
@ût

=
1

m

�

�

�

The variance of the change in bond yield obeys the following:

Proposition 2 The volatility of an m-period bond with full information and serially uncor-

related errors is:

var(im
FI

t � imFI

t�1 ) = �
2
" +

1

m2

 
2

�
�

�


�2
�2�2û +

1


2
2�2ĝ

!
+ �2&

Several observations can be made. First, this variance is rising one-for-one with �2" and can
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be interpreted as substitutable for �2& . As �
2
" approaches zero, the case of constant in�ation

targeting and a constant steady state, bond volatility declines until the only source of volatility

is the realisation of unforecastable transitory shocks. This has the natural implication that

for given variances of transitory shocks, bond volatility with in�ation targeting should be less

than under other monetary policy regimes.

Secondly, the bond�s variance is rising in �2û and �
2
ĝ, both of which are scaled by their

respective e¤ect on the current short rate. As expected, the e¤ect of transitory shocks on

bond volatility diminishes with maturity. From Appendix D, which derives the same variance

in the presence of serially correlated errors, it can be seen that more persistent shocks raises

bond volatility. A higher value of � raises the tolerated in�ation gap for a given aggregate

supply shock but has the o¤setting e¤ect of reducing the unconditional variance of (ut � ut�1).

Higher values of � are associated with less volatile bond rates, as was the case for forecast

errors. A stronger preference for output stability results in less pronounced movements of the

nominal short rate to counteract in�ationary shocks, with the combined coe¢ cient
�
�
�


�2
�2

declining in �.

Limited Information An expression for the m-period bond for the limited information

case, im
LI

t , can be derived in a similar manner. Combining the short rate at period t dictated

by the central bank�s reaction function in (9) with predicted values of the short rate as in (23)

yields

im
LI

t =
1

m

�
it + i

LI
t+1=t + : : :+ i

LI
t+m�1=t

�
+ �mt

=
1

m

�
��t +

�

�

�ut +

1



gt + (m� 1)��t=t

�
+ �mt :

The nominal component is pegged to a combination of the true in�ation target, ��t , and

the inferred value, �̂�t=t, which is projected for (m � 1) periods of the bond. Taking �rst

di¤erences, change in a bond�s yield re�ect true changes to the target and revisions to the

perceived target,

im
LI

t � imLI

t�1 =
1

m

�
"t + (m� 1)(��t=t � �

�
t�1=t�1) +

�

�

�(ût � ût�1) +

1



(ĝt � ĝt�1)

�
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The dynamics of learning complicate derivation of bond volatility so we refer the reader to

Appendix E and simply present the result. The Kalman updating algorithm in (24) expresses

(��t=t � �
�
t�1=t�1) in terms of current shocks ("t and ût) so that we can write

@
�
im

FI

t � imFI

t�1

�
@"t

= 1� m� 1
m

�

@
�
im

FI

t � imFI

t�1

�
@ût

=
1

m

�

�

� +

m� 1
m

(1� �):

Comparing these to the partial derivatives for full information encapsulates the story of under-

and over-reaction of bond yields to in�ation news. The term structure underreacts to per-

manent changes in the target, "t, relative to full information but overreacts to transitory

disturbances. This is illustrated in Figure 2 using the impulse reponses of predicted short

rates to both kinds of shocks These e¤ects interact with the maturity of the bond (the

number of periods for which the mistake is projected) and the gain (how severe the learning

problem is).

Proposition 3 The volatility of an m-period bond with limited information is:

var(im
LI

t � imLI

t�1 ) = A�
2
" +

1

m2

�
B�2�2û +

1


2
2�2ĝ

�
+ �2&

where

A =
1

m2

"
[1 + (m� 1)(1� �)]2 + ((m� 1)(1� �)�)

2

1� �2

#
< 1

B =

�
�

�

+ (m� 1)(1� �)

�2
+

�
�

�

+ (m� 1)(1� �)2

�2
+

"�
(m� 1)(1� �)2�

�2
1� �2

#
> 2

�
�

�


�2
That is, var(im

LI

t � imLI

t�1 ) > var(i
mFI

t � imFI

t�1 ) for any m > 1 and any �
�

�2"
�2�2û

�
2 (0; 1) :

As in Proposition 2 for the variance of a bond with full information about the target,

the variance in Proposition 3 is rising �2", �
2
û and �

2
ĝ. However, there is now an additional

interaction with the gain, �, and maturity, m. Intuitively, because bond market participants

update their estimate of the target by less than the change in the true target A < 1. But

systematic overreaction to transitory disturbances results in B > 1
m2 2

�
�
�


�2
. The severity
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of the under-reaction is captured by �; as the signal grows stronger and (1� �) rises, A

approaches 1. Likewise, the variance contributed by overreaction is regulated by �; B is also

rising in �2"
�2�2u

but less rapidly than A�2".

The variance is declining in m2 but with a partially o¤setting positive e¤ect of maturity

through both A and B. As discussed above, the interaction with m re�ects the number of

periods for which the mistaken estimate is projected.

As the signal-to-noise ratio increases �2"
�2�2u

! 1, � ! 0 the bond variances under full

and limited information converge.15 The �ip-side of this is that the ratio of bond volatility

between the limited versus full information scenarios is largest when the signal-to-noise ratio

is weak (see Figure 5). The relative reduction in bond volatility achieved by communicating

the target is greatest when that target was already close to being stable, an important message

for implicit in�ation targeters. When �2û is large, the gains to communication also grow.

Finally, when �2" = 0, the case of explicit in�ation targeting, there is no learning behaviour

and the full and limited information variances coincide. In this situation, bond volatility is

powerfully declining in maturity.

4 Empirical Evidence

4.1 Calibration

We have shown analytically for a simple case how non-stationarity of the in�ation target con-

tributes to the variance of bond yields and that learning about an uncommunicated target

unambiguously raises that variance. The next question to ask is what are the relative magni-

tudes of these e¤ects? In order to answer this we present calibrated values of bond volatility

and then address the implications of the model for the sensitivity of long interest rates.

Whilst the model is relatively sparse, it has su¢ cient degrees of freedom in its parameters

to make it possible to match, say, the observed volatility of 10 year bonds. I do not claim

that the factors in the model are the only sources of bond volatility, as several others are not

addressed here (such as term and risk premia, time variation in the real interest rate). Rather,

the aim is to assess the relative contributions to volatility of the mechanisms described in the

15Note that only A ! 1. B ! 2( �
�

)2 + 4 �

�

(m � 1) + 2(m � 1)2 > 2( �

�

)2 but the relative size of the

variances scale the coe¢ cients appropriately such that the LI variance approaches the FI variance.
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model for reasonable parameters that generate bond volatility of a plausible magnitude.

Structural parameters for a forward-looking New Keynsian model are suggested by Clarida,

Gali and Gertler (2000) - in the Phillips curve, an elasticity of in�ation with respect to the

output gap of 0:3 and in the aggregate demand equation a one-to-one relationship between

the output gap and the real interest rate. To match the persistence in in�ation and output

they assume highly serially correlated disturbances in their simulations (� = � = 0:9) which

imply that a shock has a half-life of over 6 quarters. This degree of persistence is unlikely to

be appropriate here as the non-stationary in�ation target accounts for much of the persistence

in in�ation.16 Clarida et al do not suggest variances for the transitory shocks in their model

and the in�ation target is assumed constant.

Rudebusch (2002) estimates a partially backward-looking variant of a New Keynsian

model, also assuming a constant steady state, and reports estimated variances of serially

uncorrelated aggregate supply and demand shocks. Expressed as shocks to annualised quar-

terly in�ation and the level of the output gap, these variances are approximately 1 and 0:7

respectively. Whilst it is not clear that these are the correct variances for the model at hand,

we employ them in the calibrations.

There are few estimates of the variance of innovations to the in�ation target. Smets and

Wouters (2003) estimate the quarterly innovation variance for a random walk in�ation target

to be 0:055 (median estimate) for the US between 1973 and 2003, 0:099 for the Euro-area.

Kozicki and Tinsley (2003) get a similar estimate of 0:044 using US data from 1960, although

they use a dummy variable to account for the changes in the early Volcker years.

To put these estimates in perspective, a quarterly innovation variance of 0:05 implies

a standard deviation of approximately 1:5 percentage points in the in�ation target over one

decade. Likewise, an innovation variance of 0:02 implies a standard deviation of 0:9 percentage

points. The basic parameter choices are summarised in Table 1. Note that by assuming

� = � = 0:5, the unconditional variances �2u and �
2
g are one third larger than �

2
û and �

2
ĝ

respectively.17

16Beechey, Carlsson and Österholm (2004) use the decomposition suggested by this model to re-examine the
time series properties of transitory shocks to the economy once a random walk in the in�ation target has been
�ltered out. The serial correlation in the residuals is substantially lower (around 0:4 to 0:7) than typcially
needed to have a New Keynsian model �t the data.
17Combinations of (�2û,�) and (�

2
ĝ,�) can be chosen to fall on an isoquant for given values of �

2
u and �

2
g.
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Table 1: Parameter Calibrations
Structural Parameters Variances
� (Consumption discount rate) 0:99 �2û 1:0
� (Elasticity of �t � ��t wrt yt) 0:3 �2ĝ 0:7


 (Elasticity of output wrt real interest rate) 1 �2" (0; 0:7)
� (Preference in central bank�s loss function) 0:5
�; � (Persistence of transitory shocks) 0:5

Notes: Variances pertain to annualised quarterly observations (that is, �t = (ln pt�ln pt�1)�
400). Thus the variance of innovations to the target is 16 times that discussed in the text.

4.2 Bond Volatility

Table 2 shows the variance of quarterly changes in constant maturity bonds in the United

States for the period 1981 to 2004. Bond volatility at all maturities compressed substantially

in the 1990s relative to the preceding decade but in all samples behaves broadly as expected

with volatility declining with maturity.

Table 2: Volatility of Selected Constant Maturity Treasuries, US, January 1981 to September
2004

Maturity(years) Mar 81� Sep 04 Mar 81�Dec 89 Mar 90� Sep 04
1 0:74 1:51 0:27
2 0:72 1:35 0:34
5 0:61 1:06 0:33
10 0:46 0:82 0:24
20 � � �
30 0:37 0:67 0:15��

Notes: Volatility is calculated as the variance of the quarter-to-quarter change in the reported
bond yield. Data are end quarter observations March, June, September, December. *Missing
data 1987 to 1994. ** Missing data March 2002 to end of sample Source: Board of Governors
H.15 Database, selected constant maturity treasury bonds

Simulated bond volatility from the version of the model in which bond markets learn

through in�ation forecast errors are shown in Table 3 for various in�ation target innovation

variances. These have been chosen to roughly match the volatility at the long end of the

curve for the periods shown in Table 2 and are correspondingly labelled moderate, high and

low. The second column shows the predicted volatility of interest rates assuming a constant

in�ation target. Bond volatility declines rapidly with maturity leaving very little variance in

even a 5 year bond and is plotted against actual bond volatility in Figure 3. Observed bond

yields clearly exhibit substantially greater volatility and the benchmark of a constant steady

state appears to be a poor approximation.
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Table 3: Volatility of Calibrated m-year bonds from the model (Learning via in�ation forecast
error).

Constant Moderate High Low
maturity �2� = 0 �2" = 0:35 �2" = 0:7 �2" = 0:2
(years) FI LI FI LI FI LI
1 0.61 0.95 1.18 1.30 1.59 0.80 1.00
2 0.17 0.52 0.69 0.86 1.08 0.37 0.51
5 0.03 0.38 0.46 0.72 0.82 0.23 0.30
10 0.01 0.36 0.40 0.70 0.76 0.21 0.24
20 0.00 0.35 0.37 0.70 0.72 0.20 0.22
30 0.00 0.35 0.36 0.70 0.71 0.20 0.21

Notes: The data in the table are generated with Monte Carlo simulations using 1000 draws
of the economy observed for 50 years. The reported numbers are the mean of the sample
bond variance over all simulations.

In the subsequent columns, bond volatility under the full information (FI) and limited

information (LI) scenarios are reported for the three di¤erent calibrations of �2� (moderate,

high and low). There are several points worth making here. First, the contribution of

a time-varying in�ation target to bond volatility is substantial, even for the counterfactual

scenario in which it is fully communicated. Even for the low calibration (an annualised value

of �2� of 0:2 implies a standard deviation of the target of only 0:7 over a decade) it is movement

in the target that generates bond volatility once transitory shocks die out. Second, learning

contributes additional volatility compared to the full information counterfactual; for a ten

year bond around 4 to 6 basis points. For the high scenario, this represents a little less than

a tenth of total volatility in the ten year bond, for the low scenario, one �fth. Third, the

volatility wedge created by learning diminishes with maturity.

Figure 4 plots the three columns of data in Table 2 against the simulated values from

Table 3. The expectations hypothesis paired with a time varying in�ation target does a

surprisingly good job of matching the volatility of the term structure in the 1980s. For the

latter half of the sample the model does a relatively poor job of mimicking the short end of the

yield curve, as short term interest rates predicted by the model are more variable than in the

data. In part this re�ects that the optimal monetary policy reaction function in the model

does not incorporate an interest rate smoothing term at a time when policy movements have

become smoother, either due to conscious interest rate smoothing or a change in the nature
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of shocks arriving in the economy.18 The model does a better job for longer maturities, and

comparing Figures 3 and 4 it is clear that some persistent variance in the economy is needed

to match the volatility that remains in very long interest rates.

These calibrations have assumed that variation in the in�ation target accounts for the

lions share of bond volatility. If time variation in the term premium accounts for some of

the volatility in long interest rates, this would not lower the estimated contribution made

by learning. As the signal-to-noise ratio for an uncommunicated target grows weaker, the

relative contribution of learning to volatility rises. This can be seen more clearly in Figure 5

which plots the ratio of the variance of a 10 year bond between the limited and full information

scenarios for a richer range of �2� calibrations. The ratio of variances is greatest when the

signal-to-noise is weakest.

The results at the long end of the term structure are not particularly sensitive to alternative

parameter calibrations. Lowering the central bank�s preference for output stability (�) to

0:2 raises the volatility of short interest rates (1 and 2 years) because of the central bank�s

greater willingness to create output deviations to restore in�ation to the target. Lowering

the persistence of the transitory shocks to � = � = 0:3 lowers the volatility of interest rates at

all maturities, although again, the e¤ect is most pronounced at the short end when transitory

shocks feature more heavily in interest rate forecasts. For the 10 year bond, the di¤erence is

only a matter of 2 basis points. When the common serial correlation parameter is raised to

0:8, persistence raises the variance of a 10 year bond to 0:11 even with a constant in�ation

target. However, this degree of autocorrelation seems implausibly high, causing the variance of

1 and 2 year bonds to reach 3:8 and 1:9 respectively. Lastly, lowering the elasticity of output

with respect to the real interest rate (
) from 1 to 0:5 so that the central bank needs to move

interest rates by more to achieve the same e¤ect on in�ation has the e¤ect of signi�cantly

raising volatility at the short end (1 and 2 year bonds) without imparting much additional

variance at or beyond the 10 year bond.

In Section 3, it was noted that bond markets may take advantage of the signal in contained

in the policy rate to infer the in�ation target. Table 4 presents bond variances for this case

18 Introducing an ad hoc smoothing term in the monetary policy reaction function lowers the immediate
response of the policy controlled short rate to current shocks and thus lowers the variance in 1 and 2 year
bonds. Intuitively, it has little e¤ect on longer bonds.
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Table 4: Volatility of Calibrated m-year bonds from the model (Learning via nominal short
rate forecast error).

m �2� = 0 �2� = 0:35 �2� = 0:7 �2� = 0:2
(years) FI LI FI LI FI LI
1 0.61 0.96 1.28 1.31 1.70 0.80 1.07
2 0.17 0.52 0.76 0.88 1.16 0.37 0.57
5 0.03 0.37 0.49 0.74 0.87 0.23 0.32
10 0.01 0.35 0.42 0.72 0.78 0.21 0.26
20 0.00 0.35 0.38 0.71 0.74 0.20 0.23
30 0.00 0.35 0.37 0.71 0.72 0.20 0.22

Notes: The data in the table are generated with Monte Carlo simulations using 1000 draws
of the economy observed for 50 years. The reported numbers are the mean of the sample
bond variance over all simulations.

using the same parameters as above. Because the policy short rate is a noisier signal of the

in�ation target in this model, learning is less accurate than when agents focus on just in�ation

releases. Correspondingly, bond volatility is slightly higher for all maturities for the limited

information scenario.

4.3 Two Sensitivity puzzles

1. The Volatility and Sensitivity of Forward Rates

Gürkaynak et al (2003) document two empirical facts about the behaviour of forward

rates. First, the volatility of forward rates is not downward sloping with horizon; 10 and 15

year forward rates are as volatile as 2 year forward rates. Second, forward rates respond at

very long horizons to current news, in particular news about in�ation, with the magnitude of

the long response often similar to that of one year rate. Prompted by the observation that

forward rates derived from in�ation-indexed debt in the United States are less sensitive to

news surprises,the authors suggest that the sensitivity of forward rates may re�ect learning

about an unknown, time-varying in�ation target.

In fact, both features are predictions of the model with a random walk in�ation target,

with or without the informational problem. With a non-stationary process for the in�ation

target, long run in�ation expectations are not anchored to a �xed point. Using the simple

27



analytical case built above, we can calculate the volatility of forward rates as follows;

iFIt+j=t � i
FI
t+j=t�1 = ��t � ��t�1 = "t

var(iFIt+j=t � i
FI
t+j=t�1) = �2" 8 j > 1

iLIt+j=t � i
LI
t+j=t�1 = (1� �)(�t � �LIt=t�1) = (1� �)kt

var(iFIt+j=t � i
FI
t+j=t�1) = (1� �)2�2k = �2" 8 j > 1

These variances are not only constant over horizon j but with the gain calibrated optimally to

the signal-to-noise ratio, they take the same value. The �at pro�le of forward rate volatility

contrasts strongly with the predictions of a partly backward-looking model such as in Rude-

busch (2002) with constant steady state. Whilst such a model is able to generate substantial

persistence in in�ation, the purely transitory nature of the shocks means that the volatility

pro�le is strongly downward sloping. The response of forward rates to an in�ation surprise

(�t � �t=t�1) as would be estimated by the following regression

it+j=t � it+j=t�1 = �+ b1;j
�t � �t=t�1

stdev(�t � �t=t�1)
+ �t;j

yields the following coe¢ cients

bFI1;j =
�2"q

�2" + �
2�2û

8 j > 1

bLI1;j = (1� �)

s
�2"

(1� �)2 = �" 8 j > 1

where �" >
�2"q

�2" + �
2�2û

given �2û > 0

Again, both information scenarios deliver the same qualitative properties with the response

of forward rates to macroeconomic news constant over all horizons.19 Figure 6 plots the

19 Introducing serially corellated errors imparts slightly greater volatility to near horizon forward rates, but
relatively little as in Gurkaynak et al�s empirical �ndings.

var(iFIt+j=t � iFIt+j=t�1) = �2" +
�
�+

�

�'
(1� �)

�2
�2�2j�2û + �

2j �
2
ĝ

'2
for all j > 1 (31)
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coe¢ cients bFI1;j and b
LI
1;j for the model calibrated according to Table 1, as well as the predicted

coe¢ cient when the in�ation target is constant. Learning approximately doubles the expected

coe¢ cient from such a regression. Qualitatively it is the addition of a moving in�ation target,

rather than excess sensitivity due to learning, that explains the behaviour of short rates but

learning has implications for the magnitude of observed forward rate volatility and heightens

the response of forward rates to in�ation news

For 1990 to 2002, Gürkaynak et al (2003) report that the volatility of forward rates (stan-

dard deviation of quarterly changes) declines from about 1.3 percentage points at the 1 year to

horizon to 1 percentage point at 15 years. In the calibrations described above, the moderate

innovation variance corresponds to a standard deviation �� = 0:59 and the low to �� = 0:44,

around half the reported volatility.

2. The Sensitivity of Bond Yields to monetary policy innovations

Having derived expressions for long interest rates and the nominal short rate, we can also

shed light on a question addressed empirically by previous authors. By how much should

we expect an m-period bond respond to a movement in the policy controlled short rate?

Previous authors have tried to answer this question by estimating the following regression

�imt = a+ b2�it + et: (32)

Cook and Hahn (1989) performed this regression for data from the 1970s with some success,

although the same estimation for later samples yields only a weak relationship perhaps due

to a greater anticipated component of target rate movements in recent years (Kuttner 2001).

To better assess the impact of monetary policy actions on bonds, Kuttner concentrates on the

response of long interest rates to surprise monetary policy actions where market expectations

are derived using Fed futures contracts. That is, he estimates the following regression

�imt = a+ b3(it � it=t�1) + et (33)

which yields large and signi�cant estimates of b3 (reproduced in Table 5). Ellingsen and
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Table 5: Estimated and Calibrated response of long interest rates to surprise Fed Funds rate
innovations
m Kuttner Ellingsen & Calibrated Values

Söderström �2� = 0 �2� = 0:35 �2� = 0:2

(years) b̂3;F I = b̂3;LI b̂3;F I b̂3;LI ratio b̂3;F I b̂3;LI ratio
1 0.72 (0.08) 0.83 (0.09) 0.47 0.56 0.56 0.99 0.52 0.53 1.03
2 0.61 (0.06) 0.68 (0.10) 0.25 0.38 0.42 1.10 0.32 0.38 1.19
5 0.48 (0.04) 0.50 (0.11) 0.10 0.25 0.32 1.30 0.19 0.28 1.50
10 0.32 (0.03) 0.29 (0.11) 0.05 0.20 0.29 1.41 0.14 0.24 1.72
20 � � 0.03 0.18 0.27 1.50 0.12 0.23 1.90
30 0.19 (0.02) 0.17 (0.09) 0.02 0.17 0.27 1.52 0.11 0.22 1.97

Notes: Coe¢ cient estimates with standard errors in parentheses reported from Kuttner
(2001) and Ellingsen and Soderstrom (2004). Calibrated values generated with monte carlo
simulations as in Tables 3 and 4.

Söderström (2004) estimate the same regression, measuring the unanticipated component of

monetary policy as the change in the 3 month rate on days when the Fed funds rate was

moved. As is evident in the table, both methods yield very similar estimates.

The coe¢ cient b3 can be given analytical form in terms of the model in Section 3 and

leads to the following proposition.

Proposition 4 bLI3 =
cov(�imt ;it�it=t�1)LI
var(it�it=t�1)LI

>
cov(�imt ;it�it=t�1)FI
var(it�it=t�1)FI

= bFI3 for all m > 1 and

�2"
�2�2u

> 0

See Appendix H for proof.

When bond markets employ constant gain learning via forecast errors, the overreaction

of the perceived in�ation target to transitory shocks that also a¤ect the short rate raises the

covariance between in long rates and surprise movements of the short rate.

Table 5 shows calibrated values of the coe¢ cient b3 for the moderate and low values

of target innovation variance (�2� ) likely to describe the period after 1989 as well as for a

constant in�ation target. The underlying parameters of the model are the same as those

outlined in Table 1. For longer maturity bonds, the averaging inherent in the expectations

hypothesis reduces the covariance between long and short rates. In the case of a constant

in�ation target, this is powerfully so with long maturity bonds well anchored despite current

transitory shocks. Relative to this benchmark, a random walk in the in�ation target raises

the estimates substantially and learning about an uncommunicated target even more so.
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Comparing the columns indicating ratios, we see that constant gain learning signi�cantly

raises the coe¢ cient in a regression such as (33), especially for longer rates, with predicted

coe¢ cients range between one third to twice as large. Figure 7 plots b̂3;F I and b̂3;LI for

the case when �2� = 0:35 as well as the predicted coe¢ cients from the constant steady state

model. The calibrations shown in the table coincide roughly with those of Kuttner, Ellingsen

and Söderström for longer maturities, although at times both b̂3;F I and b̂3;LI fall within one

standard deviation of the estimates.

Results change very little when coe¢ cients are calculated using Ellingsen and Söderström�s

measure of surprise policy innovations (the change in the 3 month rate) or when learning is

via the nominal short rate instead of in�ation as hypothesised by Romer and Romer. (Present

tables.)

4.4 Extensions

1. Learning with the Wrong Gain

In the analysis above, the rate at which bond market participants learn about the in�ation

target is assumed to be calibrated to the true signal-to-noise ratio in the economy. However,

agents may be learning at the wrong rate for a number of reasons; insu¢ cient information

about the true gain, an attempt to learn more quickly the character of a new policy regime

following a change, or a lack of credibility in an announced in�ation target. Small deviations

from the optimal gain can have sizeable implications for volatility. With faster learning, agents

adjust to permanent structural shocks more rapidly but also incorporate more transitory

shocks into their estimate of the state variables. For example, building upon the structurally

stable model posited by Orphanides and Williams (2003), a small and positive gain imparts

su¢ cient volatility to long interest rates to reject the null in a Shiller style test of excess

volatility (Beechey (2004)).

2. In�ation Targeting

Proponents of in�ation targeting claim greater �nancial market stability as one of the

potential bene�ts of such a policy (Edey and Stone, 2004). The mechanism described in

this paper suggests that this bene�t should arise through two channels - by stabilising the
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nominal target and by communicating its value. One implication is that, conditional on

the mean and variance of macroeconomic shocks, long term interest rates should exhibit less

volatility under in�ation targeting regimes. Bond volatility ought to be able to o¤er a test

of the success of such targets in anchoring long run expectations. This is easier said than

done, however, as controlling for di¤erences in the magnitude of macroeconomic shocks and

idiosyncratic di¤erences in term premium variation will confound the exercise. In addition,

some in�ation targets operate with only loosely de�ned targets that functionally may not

di¤er from the implicit in�ation targeting practised in the US (Australia, for example, has

a target band with loosely de�ned assessment horizon) whilst others may not yet have earnt

su¢ cient credibility to a¤ect bond market outcomes.

5 Conclusions

The puzzles of volatility and sensitivity of long interest rates are closely related. As previous

authors have noted, non-stationary nominal short rates are more likely to be able to reconcile

observed bond volatility with an expectations hypothesis explanation of the term structure

than mean-reverting short rates. The model in this paper has built non-stationarity into the

economy via the in�ation target and introduced an asymmetric information problem which

requires key agents to learn about the time-variation of policy preferences.

By adding an asymmetric information dimension to the problem, it has been possible

to show that learning contributes not only to the sensitivity of long rates but also imparts

volatility to long interest rates of all maturities. The fundamental source of the additional

variance is the tendency of the perceived value of the target to overreact to transitory shocks

in the economy and confound them for permanent shocks to the in�ation target. While this is

by no means a claim that asymmetric information about policy goals is the only source of bond

volatility - rather, around one �fth of the volatility in a 10 year bond is a more reasonable

estimate - it suggests that the revision of long run in�ation expectations due to continual

learning does contribute to movement in the yield curve. This channel is potent even when

there is relatively little time-variation in the in�ation target, or to an approximation, the

relative preference for output stability.
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The addition of a time-varying in�ation target also appears important to explain the

qualitative reaction of long interest rates to in�ation surprises and monetary policy innovation.

Learning about the target increases the magnitude of these responses and o¤ers an explanation

for the apparent power of monetary policy innovations to a¤ect bonds as long as 30 years.

The framework proposed in this paper is also helpful for addressing such questions as the

source of the compression in bond volatility observed in much of the OECD during the mid-

1990s and the decline in the amplitude of forecast errors of the nominal short rate.20 Whilst

some have answered that the amplitude of shocks arriving in the economy has compressed,

others have pointed to a shift toward explicit or implicit in�ation targeting in certain countries

and to improvements in central bank transparency and communication. All three channels

are at work in the model presented in this paper and the view that reducing the degree of

time-variation in policy preferences is a factor �nds support here. However, a central bank

operating a relatively stable yet uncommunicated target stands to gain the most in reducing

�nancial market volatility by regularly announcing its policy goals.

20Swanson (2004) shows using federal funds futures data that the standard deviation of the three month
ahead forecast error dropped 15 basis points in the decade after 1994 compared to the 5 years prior, from 39.5
to 24 basis points.
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6 Appendix A - Phillips�s curve with ��t

Aggregate Demand A in�nitely-lived, representative household chooses Ct (consumption),

Nt (household size) and Bt (assets) to maximise lifetime utility

max
Ct;Nt;Bt

E0

1X
t=0

�t

"
C1��t

1� � �
N1+'
t

1 + '

#
s:t: PtCt + (1 + it)

�1Bt = Bt�1 +WtNt for all t

where Ct and Pt are constant elasticity of substitution combinations of goods over mea-

sure 1. The �rst order conditions of the standard Lagrangian for this problem yield the

consumption Euler equation

1 = Et

(
�(1 + it)

�
Ct+1
Ct

��� Pt
Pt+1

)
:

Log-linearising the Euler equation around the steady state yields

ct = Etct+1 �
1

�
[it � Et�t+1]

where lower case letters denote log deviations. Paired with the market clearing condition

ct = yt and rewritten in terms of the output gap, xt = yt � yPt (the deviation of output from
the �exible price "potential" level yPt ) yields the aggregate demand equation in the text. (This

can also encompass exogenously evolving government spending). The steady state implies a

constant real interest rate around which the Euler equation is linearised.

Aggregate Supply The market for �nal goods is perfectly competitive and the produc-
tion function of the �nal good �rm transforms intermediate inputs into �nal output according

to

Yt =

�Z 1

0
Y

1
�
i:t

��t
; 1 � � <1:

Pro�t maximisation leads to the following relationship between the average price level of �nal

goods, Pt, and the prices of intermediate goods, Pi;t,

Pt =

�Z 1

0
P

1
1��t
i:t

�1��t
: (34)

A continuum of intermediate �rms, each producing a di¤erentiated good, faces monopo-

listic competition. As in Calvo (1983), the probability that a �rm can re-optimise its price

in a given period is constant and equal to (1 � �p). For a given �rm i, its re-optimised

price is Pnewi;t . If a �rm does not re-optimise then its price at t + 1 is indexed according to

Pi;t+1 = �

p
t (�

�
t )
1�
p Pnewi;t where 
p 2 [0; 1]. Thus the price the �rm can charge if it has not

re-optimised in j periods is (�t�t+1 : : : �t+j�1)

p
�
��t+1�

�
t+2 : : : �

�
t+j

�1�
p
Pnewi;t .
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The representative �rm faces the following optimisation problem when setting its price,

max
Pnewi;t

Et

1X
j=0

(��)j �t+j

24
�
(�t�t+1 : : : �t+j�1)


p
�
��t+1�

�
t+2 : : : �

�
t+j

�1�
p
Pnewi;t

�
Yi;t+j

�MCi;t+jYi;t+j �MCi;t+jzt+j�

35
where ��t+j is the stochastic discount factor between periods t and t + j used to discount

pro�ts, Yi;t+j is the output of the ith intermediate �rm, MCi;t+j its real marginal cost and

zt+j a permanent technology shock in the intermediate goods production function.

The optimisation problem leads to a �rst order condition that when combined with the

average price level in (34) yields two equations that can be log-linearised. Together these

yield an aggregate Phillips curve showing the relationship between in�ation, real marginal

cost and the in�ation target when the latter follows a random walk;

�t � ��t =
�

1 + 
p�
(Et�t+1 � ��t ) +


p
1 + 
p�

(�t�1 � ��t ) +
(1� �p)
�p

(1� ��p)
1 + 
p�

(mct + �t)

where �t and mct are log deviations from their respective steady state values. In this form,

the deviation of in�ation from the target depends on past and expected future in�ation as

well as marginal cost. When 
p = 0 (ie: non-optimised prices are fully indexed to the current

in�ation target), the equation simpli�es to the forward-looking aggregate supply curve shown

in the text with the additional simpli�cation that mct = �1xt+ut where ut can be interpreted

as a cost-push shock or as a markup shock as in Gali (2003) and Woodford (2003).

7 Appendix B - Solving for Optimal Policy

Given the model shown in equations (1a) to (??) and (4), the central bank minimises its
loss function each period. That is, they consider max

�
1
2�x

2
t + (�t � ��t )2

	
with respect to

xt which yields �rst order condition

�xt + �(�t � ��t ) = 0

xt = ��
�
(�t � ��t ):

To solve for xt and �t in terms of shocks arriving in the model, substitute this �rst order

condition into the Phillips curve and solve for the in�ation deviation at time t

�t � ��t = �Et[�t+1 � ��t+1]�
�2

�
[�t � ��t ] + +ut

�t � ��t =
��

�+ �2
Et[�t+1 � ��t+1] +

�

�+ �2
ut

Assuming that private sector (price setters�) expectations are rationally forward looking, that

is Et[�t+1 � ��t+1] = Et
�

��
�+�2

Et+1[�t+2 � ��t+2] + �
�+�2

ut+1

�
, repeatedly substitute and take
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expectations at t

�
�+ �2

�
[�t � ��t ] = ��Et

�
��

�+ �2
Et+1[�t+2 � ��t+2] +

�

�+ �2
ut+1

�
+ �ut

...

= �Et

24 1X
j=0

�
��

�+ �2

�j
ut+j

35
= �

1X
j=0

�
��

�+ �2

�j
�jut

Taking an in�nite geometric sum, we can express the deviation of in�ation from the target at

time t as a function of the current in�ation shock,

�t � ��t =
�

�2 + �(1� ��)
ut:

Substituting into the policy trade-o¤ likewise yields the expression for the output gap,

xt = �
�

�
[�t � ��t ] =

�
��

�2 + �(1� ��)

�
ut:

To �nd the optimal interest rate rule, employ the serial correlation in ut to write Et[�t+1 �
��t+1] = �[�t � ��t ] and substitute into the policy trade-o¤,

xt = �
�

�
[�t � ��t ] = �

�

��
Et[�t+1 � ��t+1]:

Replacing xt in the LHS of the aggregate demand equation and substituting for Et (xt+1) in

the RHS, we can solve for the optimal setting of the policy controlled nominal short interest

rate,

� �

��
Et[�t+1 � ��t+1] = �
 (it � Et (�t+1)) + Et (yt+1) + gt

it =

�
1 +

�(1� �)
�
�

�
Et
�
�t+1 � ��t+1

�
+ E

�
��t+1

�
+
gt



8 Appendix C - Univariate Steady State Kalman Filter

The following derivation of the univariate steady state Kalman gain owes heavily to Sargent�s

(1983) treatment of Muth�s solution to the permanent income inference problem, which con-
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veniently takes a similar form to the problem here. From Section 3.2 we have

Observation equation �t = ��t + �ût

State equation ��t = ��t�1 + "t

Add �ût to both sides of the state equation (21) and rewrite the change in in�ation as as an

AR(1) process with a MA error term,

�t � �t�1 = �(ut � ut�1) + "t:

The auto-covariance structure of this error term is

cov [�(ut � ut�1) + "t; �(ut�j � ut�j�1) + "t�j ] =

8><>:
2�2�2u + �

2
" for j = 0

��2�2u for j = 1
0 for j > 2

9>=>; :
We can replicate the covariance properties of this process with a MA process (Wold�s theorem)

as follows

�(ut � ut�1) + "t = kt � �kt�1 (35)

where kt is a stationary, serially uncorrelated random process with mean zero and variance

�2k. The auto-covariance structure of kt is

cov [kt � �kt�1; kt � j � �kt�j�1] =

8><>:
(1 + �2)�2k for j = 0

��2�2k for j = 1
0 for j > 2

9>=>; :
Matching coe¢ cients we have two relationships

2�2�2u + �
2
" = (1 + �2)�2k and (36)

��2�2u = ��2�2k

which can be solved for �2k
�

�2"
�2�2u

�
and

� = 1 +
1

2

�
�2"
�2�2u

�
�

s
�2"
�2�2u

�
1 +

1

4

�
�2"
�2�2u

��

As �2"
�2�2u

!1, �! 0 and �2"
�2�2u

! 0, �! 1.

It will be useful to write the optimal projection as a geometrically declining lagged poly-
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nomial of previously observed in�ation outcomes. From above we have

(1� L)�t = (1� �L)kt

) (1� L)
(1� �L)�t = �t �

(1� �)
(1� �L)�t�1 = kt

Because kt is orthogonal to the information set 
t�1 and using the optimal projections we

have

�t=t�1 = �t�1=t�1 = �
�
t�1=t�1 =

(1� �)
1� �L�t�1

Manipulation of the above results yields

�t � ��t=t = �kt and

��t=t � �
�
t�1=t�1 = (1� �)

�
�t �

(1� �)
1� �L�t�1

�
= (1� �)kt

where kt = (�t � �t=t�1) is the one-period ahead in�ation forecast error.

9 Appendix D - Forecast Errors

Full information: With � and � reintroduced, the expression for the one-period ahead

forecast error of the nominal short rate becomes

it+1 � iFIt+1=t = "t+1 +
�
�+

�

�

(1� �)

�
�ût+1 +

1

'
ĝt+1 (37)

with variance

var(it+1 � iFIt+1=t) = �
2
" +

�
�+

�

�

(1� �)

�2
�2�2û +

�2ĝ

2

This variance is rising in �.

Limited Information (� = � = 0): First note that we can rewrite the expression for the
forecast error as

it+1 � iLIt+1=t = "t+1 +
�
��t � �̂�t=t

�
+
�

�

�ût+1 +

1



ĝt+1 (38)

= "t+1 � �ut +
�
�t � �̂�t=t

�
+
�

�

�ût+1 +

1



ĝt+1 (39)

From Appendix C that have �t � ��t=t = �kt so replacing this and recalling kt � �kt�1 =
"t + � (ut � ut�1) we can recursively substitute for lags of kt�j and group terms until the
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forecast error is expressed in terms of historical errors

it+1 � iLIt+1=t = "t+1 � �ût + �kt +
�

�

�ût+1 +

1



ĝt+1

= "t+1 � �ût + �("t + � (ût � ût�1) + �kt�1) +
�

�

�ût+1 +

1



ĝt+1

...

=
1X
m=0

�m"t+1�m +
�

�

�ût+1 � (1� �)

1X
m=0

�mût�m +
1



ĝt+1

For � < 1 these summations are �nite allowing us to compute the variance (recalling the

cross-independence of the errors)

var(it+1 � iLIt+1=t) = �2"(1 + �
2 + �4 + : : :) + �2�2û

�

�'

2

+ �2�2û(1� �)2(1 + �2 + �4 + : : :) +
�2ĝ
'

= �2"(
1

1� �2
) + �2�2û

"
�

�


2

+
(1� �)2

1� �2

#
+
�2ĝ

2

Proof of Proposition 1
For any � 2 (0; 1)

1

1� �2
> 1

(1� �)2

1� �2
> 0

Thus for any given �2", �
2
û and �

2
ĝ

�2"(
1

1� �2
) + �2�2û

"
�

�'

2

+
(1� �)2

1� �2

#
+
�2ĝ
'2
> �2" +

�

�


2

�2�2û +
�2ĝ

2

(40)

�

10 Appendix E - m-period bond with full information and

serially correlated errors

With serially correlated errors, the sum of the current and forecasted short rates is

im
FI

t =
1

m

�
��t +

Xm�1

j=1
��t+j=t +

�
�+

�

�'
(1� �)

�
�
�
ut +

Xm�1

j=1
ut+j=t

�
+
1

'

�
gt +

Xm�1

j=1
gt+j=t

��
+ �mt

= ��t +
1

m

0@��+ �

�'
(1� �)

�
�ut

m�1X
j=0

�j +
gt
'

m�1X
j=0

�j

1A+ �m (41)
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so that the one period change becomes

im
FI

t �imFI

t�1 = "t+
1

m

0@��+ �

�'
(1� �)

�
�

m�1X
j=0

�j(ut � ut�1) +
1

'

m�1X
j=0

�j (gt � gt�1)

1A+�mt ��mt�1:
(42)

The variance of the change in this m-period bond takes account of the fact that var(ut �
ut�1) = 2(1� �)�2u

var(im
FI

t �imFI

t�1 ) = �
2
"+

1

m2

0@0@��+ �

�'
(1� �)

�
�
m�1X
j=0

�j

1A2 2(1� �)�2u +
0@ 1
'

m�1X
j=0

�j

1A2 2�2g(1� �)
1A+�2&

where �2u =
�2û
1��2 and �

2
g =

�2ĝ
1��2 are the unconditional variances of the serially correlated

disturbances, ut and gt. This variance is increasing in p, both through the �rst and second

terms in parentheses, as well as due to the fact that @�@� > 0.

11 Appendix F - m-period bond with learning when � = � = 0

From the text we have

im
LI

t � imLI

t�1 =
1

m

�
"t + (m� 1)(��t=t � �

�
t�1=t�1) +

�

�'
�(ût � ût�1) +

1

'
(ĝt � ĝt�1)

�
Borrowing the result from Appendix B that in the simplest case ��t=t � �

�
t�1=t�1 = (1 � �)kt

then substituting recursively for kt�j , j = 0; ::1 using kt = "t + �(ut � ut�1) + �kt�1

im
LI

t � imLI

t�1 =
1

m

�
"t + (m� 1)(1� �)kt +

�

�'
�(ût � ût�1) +

1

'
(ĝt � ĝt�1)

�
... (43)

=
1

m

0BB@
"t [1 + (m� 1)(1� �)] + (m�1)(1��)

1��L �"t�1 +
1
'(gt � gt�1)

+
h
�
�' + (m� 1)(1� �)

i
�ut �

h
�
�' + (m� 1)(1� �)

2
i
�ut�1

�
h
(m�1)(1��)2�

1��L

i
�ut�2

1CCA(44)

var(im
LI

t �imLI

t�1 ) =
1

m2

0BBBB@
[1 + (m� 1)(1� �)]2 �2" +

((m�1)(1��)�)2
1��2 �2" +

1
'2
2�2g

+
h
�
�' + (m� 1)(1� �)

i2
�2�2u +

h
�
�' + (m� 1)(1� �)

2
i2
�2�2u

+

�
((m�1)(1��)2�)

2

1��2

�
�2�2u

1CCCCA+�2&
(45)
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12 Appendix G - Forward rate regression coe¢ cients

The regression we are concerned with is

it+j=t � it+j=t�1 = �+ �
�t � �t=t�1

stdev(�t � �t=t�1)
+ �

The coe¢ cients can be calculated as follows:

cov(iFIt+j=t � i
FI
t+j=t�1; �t � �

FI
t=t�1)

var(�t � �FIt=t�1)

q
var(�t � �FIt=t�1) =

�2"q
�2" + �

2�2û

8 j > 1

cov(iFIt+j=t � i
FI
t+j=t�1; �t � �

FI
t=t�1)

var(�t � �FIt=t�1)

q
var(�t � �LIt=t�1) = (1� �)

s
�2"

(1� �)2 = �" 8 j > 1

Because �" >
�2"p

�2"+�
2�2û

for any �2û > 0, �
LI > �FI :

13 Appendix H - Proof of Proposition 4

For Proposition 5 to be true requires that

cov(�imt ; it � it=t�1)LI

cov(�imt ; it � it=t�1)FI
>
var(it � it=t�1)LI

var(it � it=t�1)FI

From Appendix D, we have the variances of the forecast error under both scenarios when

� = � = 0

var(it+1 � iFIt+1=t) = �2" [1] + �
2�2û

�
�

�


2�
+
�2ĝ

2

var(it+1 � iLIt+1=t) = �2"

�
1 +

�2

1� �2

�
+ �2�2û

"
�

�


2

+
(1� �)2

1� �2

#
+
�2ĝ

2
:

The covariances are as follows

cov(�imt ; it � it=t�1)FI = �2" [1] + �
2�2û

�
1

m

�

�


2�
+
1

m

�2ĝ

2

cov(�imt ; it � it=t�1)LI = �2"

�
1 +

m� 1
m

�(1� �)
1� �2

�
+ �2�2û

"
1

m

�

�


2

+
�

�

(1� �) + m� 1

m

(1� �)3

1� �2

#
+
�2ĝ

2

The ratio of covariances must exceed the ratio of variances. When m = 1 the covariances are

still not the same because of the presence of �
�
 (1� �). That is, the change in the short rate

(�imt ) has a larger covariance with the forecast error in that period under LI. When �
2
" = 0,
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however, and � = 1 the two coincide because there is no longer an information problem.

cov(�imt ; it � it=t�1)LI

var(it � it=t�1)LI
>
cov(�imt ; it � it=t�1)FI

var(it � it=t�1)FI
for all m > 1 and

�2"
�2�2u

> 0
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Figure 1: In�ation Target - Actual and Perceived
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Figure 2: Impulse Response Functions of Forward Rates
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Figure 3: Volatility of the Term Structure - Actual and Calibrated

Figure 4: Volatility of the Term Structure - Actual and Calibrated
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Figure 5: Simulated variance ratio of 10 year bond: LI/FI
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Figure 6: Regression coe¢ cient of the response of forward rates to an in�ation surprise
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Figure 7: Regression coe¢ cient of m-period bond response to a short rate surprise
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