Econ 172: Issues in African Economic Development
Problem Set 2 (Due in class Thursday February 9, 2006)

1. Tropical Disease and Economic Development
Why might geography affect African economic development? In approximately two pages (double-spaced), discuss three possible channels – including at least one historical channel. Which of these three channels do you think has been most influential?

2. Child Health and Education
(Download the MS-Excel dataset “PS1.XLS” from the course page.)

a) Why was the health intervention in the Primary School Deworming Project (Miguel and Kremer 2001) randomized across schools? How does the randomized design affect the estimation of treatment effects, and how does it help address omitted variable bias? (Please illustrate your points with the example presented in class.)

b) Using the “LINEST” command in EXCEL, determine the average difference between 1998 treatment schools (GROUP1=1) and 1998 comparison schools (GROUP1=0) in the following two pre-treatment characteristics:
 - Proportion of female children (FEMALE)
 - Average child year of birth (YOB)
 - Average child grade progression (STDGAP, where zero means the child is at the “correct” grade level, i.e., 7 years old in grade 1, 8 years old in grade 2, etc.)

Report the regression output for the three regressions – you should hand in the actual EXCEL print-out – and interpret the coefficients. Did the randomization succeed in creating comparable groups? At what level of confidence? Please present the t-statistics.

c) Determine the average difference between 1998 treatment and comparison schools in:
 - Average school participation in 1998 (PART98)

Report the regression results – you should again hand in the print-out – and interpret the coefficients. What is the impact of attending a treatment school on average school participation? Is this difference significantly different than zero at 95% confidence?

d) Re-run the regression in part (c), but include FEMALE, YOB and STDGAP as additional explanatory variables. Please report and interpret the regression results. Does the inclusion of these additional control variables change the conclusions in (c)?

e) Determine the average difference between Group 2 (GROUP2=1) and Group 3 (GROUP3=1) schools in Average school participation in 1998 (PART98), again including FEMALE, YOB and STDGAP as additional explanatory variables. (Note: restrict the regression sample to Group 2 and Group 3 schools.)

Report the regression results – you should again hand in the actual excel print-out – and interpret the coefficients. Is this difference significantly different than zero at 95% confidence? Why is this a surprising – or not a surprising – result?
BRIEF EXCEL LINEAR REGRESSION (OLS) TUTORIAL

The most important MS-EXCEL command used in this problem set is “LINEST”. LINEST carries out ordinary least squares (OLS) regressions. OLS coefficient estimates constitute a “best-fit” to the data, and give us insight into the relationships among variables. It is probably worthwhile to read the EXCEL “Help” description of this command. The GSI’s will also discuss linear regression in section.

The following example illustrates how to use LINEST in MS-EXCEL. Consider the following regression equation, where \(Y \) is the outcome of interest, \(X_1 \) and \(X_2 \) are explanatory variables, \(e \) is the error term, and \(i \) denotes a particular observation.

\[
Y_i = a + b_1X_1 + b_2X_2 + e_i
\]

If OLS coefficient estimates for \(b_1 \) and \(b_2 \) are positive, this would suggest that \(X_1 \) and \(X_2 \) are positively correlated with \(Y \) in the data.

In this example, imagine that the \(Y \) values were contained in cells \(A2:A50 \) in the spreadsheet, \(X_1 \) values were contained in cells \(B2:B50 \), and \(X_2 \) values were contained in cells \(C2:C50 \) in the spreadsheet. On the same EXCEL sheet as the data, entering the following command generates the desired OLS coefficient estimates and standard errors:

\[
\text{LINEST}(A2:A50, B2:B50:C2:C50, \text{TRUE, TRUE})
\]

The \(A2:A50 \) component lets EXCEL know where to find the values of the dependent variable. The \(B2:B50 \) component contains the first explanatory variable, and the \(C2:C50 \) component contains the second explanatory variable. \(a \) is estimated automatically. (Similar syntax can be used to include additional explanatory variables.)

In order to generate the OLS output, first highlight a block of cells on the same sheet as the data, with dimension two (2) cells in height, and dimension three (3) cells in width since, in this case, three coefficients will be estimated, \(a, b_1, \) and \(b_2 \). (In general, the width of the highlighted block of cells should be the number of coefficients being estimated). Then press the equal sign (“=”). Then type the appropriate LINEST formula, as above. Do not press enter once you have typed the required formula! Rather, press “CTRL-SHIFT-ENTER” (all three keys simultaneously). This should generate the following OLS output:

<table>
<thead>
<tr>
<th>Estimated (b_2)</th>
<th>Estimated (b_1)</th>
<th>Estimated (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard error (b_2)</td>
<td>Standard error (b_1)</td>
<td>Standard error (a)</td>
</tr>
</tbody>
</table>

The standard error indicates how uncertain the coefficient estimate is for that variable; smaller standard errors suggest that the coefficient estimate is known with greater precision. Roughly, when the absolute value of the ratio of the coefficient estimate to the standard error (also known as the \(t\)-statistic) is greater than 2, the coefficient is considered to be different than zero with greater than 95 percent confidence. When the absolute value of the \(t\)-statistic is at least 1.6, the coefficient is considered to be different than zero with approximately 90 percent confidence.